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Host–Microbial Interactions: Idiopathic Pulmonary Fibrosis
in Technicolor

Idiopathic pulmonary fibrosis (IPF) is a complex disease that is
characterized by progressive declines in lung mechanics and gas
exchange, which ultimately lead to respiratory failure and death. The
complexity of IPF is exemplified by genetic and environmental
contributions that are thought to culminate in recurrent
“microinjuries” to alveolar epithelial cells, which lead to epithelial
exhaustion and chronic disrepair. To date, the origins of this
unremitting injury have remained elusive. Several recent studies
proposed a role for impaired or dysregulated host defense and
immune signaling in IPF pathogenesis (1–7). Exogenous stimuli,
including microbes, are plausible environmental factors that
contribute to organ fibrosis (8, 9). Specific microbiota in the lungs
of patients with IPF predict disease progression, and the fibrotic
environment of the IPF lung harbors a significantly greater burden
of bacteria than chronic obstructive pulmonary disease and healthy
lungs (10, 11). The stage is therefore set to determine whether
the microbes residing in the lower airways conceivably drive
recurrent injury and disrepair in the lungs of patients with IPF,
particularly in the context of dysregulated host defense.

It is in this context that Molyneaux and colleagues (pp. 1640–
1650) in this issue of the Journal (12) build on their previous novel
contributions to the field of respiratory microbiota in IPF (11). This

group applied 16S ribosomal RNA gene sequencing to baseline-
acquired bronchoalveolar lavage (BAL) fluid from 60 patients with
IPF and 20 matched control subjects to describe the respiratory
microbiome. They reported significant differences in the total
abundance and relative abundance of certain microbial species,
including a Haemophilus sp., a Neisseria sp., a Streptococcus sp.,
and a Veillonella sp. compared with age-matched control subjects.
Although these results are not novel to the field, the authors also
acquired corresponding peripheral blood samples prospectively at
1, 3, 6, and 12 months from patients with IPF and control subjects
to explore potential associated host responses. More than 1,300
transcript clusters were differentially expressed in IPF compared
with controls, and the most enriched biological processes in these
clusters were “host defense” and “stress” related (based on gene
ontology). Host gene expression in peripheral blood cells was
examined in a weighted gene coexpression network analysis, and
five gene clusters (or modules) were reported. Gene expression
modules, assigned arbitrary colors, which predicted poor prognosis,
were enriched for innate defense transcripts, and were associated
with peripheral neutrophil counts (brown and blue). However, a
module that predicted favorable outcomes (turquoise) was enriched
for lymphocytic transcripts and was associated with increased
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lymphocyte counts in the peripheral blood. Increased expression of
the blue module transcripts was associated with worse survival,
greater decline in lung function, a higher bacterial burden, and
lower abundance of a Neisseria sp. and BAL neutrophilia in
patients with IPF. Unlike previous work (10), no association was
found between this module and disease progression and/or
Staphylococcus or Streptococcus loads. This blue module contained
several overexpressed host defense genes and enriched biological
processes, including “defense response,” “response to bacterium,”
and “immune response.” The green module was strongly associated
with BAL neutrophilia, peripheral blood neutrophilia, and a higher
abundance of Veillonella operational taxonomic units in BAL. The
most enriched biological process within the green module was
“response to bacterium.” The turquoise module, enriched for
T-cell–associated transcripts, was associated with longer survival,
reduced pulmonary function decline, and death, a finding that
agreed with the observation that T-cell costimulatory protein
expression in IPF correlates with prognosis (5). However, there
was no association between the mucin 5B rs35705950 and toll-
interacting protein rs3750920 and rs5743890 single-nucleotide
polymorphisms and host gene expression in the current study. The
other two modules reported interesting findings, but contributed
less to the main hypothesis of the paper.

As a notable strength, this was the first study to postulate and
integrate links between host gene transcription and respiratory
microbiota in a well-characterized cohort of patients with IPF
with serial follow-up and acquisition of large volumes of data. This
cohort was enriched for disease progression, with 24 deaths on
follow-up and another 13 patients with IPF who experienced
declines in lung function that met the standard criteria for
progression. Although the authors accounted for comorbidities
within their statistical modeling and excluded patients with acute
infection, there were caveats and limitations to this study. These
included: patient numbers were limited and without validation;
integration of large data sets was fraught with difficulty andmight be
subject to overinterpretation; and lack of longitudinal surveillance
data on respiratory microbiota might weaken the results of the
study.

The current paradigm of IPF centers on the alveolar epithelium,
which is subject to recurrent unknownmicroinjuries. In conjunction
with recent clinical observations of reduced mortality in patients
treated with antimicrobials (13) and the known deleterious
clinical outcomes of patients with IPF who are treated with
immunosuppression (14), the findings of this study are
provocative. Although this study provides further evidence for
dysregulated host defense responses in IPF and novel associations
between host response and lower airway microbiota, key questions
remain. Could it be that altered microbial cues, in the setting of
dysregulated alveolar epithelial repair, drive recurrent pattern
recognition receptor activation and signaling? Could the fibrotic
lung environment be responsible for physiological changes that
promote dysbiosis, which, in turn, drives a dysregulated host
response and bystander injury? Could a dysregulated host response
predispose to recurrent pulmonary infection, which generates
dysbiotic lower airways and contributes to disease progression
through yet unknown mechanisms? Specifically, it is perplexing
to note that several potent antimicrobial factors were up-regulated
in IPF concomitant with dysbiosis in this disease, which suggests
that these factors disproportionately target probiotic species,

thereby favoring pathogenic species. Alternatively, it remains
plausible that inhaled particulates and/or refluxed gastric acid
might also contribute to epithelial injury in the lung. Further
work is needed to address these exciting questions.

