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Pulmonary arterial hypertension (PAH) has
been frequently compared with a type of
malignant disease and has an incredible
number of pathogenic mechanisms similar
to cancer (1–3). A cancer model for PAH
was first proposed in 1998 by Voelkel and
colleagues (4) and had been confirmed
and expanded by later studies from many
research groups. A critical role for a
cancer-like metabolic shift from oxidative
phosphorylation to glycolysis despite
adequate oxygen supply (the Warburg
effect) in PAH pathogenesis had been
demonstrated; multiple cancer-shared
abnormalities in mitochondrial
metabolism and dynamics have been
reported as key modulators of pathogenic
changes in PAH pulmonary vasculature
and right ventricle (RV), including
mitochondrial hyperpolarization,
altered activity of mitochondrial pyruvate
dehydrogenase, superoxide dismutase
2 deficiency, fragmentation and/or
hyperpolarization of the mitochondrial
reticulum, and dysregulated mitochondrial
dynamics due to down-regulation of the
fusion protein mitofusin 2 and up-
regulation of the fission protein dynamin-
related protein 1. The benefits of
mitochondria-targeting strategies
(i.e., pyruvate dehydrogenase kinase
inhibitor, dichloroacetate) have been
demonstrated for both experimental
pulmonary hypertension (PH) and human

cancer, suggesting applicability of cancer-
targeting therapies to human PAH (5–8).

Another line of evidence supporting
similarities between PAH and cancer
came from the microRNA (miR) field.
Dysregulation of numerous microRNAs,
reported in human cancers, appeared to play
an important role in multiple features of
PAH pathogenesis, including pulmonary
vascular remodeling, inflammation,
impaired angiogenesis, and RV hypertrophy
(reviewed in depth by Courboulin and
colleagues [9]).

The existence of such fundamental
similarities with cancer not only
dramatically changed our current view on
the mechanisms of PAH pathogenesis, but
also triggered the development of novel
treatment strategies for patients with
PAH.

In this context, a specific cluster of
tumor hallmarks certainly plays a more
prominent role compared with the others;
therefore the application of the Hanahan
and Weinberg approach (10, 11) could be
useful to effectively summarize the state of
the art in PAH research, emphasizing the
most promising areas of investigation.
Various cellular processes that characterize
the pathogenesis of both PAH and cancer
have been identified: sustained proliferative
signaling, evasion of growth suppressors,
resistance to apoptosis, deregulation of
cellular energetics, and limitless replicative

potential and DNA instability due to
epigenetic and genetic alterations, along
with the activation of specific signal
transduction. Similarly, chronic
inflammation, pathological angiogenesis,
and immune system evasion are also
features that characterize the pathogenesis
of both PAH and cancer (1–3).

The aim of this article is to review the
scientific reasons that support the intriguing
vision of PAH as a disease with a cancer-like
nature (Figure 1) and to understand
whether this point of view may have fruitful
consequences for the overall management
of PAH. For these reasons, we attempt
to review various signal transduction
pathways that act as “central signaling
hubs” in PAH and cancer, particularly
those that have a crucial role in driving
pulmonary vascular cell proliferation and
survival, and discuss new opportunities for
the cross-development of anticancer agents
that can be used to improve PAH care; the
current cellular, preclinical, and clinical
status of these so-called “oncological
compounds”; and future perspectives for
the treatment of PAH.

Pathogenesis of Pulmonary
Arterial Hypertension

PAH (group I PH) is a severe and
progressive disease, characterized by
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increased pulmonary vascular resistance
(PVR) culminating in right heart failure and
premature death. The pathogenesis of PAH
is multifactorial, and includes remodeling of
pulmonary vascular walls, concentric
disintegration of the vessel lumen, varying
degrees of inflammation, as well as
thrombosis in situ (12). A hallmark of
vascular remodeling in PAH is medial and
adventitial hypertrophy due to increased
proliferation and resistance to apoptosis
of pulmonary artery smooth muscle
cells (PASMCs) and accumulation of
pulmonary artery adventitial fibroblasts
(PAAFs) and myofibroblasts (12, 13),
neomuscularization of small peripheral
PAs, and intimal thickening and vessel
occlusion associated with pulmonary artery
endothelial cell (PAEC) dysfunction (14).
Data suggest a significant role for
inflammation in driving vascular
remodeling (15). As a functional
consequence of these structural/functional
changes, the PVR drastically increases,

causing an increase in RV afterload, RV
hypertrophy, and failure.

Analogous Features with
Carcinogenesis

Sustaining Proliferative Signaling
In contrast to nondiseased cells, cancer
cells do not require external growth signals
and are able to sustain chronic proliferation
(10, 11) via at least five different
mechanisms: constitutive activation of cell
surface receptors, overexpression of cell
surface receptors, constitutive activation of
signaling proteins downstream from the
receptors, release of its own growth signal,
and stimulation of nearby normal (stromal)
cells to produce growth factors (16).

At present, there is no evidence of
structurally abnormal receptors in PAH
pulmonary vascular cells that can be
constitutively active in the absence of
growth factors. However, PAECs and

