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Abstract

Time-homogeneous Markov models are widely used tools for analyzing longitudinal data about 

the progression of a chronic disease over time. There are advantages to modeling the true disease 

progression as a discrete time stationary Markov chain. However, one limitation of this method is 

its inability to handle uneven follow-up assessments or skipped visits. A continuous time version 

of a homogeneous Markov process multi-state model could be an alternative approach. In this 

article, we conduct comparisons of these two methods for unevenly spaced observations. 

Simulations compare the performance of the two methods and two applications illustrate the 

results.
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1. Introduction

In most longitudinal medical studies on the progression of healthy individuals to chronic 

diseases, such as cancer, AIDS, and dementia, the natural development is often expressed in 

terms of distinct states. The analyses in such studies where individuals may transition among 

several states are often performed by using multi-state models (MSMs). There are two major 

types of multi-state models in the literature, one is based on discrete-time Markov chain, and 

the other one is based on continuous-time Markov process. These two types of modeling 

techniques are related in certain ways, and both enable researchers to study transitions 

between different disease states simultaneously. However, the two types of models are 

constructed under different assumptions, and might generate different results and 

conclusions under certain cases. Thus, researchers need to be careful when deciding which 

models to use in real data applications.
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Multi-state models based on the discrete-time Markov chain have become popular in 

analyzing longitudinal data collected in chronic disease studies. Such models are also called 

Markov chain transitional models (Agresti 2002). Kryscio, Schmitt, and Salazar (2006) used 

a Markov chain model to identify risk factors associated with transitions from cognitively 

normal to various forms of mild cognitive impairment (MCI) and then from MCI into early 

dementia, with death before dementia as a competing state. A series of polytomous logistic 

models were used to model the one-step transition probabilities, and they focused on the 

effects of baseline age, education, sex, family history of dementia, and APOE4 status on the 

transition probabilities.

Use of continuous-time MSMs has grown quickly in the literature. A continuous-time MSM 

is a model for a continuous time stochastic process allowing individuals to move among a 

finite number of states (Meira-Machado et al. (2009). There exists an extensive literature on 

continuous-time MSMs (see, e.g., Hougard (1999) or Commenges (1999))., Hubbard and 

Zhou (2011), or Joly, Commenges, and Letenneur (1998), Joly, and Commenges (1999), 

Joly et al. (2002). Applications of continuous-time MSMs can be found in liver cirrhosis 

(Andersen, Esbjerg, and Sorensen. (2000)), dementia (Joly, Commenges, and Letenneur 

1998, Joly, and Commenges 1999, Joly et al. 2002; Hubbard and Zhou 2011) among others.

In real-data applications, the observation schemes vary among different studies. In some 

studies, investigators are able to collect the data at equally spaced time points, for example, 

once a month or once a year. In this case, the resulting longitudinal data will be evenly 

spaced. In other studies, collecting the data at equal time intervals is unrealistic; in these 

cases, the longitudinal data will be unevenly spaced. Both types of MSMs are widely used in 

applications to model similar longitudinal data without considering the observation schemes. 

In this article, we will conduct a comparison study between the two types of models. To the 

best of our knowledge, there are few studies in the literature that compares these methods.

The rest of this article is structured as follows. In Section 2, the discrete-time MSM and 

continuous-time MSM are introduced respectively. In Section 3, a simulation study is 

conducted to compare the two modeling methods under different observation schemes. 

Section 4 applies the two methods to two real datasets, the Nun study and the BRAiNS 

study. Conclusion and discussion are provided in Section 5.

2. Discrete-time and continuous-time multi-state models

For a chronic disease with K possible outcome states, we could write the underlying disease 

process as X(t) ε {1, 2,…, K}, t ≥ 0. Here, the value of X(t) denotes the occupied disease 

state at time t. Suppose an individual has observations at time points T = (t0, t1,…, tm), we 

write X = (X0, X1,…, Xm) the corresponding occupied states such that Xl = X (tl), l = 1, 2, 

…, m. The initial state X0 is usually given.

2.1. Discrete-time multi-state model

In a discrete-time multi-state model, the longitudinal data are modeled through a joint 

probability mass function P(X0, X1,…, Xm). The observation time points T = (t0, t1,…, tm) 

are ignored under the assumption that the data are evenly spaced. In most applications, the 
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outcome data (X0, X1,…, Xm) are assumed to follow a discrete-time Markov chain, in which 

we have

The one-step transition probability from state h to state j at lth step can be written as

Thus, the joint probability mass function P(X0, X1,…, Xm) can be characterized by the one-

step transition probability matrix

The rows of Pl satisfy the condition . The Markov chain is often assumed to be 

time homogeneous. In this case, we have Pl = P and Phj,l = Phj, which is a constant of time.