IPF remains an irreversible and devastating disease that
portends a dismal prognosis. This intriguing work by Molyneaux
and colleagues adds to other seminal studies and sheds additional
light on the putative role of the respiratory microbiota in IPF
pathogenesis. If future work strengthens the putative mechanistic
links between respiratory dysbiosis and disease progression in IPF,
then wemay usher in an era of precisionmedicine for the respiratory
microbiome. n
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Invasive Mediastinal Staging in Lung Cancer
Use a Prediction Model or Just Do It?

Clinicians are faced with innumerable medical decisions affecting
patient care and outcomes daily. In the diagnostic setting, some
decisions are relatively straightforward, whereas others involve
probabilistic reasoning that is often complex and, by definition,
uncertain. The probability of a given condition is typically
influenced by a number of factors that, when considered jointly,
impact the decision to pursue additional testing, proceed straight to
treatment, or provide reassurance. Now that clinical prediction
models are increasingly available to assist physicians and patients in
estimating the likelihood of disease with the potential to influence
decision-making, they are increasingly being incorporated into
practice guidelines across a number of medical specialties. In some
diseases there is an abundance of prediction models for the same
outcome (for example, there are 20 models to predict the likelihood
of prolonged intensive care unit stay after cardiac surgery [1]),
whereas in other conditions, novel models are still being developed
and validated to improve decision-making.

One such decision in the field of thoracic oncology is whether
(or in whom) to perform preoperative invasive mediastinal staging.
Invasive staging can help avoid unnecessary thoracotomy among
patients with lung cancer with locally advanced disease and, perhaps
even more importantly, avoid missed opportunities for surgical cure
among patients with evidence of suspicious mediastinal (N2/N3)
lymph node enlargement or hypermetabolism on positron emission
tomography (PET) imaging. In this issue of the Journal, O’Connell
and colleagues (pp. 1651–1660) describe a new prediction model for
determining the presence of N2/N3 nodal disease by endobronchial
ultrasound (EBUS) (2). In the 18 years since its introduction as a new
pulmonary technology, EBUS has revolutionized and redefined the
role of pulmonologists in the staging and diagnosis of lung cancer.
The evolution of EBUS as a diagnostic and staging tool can be seen
in the progressive iterations of the American College of Chest
Physicians (ACCP) guidelines for lung cancer; where EBUS was once
considered a novel technology and mediastinoscopy the gold
standard, minimally invasive, needle-based techniques are now
recommended as the initial procedure of choice for the staging and
diagnosis of those with suspected lung cancer (3, 4). The guidelines
do not recommend invasive mediastinal staging for all patients
with non–small-cell lung cancer (NSCLC); if the probability of nodal
disease is sufficiently low (for example, among those with a small

peripheral cancer without radiographic evidence of nodal disease),
referral for surgical resection (with intraoperative staging) is a
reasonable management strategy (4). Although in some cases locally
advanced disease is quite apparent on the basis of the presence of large
bulky adenopathy on noninvasive imaging, in other cases the presence
of locally advanced disease is not as clear. The authors argue that using
a prediction model with the ability to provide a more precise estimate
of detecting N2/3 disease by EBUS would be of value by informing
the next step in the management algorithm for lung cancer.

The prediction model to Help with the Assessment of
Adenopathy in Lung Cancer (HAL) was developed by using
information from 633 consecutive patients with treatment-naive
NSCLC undergoing EBUS for staging from the ACCP Quality
Improvement Registry, Evaluation, and Education (AQuIRE)
registry (2). Those with small-cell lung cancer, disease recurrence,
extrathoracic metastases, and T4 tumors were appropriately
excluded. Because prior work indicated that PET sensitivity for
mediastinal lymph node involvement depends on the size of the
node on computed tomography (CT) scan (5), the authors
examined the interaction between CT N stage and PET N stage and
modeled N stage using this interaction. In the development cohort,
the prevalence of N2/3 disease was 25%. Factors associated with
positive N2/N3 disease identified by EBUS included younger age,
central tumor location, adenocarcinoma histology, and higher
PET-CT N stage. Many of these variables were identified as
independent predictors of mediastinal metastasis in a previously
developed model (6). However, with the addition of PET-CT N
stage, the HAL model was considerably more accurate, with an area
under the receiver operating curve (AUC) of 0.85 (95% confidence
interval, 0.82–0.89). Data from three centers and 722 patients were
then used to validate the HAL model externally. The pooled AUC
in the external validation was 0.88 (95% confidence interval,
0.85–0.91); however, this varied depending on the institution, with
site-specific AUC values ranging from 0.82 to 0.92. The authors
maintain that the variation was likely due to between-site
differences in N2/3 prevalence. They subsequently used statistical
methods to calibrate the model for better performance. In addition,
they developed and validated similar prediction models for use when
PET results and/or histologic diagnosis were unavailable, making the
utility of the prediction model more broadly applicable (2).
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