PASMCs derived from patients with PAH
have increased proliferative response to
mitogenic stimuli, including fetal calf
serum, fibroblast growth factor (FGF)-2,
epidermal growth factor (EGF), vascular
endothelial growth factor (VEGF), and
platelet-derived growth factor (PDGF),
and are less sensitive to apoptosis induction
by serum deprivation (17–22). Such
hyperproliferative potential could be
explained by overexpression and/or
activation of receptor tyrosine kinases
(RTKs), including EGF, FGF, and PDGF
receptors (EGFR, FGFR, and PDGFR,
respectively) (23), up-regulation of which
is also found in many cancers. EGFR is
widely up-regulated and mediates cell
proliferation, protection from apoptosis,
and motility in solid tumors (16), and its
activation by serine elastases is implicated
in the pathobiology of PAH (24). Moreover,
the expression of both PDGF and PDGFR
is significantly increased in lung tissue from
the lungs of patients with PAH compared
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Figure 1. Shared pathological mechanisms respective to cell growth between cancer and pulmonary arterial hypertension. 53BP1= p53-binding protein 1;
AKT = v-akt murine thymoma viral oncogene homolog; ARC = apoptosis repressor with caspase recruitment domain; Bax = Bcl-2–associated X protein;
Bcl-2 = B-cell lymphoma 2; Bim = Bcl-2–interacting mediator of cell death; Chr. = chromosome; EGF = epidermal growth factor; EGFR = epidermal growth
factor receptor; FCS = fetal calf serum; FGF-2 = fibroblast growth factor 2; FGFR = fibroblast growth factor receptor; FoxO = forkhead-box class O;
g-H2AX = histone H2A variant H2AX phosphorylated at Ser-139; MAPK =mitogen-activated protein kinase; mTOR =mechanistic target of rapamycin;
p21WAF1 = cyclin-dependent kinase inhibitor 1A; p27KIP1 = cyclin-dependent kinase inhibitor 1B; p53 = tumor protein 53; PARP-1 = poly(ADP-ribose)
polymerase 1; PDGF = platelet-derived growth factor; PDGFR = platelet-derived growth factor receptor; PI3K = phosphatidylinositol 3-kinase; PTEN =
phosphatase and tensin homolog; RB = retinoblastoma; Stat3 = signal transducer and activator of transcription 3; TERT = telomerase reverse
transcriptase; TGF-b1 = transforming growth factor-b1; VEGF = vascular endothelial growth factor.
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with healthy donor lungs (25). PDGF and
EGF stimulate PASMC proliferation and
may be involved in the vascular changes
observed in PAH (26, 27).

The VEGF receptor (VEGFR) is
another RTK that frequently contributes
to tumor progression (28) and PAEC
proliferation in severe PAH (29). To note,
PAECs in plexiform lesions overexpress
both VEGF and VEGFR-2, suggesting that
PAECs are self-stimulated by their own
growth signals (30).

Pulmonary vascular cells may also be
supplied with an excessive amount of growth
factors by neighboring cells. PAECs from
patients with idiopathic pulmonary arterial
hypertension (IPAH) release excessive
amounts of soluble growth factors and
cytokines, including endothelin-1, serotonin,
and FGF-2, which, in addition to their ability
to act on PAECs in an autocrine manner (19),
also may contribute to the increased SMC
proliferation in a paracrine manner (21, 31).

Not surprisingly, both cancer and
PAH pulmonary vascular resident cells
demonstrate constitutive activation of
RTK effector pathways, including mitogen-
activated protein kinases (MAPKs),
phosphatidylinositol 3-kinase (PI3K)–Akt,
and mechanistic target of rapamycin
(mTOR) (32, 33), suggesting major
contribution of growth factor–induced
signaling to the PAH pathology (22, 26, 34).
Interestingly, the Akt–mTOR pathway
negatively regulates expression of
mitochondrial fusion protein mitofusin 2
(35, 36), a deficiency of which had been
reported in PAH PASMCs (8). Of note,
mitofusin 2 also acts like a Ras effector
molecule and suppresses Raf–MAPK
signaling and cell proliferation via binding
with Ras at the effector binding domain (37,
38), providing a molecular link from
PI3K–Akt–mTOR to Raf–MAPK activation
and increased PASMC proliferation in PAH.

Of note, constitutive hyperactivation of
Ras–Raf–MAPK and PI3K–Akt–mTOR in
cancer cells can also be driven by activating
(e.g., mutations in Ras, Raf isoforms, and
PI3K catalytic subunit p110a) or loss-of-
function mutations (e.g., deletion of PTEN
[phosphatase and tensin homolog] on
chromosome 10), and amplification of
Akt isoforms (39, 40). At present, there is
no evidence of such alterations in human
PAH. However, PASMCs and PAAFs
from human PAH lungs demonstrate
unstimulated hyperactivation of
Akt–mTOR and inactivation of forkhead

box O (FoxO), which support elevated
proliferation and apoptosis resistance
(15, 17, 22, 41, 42). Reports indicate that
activation of the Akt–mTOR axis and the
self-sustained proliferation/apoptosis
resistance of PASMCs and PAAFs in
PAH may also be driven by self-supporting
signaling circuits, for example, the
HIPPO–Yap/Taz–fibronectin–integrin-
linked kinase 1 (ILK1) feed-forward loop
(PASMCs) (42) and the YAP/TAZ–miR-
130/301 feedback circuit (PAAFs) (43),
which are initiated by changes in
extracellular matrix (ECM) composition
and/or stiffness and amplify PH via further
modulation of ECM and/or secretion of
vasoactive effectors.

Evading Growth Suppressors
In addition to sustaining proliferative
signaling, cancer cells circumvent powerful
programs that negatively regulate cell
proliferation and become insensitive to
antigrowth signals. Well-described growth
suppressors are retinoblastoma (RB)-
associated and p53 proteins (11). Other
examples include transforming growth
factor (TGF)-b, PTEN, FoxO, p21WAF1,
p27KIP1 (44), and HIPPO (45).

p53 (also known as tumor protein 53) is
one of the best known tumor suppressor
proteins, genetic defects and/or reduced
activity of which is linked to human cancers
(46). Although p53 mutations were never
described in PH, p53 knockout mice
develop more severe PH under chronic
hypoxia compared with wild-type mice
(47). Interestingly, direct pharmacological
inactivation of p53 (pifithrin-a) induces
pulmonary vascular remodeling and/or
aggravates monocrotaline-induced PH
(MCT-PH) in rats (48).