Baseline covariates Z are usually linked to the transition probabilities through a series of 

polytomous logistic regressions

There are K possible polytomous logistic regressions, one model for each row of the 

transition probability matrix. When the model only involves baseline covariates, standard 

software such as PROC LOGISTIC and PROC CATMOD (SAS Institute (2011) can be used 

to fit each logistic model separately.

2.2. Continuous-time multi-state model

In a continuous-time multi-state model, the transition process is modeled as a stochastic 

process. The longitudinal data are allowed to be unevenly spaced. We can write the 

transition probability from state h at time s to state j at time t as

Here, Hs− is the history of the process up to time s. For a Markov process, the transition 

probabilities are independent of the past history before time s. In this case, we have
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The transition probabilities can be fully characterized by the corresponding transition 

intensities, which have the following definition:

Similar to the hazard function in survival models, the transition intensities measure the 

instantaneous hazard of transition from the current state h to another state j. For j = h, we 

have

Different assumptions can be made about the dependence of the transition intensities on 

time. In this study, we focus on time-homogeneous models. In a time-homogeneous model, 

we have αhj (t) = αhj.

Covariates of interest can be incorporated into the transition intensities using the Cox 

proportional hazards regression model, which has the following form:

Here, αhj,0 = exp(βhj,0) is called the baseline intensity from state h to state j.

Write the transition intensity matrix as

and write the transition probability matrix as

For a time-homogeneous model, P(s,t) can be calculated in terms of the transition intensity 

matrix Q using the Kolmogorov differential equation (Hougard (1999))

Estimation of the model can be done using the maximum likelihood method. Given an 

individual has observations at time points (t0, t1,…, tm) and corresponding observed states 

(X0, X1,…, Xm), its likelihood contribution can be calculated as
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Through the transition intensities, we are able to calculate the transition probabilities at any 

given time period. Thus, we are able to handle unevenly spaced longitudinal data.

We can also handle transitions with exact transition times. Death is an important competing 

risk in many chronic diseases and is often included in the model. The exact time of death 

will be recorded, while the state just before death might be unknown. Suppose the last state 

Xm = K is death and tm is the time of death. In this case, the likelihood contribution can be 

calculated as

where j can be any possible state just before death (Jackson (2011)).

2.3. Relationship between the two models

Two types of models are constructed under different assumptions about the response data. 

The discretetime MSM assumes the transitions follow a Markov chain. However, the 

continuous-time MSM assumes the transitions follow a continuous-time Markov process. 

Thus, the covariates coefficients in the two types MSMs have different interpretations. The 

discrete-time MSM incorporates covariates into the model through a series of multinomial 

logit regressions; the corresponding coefficients have the log odds ratio interpretation. The 

continuous-time MSM incorporates covariates through transition intensity functions by 

proportional hazard regressions; the corresponding coefficients have the log hazard ratio 

interpretation.

The relationship between the two types of models is linked through their one-step transition 

probabilities. Note that in our notation P is the one step transition probability for the 

discrete-time model and P(t − s) is the transition probability matrix from time s to time t for 

the continuous-time model. Suppose the time interval between two assessments equals one 

time unit; thus we have P = P(1).

3. Simulation study

In chronic disease studies, the collected longitudinal data are often not evenly spaced. In this 

section, we conduct simulation studies to compare the performance of the two types of 

MSMs under different observation schemes. The comparisons are taken under three types of 

observed data:

(1) Evenly spaced data: the time intervals between two consecutive observations are 

all equal to 1 year;
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(2) Unevenly spaced data 1: the time intervals between two consecutive observations 

follow a truncated Normal distribution with mean 1 and standard deviation 0.5, left 

truncated at 0.01.

(3) Unevenly spaced data 2: the time intervals between two consecutive observations 

follow a Normal distribution with mean 1 and standard deviation 1.5, left truncated at 

0.0125.

We focus on the one-year transition probability estimates (Phj). Comparisons are made by 

their percent biases (% bias) for the two methods under these three types of observed data.

Data are generated from a four-state model with state 1 and state 2 representing two 

transient states, and state 3 and state 4 representing two absorbing states. The true model has 

the following transition intensity matrix:

Here, Z is a binary baseline covariate. In our simulation study, Z follows a Bernoulli 

distribution with probability of 0.4 with value 1. We set the baseline intensities

and the regression coefficients

For all three observation schemes, each subject has up to 30 observations. If a patient is still 

at state 2 or state 3 after 30 years, it will be right censored at year 30. The exact transition 

times to state 4 are recorded, while the transition time to state 1, 2, or 3 are all interval 

censored because of the discrete time observations as we described above.