The RB pathway consists of five
families of proteins: CDKN (e.g., Ink4a),
D-type cyclins, cyclin-dependent protein
kinases (cdk4, cdk6), the RB family of
pocket proteins (RB, p107, p130), and the
E2F family of transcription factors. Several
components of this pathway, that is,
p16Ink4a, cyclin D1, and RB, are frequently
altered in cancer cells (49). Although no
reports have evaluated the RB pathway in
detail, up-regulation of cyclin D1 and p16
(plexiform lesions) (3, 17) and reduced
expression of cyclin-dependent kinase
inhibitors (CDKIs) p21CIP1 and p27KIP1

(plexiform lesions) (50, 51), are reported in
the pulmonary vasculature from patients
with PAH and in animal models of PH.

Importantly, the modulation of CDKIs is
suggested to have a therapeutic benefit, for
example, nebulization of nitrite was shown
to exert therapeutic benefit in limiting PAH
via up-regulation of p21CIP1 (52).

The PTEN tumor suppressor inhibits
cell growth, proliferation, and survival via
inactivating PI3K-dependent signaling.
PTEN is one of the most commonly lost
tumor suppressors in human cancer (53),
and its inactivation is also reported in the
pulmonary vasculature of patients with
PH/animal models of PH (54, 55). Further,
PASMC-specific chronic inactivation of
PTEN represents a critical mediator of PH
progression, leading to cell-autonomous
events and increased production of growth
factors and cytokines (55).

Several epithelial malignancies are
characterized by insensitivity of cells to
the homeostatic effect of TGF-b. TGF-b
inhibits growth of many cell types by
blocking cyclin–CDK complexes that
inactivate pRB (10). Many inactivating
mutations in TGF-b receptors (TGF-bRs)
and Smad genes have been found to be an
underlying cause for human cancer (56).

Along a similar line, reduced
expression or function of bone morphogenic
protein receptor II (BMPRII), a member of
the TGF-bR superfamily, is an essential
characteristic of PASMCs from patients
with PAH (57). An association between
mutations in BMPRII (BMPR2), ALK1
(ACVRL1), and SMAD8 (SMAD8) and
PAH has been described (58–60). Indeed,
there is a growing literature that associates
BMPs and their receptors with cell
growth control in both cancer (61) and
PAH (62). PASMCs from patients with
PAH show an altered growth response to
BMPs (63), implying that mutations in
BMPRII could lead to BMP resistance.
Moreover, reduced expression or function
of BMPRII may lead to exaggerated TGF-b
signaling, which was strongly supported
by enhanced activity of the TGF-b pathway
in human PAH lungs (57, 64).

The HIPPO tumor suppressor cassette
(catalytic core includes protein kinases
MST1/2 and LATS1/2) controls organ size
by inhibiting proliferation and inducing
differentiation and/or apoptosis. HIPPO is
inactivated in a broad range of human
carcinomas (45), and in PASMCs in human
PAH lungs and two PH rodent models (42).
It appeared to be required for up-regulating
transcriptional coactivators Yap and Taz;
concomitant activation of several
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pro-proliferative/prosurvival pathways,
including Akt–mTOR; and maintenance
of the PASMC proliferative/apoptosis-
resistant phenotype (42).

Resisting Cell Death
Apoptosis resistance, one of the main
features of cancer (10), has been implicated
in the pathogenesis of PAH. Compared
with healthy cells, IPAH-PAECs and
IPAH-PASMCs display enhanced
responses to growth factors ex vivo due to,
in part, decreased apoptosis (17, 18). The
absence of apoptotic cells in plexiform
vascular lesions in human PAH (65) and
experimental Sugen/hypoxia PH (66)
further supports the concept that apoptosis-
resistant endothelial cells (ECs) contribute
to PH pathogenesis. Similarly, lack of
apoptosis in PASMCs has been considered
one of the culprits leading to uncontrolled
PASMC proliferation (17, 20, 22).

One of the mechanisms of apoptosis
resistance in vascular cells is an imbalance
of proapoptotic and antiapoptotic proteins.
Among those, the B-cell lymphoma-2
(Bcl-2) family, the caspase family, p53, and
the inhibitors of apoptosis protein (IAP)
were shown to be dysregulated in PAH
(63, 67–69).

The Bcl-2 protein is overexpressed
in many cancers and prevents apoptosis
by inhibiting mitochondrial release
of cytochrome c (70). Similarly,
overexpression of Bcl-2 and deficiency of
proapoptotic members of the Bcl-2 gene
family, Bax and Bim, is observed in
plexiform lesions, PAECs in severely
damaged PAs (67), and microvascular
PASMCs from IPAH lungs (22). As with
cancers, antisense Bcl-2 strategies proved
to be effective in the treatment of
experimental PH (71).

In a rodent model of angioproliferative
PH, caspase inhibition prevents the
growth of intravascular PAECs and protects
against development of severe PH (68).
Further, increased expression of apoptosis
repressor with caspase recruitment domain
(ARC), an endogenous inhibitor of cell
death, had been reported to increase in
lumen-occluding lesions of patients with
PAH (69).

Survivin, a member of the IAP family,
is expressed in essentially all cancers but not
in most nondiseased adult cell types (72).
However, survivin is markedly expressed
in PASMCs of patients with PAH, and
inhalative adenoviral gene therapy,

employing a dominant negative mutant of
survivin, reversed MCT-PH (63).

Further molecular abnormalities
contributing to the apoptosis resistance in
PAH include dysregulation or increased
expression of signal transducer and activator
of transcription 3 (STAT3) and changes in
the transcription factors (TFs) nuclear factor
of activated T cells (NFAT) and FoxO
(17, 73, 74).

Limitless Replicative Potential
Apart from the features described
previously, tumor cells attain limitless
replicative potential to ensure expansive
tumor growth (11) and possess two main
abnormalities, namely immortality and
monoclonality (10).

Themolecular mechanism determining
replicative potential seems to be controlled
by a single process, that of telomere
shortening. Telomerase that serves to
maintain telomere length is markedly up-
regulated in 90% of human tumors (75).
Similarly, telomerase reverse transcriptase
(TERT), the protein component of
telomerase, is up-regulated in PASMCs
from remodeled PAs in both patients with
IPAH and mice with experimentally
induced PH (76).

Monoclonality represents the earliest
event involved in the generation of
neoplasms (77). Notably, PAECs within
plexiform lesions of patients with IPAH
expand in a monoclonal fashion, whereas
secondary PH lesions develop via
polyclonal EC expansion (78). The
monoclonal expansion of PAECs in
IPAH might be due to the disruption of
a cell-autonomous limitation in replicative
potential. In support, these proliferative
PAECs demonstrated somatic genomic
abnormalities such as microsatellite
instability and deletion of chromosome 13
with concomitant perturbation of growth-
and apoptosis-related gene expression
(SMAD9, TGF-bRII, RB1, BRCA2 [breast
cancer type 2 susceptibility protein], and
Bax), akin to neoplasia (79–81).

Genome Instability and Mutations
Genomic instability is a hallmark of cancer
that leads to an increase in genetic
alterations, thus enabling the acquisition of
additional capabilities for carcinogenesis
(11, 82). Interestingly, levels of baseline and
mutagen-induced DNA damage are
intrinsically higher in heritable, idiopathic,
or associated PAH PAECs. In addition,

increased genomic instability (instability of
short DNA microsatellite sequences),
vulnerability to DNA double-strand breaks,
and dysregulation of several DNA
repair–associated genes (e.g., TopBP1) have
been identified in PAH, similar to cancer
(83, 84).

As in cancer, DNA double-strand
breaks and microsatellite instability could
manifest as exaggerated DNA damage that,
while leading to decreased survival of
resident vascular cells, also may give rise to
clonally derived vascular cell populations
bearing a PAH-specific hyperproliferative
and apoptosis-resistant phenotype (79).
Vulnerability to DNA double-strand breaks
and dysregulation of several DNA
repair–associated genes due to ongoing
inflammation or induced by the PAH
environment provides further selective
advantage by promoting exaggerated
contractility and proliferation of vascular
cells (85). In that way, clonal selection may
be continued through PAH development.

Furthermore, genomic instability could
also be attributable to failure of DNA repair
mechanisms, as Li and colleagues
demonstrated that PAH-associated EC
dysfunction and genomic instability are
mediated through BMPR2 deficiency–
associated loss of DNA damage control
(86). Interestingly, in human PAH
PASMCs, increased DNA damage was
associated with up-regulation of poly(ADP-
ribose) polymerase (PARP)-1, a critical
enzyme implicated in DNA repair, which
caused down-regulation of miR-204 and
the subsequent activation of NFAT and
hypoxia-inducible factor 1a (HIF1a),
supporting cell proliferation and apoptosis
resistance (87).

Pulmonary Vascular Cell
Proliferation and Cell Cycle
Dysregulation

Advances in PAH research, discussed
previously, have allowed us to gain a
more detailed view of the “molecular
circuitry” of PAH. Given that available
therapies, although providing symptomatic
improvement, largely fail to reverse
established pulmonary vascular remodeling
(88), effective antiproliferative/proapoptotic
strategies are needed. Emerging similarities
between the mechanisms driving
proliferation/apoptosis imbalance in the
PAH pulmonary vasculature and cancers
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provide the exciting opportunity to employ
certain cancer-specific strategies and/or
to repurpose anticancer agents for the
treatment of PAH (summarized in Table 1).
To date, substantial progress had been
made in preclinical and clinical testing
of RTK inhibitors, developed for the
treatment of cancers.

However, the abnormal proliferative
response in PAH is a highly complex process
that occurs in all three layers of the vessel
wall and involves all three types of resident
microvascular cells: PAECs, PASMCs, and
PAAFs. It is induced by multiple stimuli,
including elevated levels of growth factors
and proinflammatory mediators, a hypoxic
environment, disturbed ECM composition,
and increased matrix stiffness (13, 41, 43,
89). Not surprisingly, in addition to RTKs,
pulmonary vascular cells in PAH show
activation of other cell surface receptors
(23, 41) and undergo complex signaling
reprograming that supports a metabolically
active, proliferative, apoptosis-resistant
phenotype. Further, PASMCs and PAAFs
in established PAH demonstrate an ability
for unstimulated proliferation (15, 22) that
is not necessarily associated with known
mutations and is driven, at least in part, by
self-supporting signaling loops (42, 43).

Given the redundancy of exogenous
pro-proliferative stimuli and the existence of
pro-proliferative/antiapoptotic endogenous
signaling circuits, the strategies targeting
single promitogenic factors or their
respective receptors might have limited
efficacy and/or only transient effects. The
understanding that major signaling
pathways cross-talk and inter-control
each other via shared signaling molecules
at points below receptor levels led to
the emerging concept to target central
downstream effector molecules that
integrate the signals from multiple
receptors, induce cell cycle entry and
progression, cell proliferation, and survival
(i.e., “signaling hubs”). Although more
studies are needed, targeting such
hubs, selectively dysregulated in PAH,
may represent a potentially attractive
therapeutic strategy to reverse pulmonary
vascular remodeling by targeting
elimination of “reprogrammed” cell
populations, while reducing harmful
effects on nonmodified pulmonary
vascular cells.

There are several promising candidate
hub pathways shared between PAH and
cancer, including, but not limited to,

Ras/Raf/MAPK, PI3K/Akt/mTOR, Notch3,
and Wnt (90) signaling (Figure 2). Those
pathways are consistently dysregulated in
PAH, act as positive regulators of the G1–S
cell cycle checkpoint, and provide potent
survival, proliferation, and apoptosis
resistance signals via multiple mechanisms,
including regulation of various TFs (HIF
[91], NF-kB, FoxOs, NFAT, HES), some
of which are also under consideration as
attractive molecular targets. Current
progress in mechanistic, clinical, and
preclinical studies of PAH that relate to
RTKs, Ras/Raf/MAPK, PI3K/Akt/mTOR,
Notch3/HES, and TFs is summarized
below. For other advances in understanding
PAH-specific molecular abnormalities
and in emerging therapeutic strategies we

refer our readers to References 13, 23,
and 92.

Targeting Growth and
Proliferation Signaling Hubs

RTKs
On the basis of compelling evidence of the
pathological role of RTKs and their ligands
in PAH (23), several small-molecule
tyrosine kinase inhibitors (TKIs), developed
for the treatment of cancer (93), have been
tested in animal models of PH and have
largely provided promising results. EGFR
and PDGFR inhibition demonstrated
positive effects on hemodynamics,
remodeling, and survival in experimental
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Figure 2. Overview of major proliferative/prosurvival signaling pathways and drug targets in
pulmonary arterial hypertension and cancer. Signaling nodes are highlighted. 4EBP1 = 4R-binding
protein 1; AC = adenylyl cyclase; AKT = v-akt murine thymoma viral oncogene homolog; BMPR =
bone morphogenetic protein receptor; CREB = cyclic AMP–responsive element binding protein;
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PH (24, 25), and the PDGFR antagonist
imatinib (STI571) reversed pulmonary
vascular remodeling in two PH animal
models (25), prevented PDGFR-b
phosphorylation, and downstream
signaling. Importantly, imatinib is the only
TKI that has completed a phase III clinical
trial in PAH (discussed below). Nilotinib, a
second-generation TKI 30-fold more potent
than imatinib, caused a nearly complete
reversal of pulmonary vascular remodeling
in experimental PH models (94). Further,
FGF-2 small interfering RNA or
pharmacological FGFR1 inhibition
(SU5402) reversed established experimental
PH (21).

Similarly, EGFR TKIs, PKI166 (24),
gefitinib, erlotinib, and lapatinib
significantly reduced right ventricular
systolic pressure (RVSP) in rats with
MCT-PH (95). However, even highest
tolerable doses of these EGFR antagonists
showed little benefits in mice with
hypoxia-induced PH. On the other
hand, VEGFR blockade (SU5416)
resulted in the potentiation of PAH and
worsening of pathological vascular
remodeling, reproducing some of the
“angioproliferative” features typical of
patients with advanced PAH, in several
PH animal models (96).

Despite these highly encouraging
results, strategies targeting single growth
factors or RTKs might be afflicted with
limited efficacy due to the redundancy of the
multiple stimuli that activate vascular cell
proliferation via parallel mechanisms
(i.e., up-regulation of other RTKs), as is
often seen in malignant diseases (97).
Likewise, the VEGFR inhibitor SU5416
up-regulates several growth-signaling
molecules (e.g., VEGFR2, p-MAPK), and
may contribute to the emergence of
apoptosis-resistant cells with increased
growth potential (96).

One strategy to overcome such
limitations might be to broaden this
approach by using nonspecific RTK
inhibitors. In support of this notion,
sorafenib, an antineoplastic agent and
inhibitor of multiple RTKs (PDGFR,
VEGFR, Raf, Kit [stem cell factor receptor],
and Flt-3 [FMS-like tyrosine kinase 3]),
attenuated pulmonary remodeling and
improved cardiac and pulmonary function
in experimental PH (34, 98, 99). Another
multikinase inhibitor, sunitinib (VEGFR,
PDGFR, Kit, Flt-3, CSF-1R [colony-
stimulating factor-1 receptor], and Kit),

demonstrated potent antiremodeling effects
in experimental PH models (99, 100).

Ras/Raf/MEK/ERK Signaling
The Ras proteins are small guanosine
triphosphatases associated with a number
of signal transduction pathways involved
in cell cycle progression, cell motility,
apoptosis, senescence, and other vital
functions. Numerous cell surface molecules
activate Ras proteins, which, in turn,
transduce the signals through Raf, MEK
(MAPK/ERK [extracellular signal–regulated
kinase] kinase), and MAPK1/3 (also called
ERK1/2) to the TFs (including FOS, MYC,
ELK, and c-JUN) that modulate gene
expression required for cell proliferation
and survival. Raf/MEK/MAPK—a major
effector pathway of Ras—has a well-
described role in cancer. Hyperactivation
of Raf, a serine/threonine kinase, leads to
dysregulated proliferation, differentiation,
and apoptosis, and oncogenic Ras
mutations have been identified in a diverse
array of human cancers (101).

In PAECs, Ras/Raf/MEK/MAPK/AP1
signaling was demonstrated as an important
consequence of BMPR2 silencing. Notably,
Raf family members and MAPK1/2 were
constitutively activated after BMPR2
knockdown, leading to a proliferative and
mitogenic cellular phenotype (102).
Furthermore, aberrant MAPK is described
in the pulmonary vasculature of patients
with advanced PAH (103). More recently, a
gain-of-function RAF1 mutation has been
associated with the development of rapidly
fatal PAH in two infants (104). While
exploring the importance of Raf/MAPK
signaling in PAH, Raf-1 kinase inhibitor
protein knockout mice were found to
exhibit exaggerated hypoxia-induced
PH (105). Collectively, sustained
Ras/Raf/MEK/MAPK signaling,
downstream from growth factors and
their associated RTKs, may represent a
promising platform for new therapeutic
approaches to pathological vascular
remodeling in PAH. Accordingly, sorafenib
(originally identified as a Raf-1 inhibitor
and subsequently as an inhibitor of
PDGFR, VEGFR, Kit, and Flt-3) has been
shown to be effective in experimental
models of PH and RV hypertrophy
(34, 98, 99).

PI3K–Akt–mTOR Signaling
The PI3K–Akt–mTOR signaling network
is a critical regulator of cell growth,

proliferation, survival, and motility (101).
Class I PI3Ks are activated by RTKs,
G protein–coupled receptors, b-integrins,
and Ras and, in turn, induce PDK1
(3-phosphoinositide-dependent protein
kinase 1)-dependent activation of Akt. Akt
promotes cell growth, proliferation, and
survival via multiple mechanisms (reviewed
in depth by Manning and Cantley [106]).
Akt up-regulates HIF1a, inhibits FoxOs,
and activates mTOR complex 1 (mTORC1;
mTOR-raptor)–S6K1/4EBP1 signaling, a
master regulator of cell growth and
proliferation and a major target of the
allosteric inhibitor rapamycin. Interestingly,
mTOR is also a member of functionally
distinct mTORC2 (mTOR-rictor), which is
rapamycin insensitive in many cell types; is
regulated by growth factors, ILK, Nox4 and
its association with ribosomes; and acts as a
direct upstream activator of Akt by
phosphorylating it at Ser-473 (Figure 2).

The PI3K–Akt–mTOR pathway is one
of the most frequently dysregulated
networks in human cancers and is under
active investigation as an anticancer
therapeutic target (107). Although the
status of PI3K in human PAH pulmonary
vasculature is not known, in vitro studies
demonstrated the key role for class I PI3K
in growth factor–induced proliferation and
migration of PASMCs (27, 108), and
pharmacological inhibition of PI3K or Akt
attenuated the development of hypoxia-
induced pulmonary vascular remodeling in
rats (109). Mice with VSMC-specific
depletion of Akt1 showed attenuated PH
under hypoxia (110), while VSMC-specific
knockdown of either PTEN or tuberous
sclerosis complex 1, respective inhibitors
of PI3K and mTORC1, led to PH
development (111, 112), supporting the role
for PI3K cascade in VSMC remodeling. In
PAECs, the PI3K–Akt pathway is activated
by VEGF and contributes to cell growth,
proliferation, survival, and migration. It
should be noted, however, that Akt directly
phosphorylates and activates endothelial
NO synthase leading to increased NO
synthesis and vasodilation (106), suggesting
that it possesses both pathological and
protective roles in PH.

PASMC-specific activation of both
mTORC1–S6K1 and mTORC2–Akt has
been reported in small remodeled PAs from
subjects with IPAH and rats with HPH,
MCT- and SU5416/hypoxia-induced PH
(22, 113, 114). Interestingly, hypoxia-
induced proliferation of PASMCs, while
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requiring activation of mTORC1 and
mTORC2, was not associated with changes
in PI3K activity and/or MAPK signaling
(115), suggesting alternative mechanisms
of mTOR activation. In human IPAH
PASMCs, mTORC2 was required for
activation of both Akt and mTORC1, and
supported increased cell proliferation and
apoptosis resistance (22). Further, the
dual mTORC1/mTORC2 inhibitor PP242
has been shown to selectively reduce
proliferation and induce apoptosis in
human IPAH PASMCs and to reverse
established pulmonary vascular remodeling
in experimental PH (22), suggesting
potential benefits of mTOR kinase
inhibitors to reverse established PAH.

Importantly, the mTORC1 inhibitor
rapamycin potently reduced human PAH
and rat PH PASMC proliferation in
clinically relevant doses and attenuated,
although not reversed, pulmonary vascular
remodeling in experimental PH (112, 113,
115, 116). In a safety and efficacy pilot trial,
the rapamycin derivative everolimus
suggested therapeutic benefit of rapalogs
for the treatment of PAH (Seyfarth and
colleagues [117], discussed below). It
should be noted, however, that rapalogs in
the doses used for clinical applications have
therapeutically proven cytostatic function
with no appreciable proapoptotic effect (22,
112, 115, 118). Indeed, even high doses of
rapamycin did not induce apoptosis in
human IPAH and mouse PH PASMCs (22,
112), which may limit the benefits of
rapamycin use as a single agent and calls
for rapamycin-based combinational
strategies.

Notch/HES Signaling
Notch/hairy/enhancer of split (HES)
controls organ development and tissue
homeostasis. Notch1–4 are transmembrane
receptors that are activated by binding
with extracellular ligands secreted by
neighboring cells (Jagged, Delta-like
families) and undergo series of proteolytic
cleavages by the ADAM/TACE proteases
and g-secretase complex, leading to release
of intracellular domain (ICD). The ICD
cross-talks with PI3K and TGF-b pathways
at the Akt and Smad levels, and promotes
transcription of HES and HRT (HES-
related transcription factor), which, in
turn, down-regulate Mash, Myogenic
differentiation 1 (myoD), myocardin,
and the cell cycle regulators p27kip1 and
p21waf/cip1, inducing cell cycle progression

and cell dedifferentiation (119). Notch
signaling plays a pro-oncogenic role in
several solid tumors, and g-secretase
inhibitors are under investigation as
anticancer drugs (119).

Notch3, expressed solely in vascular
smooth muscle cells (VSMCs), is required
for maintenance of PASMC proliferative
capacity during postnatal vessel maturation.
Importantly, VSM-specific Notch3
overexpression has been detected in small
remodeled PAs from patients with PAH and
rodents with experimental PH and was
correlated with disease severity. Activation
of Notch3–HES5 was responsible for
the maintenance of PAH PASMCs in a
dedifferentiated state, thereby promoting
cell proliferation, VSM remodeling, and
PH (20). The g-secretase inhibitor N-
[N-(3,5-difluorophenacetyl)-L-alanyl]-S-
phenylglycine t-butyl ester (DAPT) blocked
Notch3 activation and reversed hypoxia-
induced PH in mice (20), suggesting the
attractiveness of Notch3–HES signaling as
a potential target pathway for therapeutic
intervention.

Transcription Factor Signaling Hubs:
FoxOs and Beyond
FoxO TFs are involved in multiple signaling
pathways and play critical roles in a
number of physiological and pathological
processes including cancer. Mounting
evidence suggests that FoxOs function as
tumor suppressors in a variety of cancers.
FoxOs are actively involved in promoting
apoptosis in a mitochondria-independent
and -dependent manner by inducing the
expression of death receptor ligands,
including Fas ligand and tumor necrosis
factor–related apoptosis-inducing
ligand, and Bcl-2 family members.
Thus, restoration of FoxO activity is
being explored as a potential cancer
therapy (120).

FoxO1 was noted to be down-regulated
(expression, phosphorylation, and
nuclear exclusion) in PASMCs in
human IPAH and in two experimental PH
models. Importantly, PASMC FoxO1 was
demonstrated as a critical integrator of
multiple signaling pathways (cytokines and
growth factors) driving PH. Genetic ablation
of FoxO1 in VSM reproduced PH features
in vitro and in vivo. Either pharmacological
reconstitution of FoxO1 activity with
intravenous or inhaled paclitaxel, or
reconstitution of the transcriptional activity
of FoxO1 by gene therapy, restored the

physiologically quiescent PASMC
phenotype in vitro, linked to changes in cell
cycle control (cyclin D1, p27kip1, BCL6,
GADD45a) and BMPR2 signaling, and
reversed vascular remodeling and right
heart hypertrophy in vivo, suggesting
reconstitution of FoxO1 activity as a
potential therapeutic option for PH
(17, 74).

Experiences and Perspective
from the Clinic

To date, imatinib, a TKI targeting PDGFR
signaling, is the only antiproliferative
approach that successfully passed to a phase
III clinical trial in PH. In a phase II study,
imatinib demonstrated safety, tolerability,
and efficacy in patients with functional class
II–IV PAH (121, 122). Subsequently, a
24-week, multicenter, double-blind,
placebo-controlled phase III trial on
imatinib revealed encouraging data (123).
Patients with advanced PAH who were
symptomatic and displayed PVR equal to
or greater than 800 dyn$s$cm–5 despite
treatment with at least two PAH drugs were
included in this study. Analysis of the
placebo-corrected treatment effects at week
24 versus baseline showed that imatinib
substantially improved PVR, cardiac
output, and 6-minute-walk distance
(6MWD). The side effect profile of imatinib
was comparable to previous experience in
oncological studies, resulting in an
increased dropout rate, and there was an
unexpected enhanced appearance of
subdural hematomas while receiving
imatinib treatment. This occurred,
however, only when concomitant chronic
oral anticoagulation was applied, the
rationale of which in patients with PH is
currently questioned (124, 125). Moreover,
there was a disadvantageous effect on the
time to clinical worsening, which may also
be related to the side effect profile of this
drug. For this reason, the pharmaceutical
company stopped the drug approval
process both at the U.S. Food and Drug
Administration and the European
Medicines Agency. Nevertheless, the
impressive effects of imatinib on
hemodynamics and exercise capacity in
many patients in the IMPRES trial
(Imatinib [QTI571] in Pulmonary Arterial
Hypertension, a Randomized, Efficacy
Study) and in an additional observational
study (126) show that even on top of
maximized vasodilator therapy, novel
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Table 1. Targeting Signaling Pathways Involved in Cancer Biology for Controlling/Regressing Enhanced Proliferation, Survival, and
Apoptosis Resistance of Lung Vascular Cells in Pulmonary Hypertension

Molecule/Pathway Cell Type

Status in
PAH/Experimental

PH Function

Inhibitor(s)/
Activator(s)
Tested

Effect of Inhibitor(s)/
Activator(s)

RTKs

PDGFR PASMCs PASMCs: PASMCs: Imatinib Inhibits proliferation of
human IPAH and rat
MCT-PH PASMCs (25)

PAECs ↑ Human IPAH ↑ Proliferation

Reverses MCT-PH
in rats (25, 94)

↑ Rat HPH ↓ Apoptosis
↑ Rat MCT-PH

Showed efficacy in
phase II (121) and
III (123) trials

Improves PVR and 6MWD
in patients with severe
PAH (123)

Nilotinib Reverses pulmonary
vascular remodeling in rat
MCT-PH and HPH (94)

EGFR PASMCs No significant
alterations in
experimental/
clinical PH

PASMCs: PKI166 Mediates apoptosis in PA
organ culture (24)

↑ Proliferation Attenuates rat MCT-PH (24)
↓ Apoptosis

Gefitinib Attenuates rat MCT-PH
(95)

No significant benefits in
mouse HPH (95)

Erlotinib Attenuates rat
MCT-PH (95)

No significant benefits
in mouse HPH (95)

Lapatinib No therapeutic benefit in
experimental PH (95)

FGFR PAECs ↑ Human IPAH
(FGF-2)

PAECs: SU5402 Reverses rat MCT-PH (21)
PASMCs

↑ Rat MCT-PH
(FGF-2, FGFR1)

↑ Proliferation
PASMCs:
↑ Proliferation

Ras/Raf/MAPK PAECs ↑ Rat MCT-PH
(p-Raf-1, p-ERK)

PAECs: Sorafenib Attenuates rat
MCT-PH (98)

↑ Rat HPH
↑ Proliferation

↑ Rat SuHx-PH
(p-ERK, p-MEK1/2)

Cardiomyocytes: Improves RV function
in PAB rats (99)↓ Vasopressin-induced

hypertrophy Attenuates rat HPH
and SuHx-PH (34)

PI3K PASMCs
PAECs

Unknown PASMCs: LY294002 Inhibits growth
factor–induced
PASMC proliferation
and migration (27)

↑ Mitogen-induced
proliferation and
migration

PAECs: Attenuates development
of HPH in rats (109)↑ Proliferation

↓ Apoptosis
↑ NO production
and vasodilation

(Continued )
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antiproliferative approaches may have
additional (potentially life-saving) effects.

Importantly, these studies revealed
remarkable heterogeneity in the individual
response to imatinib, and provide
compelling evidence that a subgroup of
patients with beneficial responsiveness to
this TKI does exist. The pathomechanisms
underlying “response” or “nonresponse” of
patients with PAH to imatinib have not yet
been decrypted. However, this observation
supports the notion that individualization

of therapy, including dosage regimen, in
patients with PAH is an important step
forward in imatinib or any other TKI
therapy. It could be possible by combining
“omics” technologies (RNA-seq,
proteomics, etc.) with local cell harvesting,
that is, PAECs from the PA vessel wall
attached to the balloon tip of the flow-
directed PA (Swan-Ganz) catheter used for
routine right heart catheterization (127).
Moreover, peripheral blood mononuclear
cells, easily accessible by venous puncture

and known to intimately interact with
diseased endothelial surfaces during
lung passage, might be employed as
early/predictive indicators of individual
TKI responsiveness in PAH, as shown for
oncological indications (128). The same
might hold true for microvesicles shed
from the surface of the lung vasculature.
However, the proof of concept for these
approaches in clinical PH is still pending.

On the other hand, the risk of systemic
side effects of imatinib therapy, as

Table 1. (Continued )

Molecule/Pathway Cell Type

Status in
PAH/Experimental

PH Function

Inhibitor(s)/
Activator(s)
Tested

Effect of Inhibitor(s)/
Activator(s)

Akt PASMCs
PAAFs
PAECs

PASMCs: PASMCs: Triciribine Attenuates
development of
HPH in rats (109)

↑ Human IPAH ↑ Proliferation
↑ Rat HPH ↓ Apoptosis

PAAFs: PAAFs:
↑ Human IPAH ↑ Proliferation
↑ Rat HPH PAECs:

PAECs: ↑ Proliferation
Unknown ↓ Apoptosis

↑ NO production
and vasodilation

mTORC1 PASMCs ↑ Human IPAH ↑ Proliferation Rapamycin Inhibits proliferation of
human IPAH
PASMCs (22)

↑ Rat HPH

Inhibits proliferation of rat
MCT-PH PASMCs (113)

↑ Rat MCT-PH

Everolimus Improves PVR and
6MWD in patients
with severe PAH (117)

mTORC2 PASMCs ↑ Human IPAH ↑ Proliferation PP242 (dual) Inhibits proliferation,
induces apoptosis
in human IPAH
PASMCs (22)

↑ Rat HPH ↓ Apoptosis
↑ Rat MCT-PH

Reverses pulmonary
vascular remodeling
in rat HPH (22)

Notch3/HES PASMCs ↑ Human PAH ↓ Differentiation DAPT Inhibits human IPAH
growth (20)↑ Mouse HPH ↑ Proliferation

Reverses mouse HPH (20)

FoxOs PASMCs ↓ Human PAH ↑ Proliferation Paclitaxel Inhibits human
IPAH growth (17)↓ Rat MCT-PH ↓ Apoptosis

Abraxane Reverses rat MCT-PH (17)↓ Rat SuHx-PH
Reverses rat SuHx-PH
(17, 74)

Definition of abbreviations: 6MWD= 6-minute-walk distance; Akt = v-akt murine thymoma viral oncogene homolog; DAPT =N-[N-(3,5-difluorophenacetyl)-
L-alanyl]-S-phenylglycine t-butyl ester; EGFR = epidermal growth factor receptor; ERK = extracellular signal–regulated kinase; FGF-2 = fibroblast growth
factor 2; FGFR = fibroblast growth factor receptor; FoxO = forkhead-box class O; HES = hairy/enhancer of split; HPH = hypoxia-induced pulmonary
hypertension; IPAH = idiopathic pulmonary arterial hypertension; MAPK =mitogen-activated protein kinase; MCT-PH =monocrotaline-induced PH;
MEK =MAPK/ERK kinase; mTOR =mechanistic target of rapamycin; mTORC1 =mTOR complex 1; mTORC2 =mTOR complex 2; PA = pulmonary artery;
PAB = pulmonary artery banding; PAAFs = pulmonary artery adventitial fibroblasts; PAECs = pulmonary artery endothelial cells; PAH = pulmonary arterial
hypertension; PASMCs = pulmonary artery smooth muscle cells; PDGFR = platelet-derived growth factor receptor; PH = pulmonary hypertension; PI3K =
phosphatidylinositol 3-kinase; PVR = pulmonary vascular resistance; RTK = receptor tyrosine kinase; RV = right ventricular; SuHx = Sugen/hypoxia.
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encountered in the IMPRES trial, may be
overcome by local drug delivery employing
aerosolization technologies. Such lung-
selective delivery may be combined with
packaging of the drug into nanoparticles or
liposomes for retarded/controlled release.
From various prostanoid and NO inhalation
studies it is known that the diseased
precapillary resistance vessels in PAH may
be directly targeted from the alveolar
surface, to which they are directly adjacent.
This approach can be expected to increase
the local over the systemic
drug concentration by at least two orders of
magnitude, enabling strong pulmonary
efficacy even at a low overall drug dosage.

Further extending the TK inhibition
approach in PAH, the multikinase inhibitor
sorafenib was found to improve exercise
capacity in a monocentric open-label trial
(129). However, the substantial side effect

profile brings into question the suitability of
such broad multikinase inhibition for PAH
treatment.

Beyond the TKI-based approaches,
targeting “signaling hubs” offers new
options for therapeutic intervention. Two
of these compounds have already been
assessed in pilot trials. Tacrolimus (FK506),
a drug targeting calcineurin–NFATc
activity and activating BMPR2 signaling
(130), was found to exert a clinical
benefit at low dosage in end-stage PAH
(131), and a phase IIb clinical study of
GS-4997, an inhibitor of apoptosis signal-
regulating kinase 1 (ASK1) in adults
with PAH (ARROW), is ongoing
(NCT02234141).

Along the same lines, in a safety and
efficacy pilot trial, the rapamycin derivative
everolimus was well tolerated in patients with
severe PAH and showed improvements in

PVR and 6MWD (117); mTORC1 inhibitors
may thus offer a promise for the treatment of
PAH, but the definite clinical proof is still
pending. Importantly, as discussed for
imatinib, local delivery of such inhibitors
by aerosolization or by developing albumin-
bound formulations with improved
penetration in lung tissue should be
exploited to limit the probability of
unforeseen systemic side effects. For example,
the clinical trial for ABI-009, an albumin-
bound mTOR inhibitor for patients with
severe PAH (NCT02587325), is ongoing,
and the development of new nanoparticle
formulations is underway for paclitaxel to
achieve alveolar retardation and controlled
release of this compound, which has shown
strong preclinical efficacy in PAH (17). n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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