Simulations are set to 1000 iterations, with each containing 500 subjects. For simplicity, all 

subjects start at state 1. All calculations are done by using the “msm” package in R (Jackson 

(2011) and the PROC IML and PROC CATMOD procedures in SAS 9.3 system (SAS 

Institute (2011).

Tables 1 and 2 list the percent bias of the one year transition probabilities by discrete-time 

MSM and by continuous-time MSM, respectively. The results show that the discrete-time 

MSM and continuoustime MSM work equally well when the data are evenly spaced. Since 

the calculation of transition probabilities through the transition intensities are usually 

complicated, discrete-time MSM has the computational advantage over the continuous-time 

MSM.
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When the collected longitudinal data are unevenly spaced, the discrete-time MSM will 

provide biased estimates for the one year transition probabilities. We may observe that the 

biases of the estimations of one year transition probabilities increase as the spacing gets 

more uneven. For example, the percent bias of the transition probability estimate from state 

1 to state 3 with the covariate Z = 1 by the discrete-time Markov MSM could be as large as 

19% in unevenly spaced data with relative less the observation time interval variation 

(unevenly spaced data 1 in the tables), and increases to 90% in unevenly spaced data with 

relatively larger observation time interval variation (unevenly spaced data 2 in the tables). 

For the same case, the percent bias of transition probability estimate from state 1 to state 3 

with the covariate Z = 1 by the continuous-time Markov MSM is only 1.6% in both 

unevenly spaced datasets. Thus, in those longitudinal chronic disease studies in which the 

actual visit times deviate from the planned visit times, with possible skipped visits, 

continuous-time MSMs are recommended.

4. Application to the NUN study and the BRAiNS study

In this section, we apply both the discrete-time MSM and continuous-time MSM to the Nun 

Study and the BRAiNS datasets. The NUN Study is a well-known cohort study designed to 

assess the influence of early life exposures and cognitive ability on the development of 

Alzheimer-type dementia and pathology in late life. The outcome of the NUN’s data include 

four states: Not Serious Impairment (NSI), Global Impairment (GI), Dementia, and Death. 

The purpose of the BRAiNS project is to study normal aging of the brain in contrast to 

Alzheimer’s disease. Subjects are recruited in phases and receive annual assessments with 

brain donation at death. In the current BRAiNS model, the outcome contains four states: 

normal cognition (Normal), mild cognitive impairment (MCI), dementia, and death. The 

transition flows and frequencies among states of both the NUN’s data and the BRAiNS data 

are shown in Figure 1.

The NUN’s data sample used in the study consists of 617 subjects having 3312 observations. 

At baseline, 440 (71.3%) subjects were in state NSI; 60 (9.7%) subjects were already in state 

GI and 117 (19.0%) subjects have already developed dementia. At the end of the study, there 

were 74 subjects who survived without dementia or censored before converting to dementia, 

279 subjects who developed dementia, 264 who died without dementia, and 263 subjects 

who died with dementia. Even though the NUN study was designed to conduct cognitive 

assessments annually, the actual number of total assessments and the time interval between 

two consecutive assessments varied across subjects. The number of assessments ranges from 

2 to 12 with an average of 6 assessments over 7.0 ± 4.3 years of follow up. The time interval 

between two assessments ranges from 0.01 year to 10 years, with an average of 1.4 ± 0.6 

years.

The BRAiNS data sample used in this study consists of 525 subjects with total 5731 

observations. At baseline, all 525 subjects were at state 1 (Normal). The number of 

assessments ranges from 2 to 24 with an average of 12 assessments over 10.6 ± 4.7 years of 

follow-up. The time interval between two assessments ranges from 0.01 year to 8 years, with 

an average of 1.07 ± 0.4 years. Figure 2 presents the histogram of the time intervals between 
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two consecutive assessments up to 3 years for both the NUN and the BRAiNS datasets. It 

shows that the BRAiNS has more evenly assessments than the NUN study.

In the NUN’s data, the baseline ages range from 75.37 to 102.01 with mean 83.45 ± 5.53, 

and there are 141 (22.85%) subjects with at least one APOE4 allele. In the BRAiNS data, 

the baseline ages range from 60 to 98 with mean 73.3 ± 7.4. We assume the transition 

hazards remain constant over time by considering baseline age as a risk factor in the 

examples for two reasons. First, dementia is chronic and develops over a long period of time 

but the follow-up times are relatively short compared to their baseline age in the 

applications. Second, even though a non-homogeneous model may be more suitable, with 

interval censoring data and backward transitions, both the calculation of likelihood and the 

estimation process will be much more complicated and difficult without strong assumptions 

in such a model with more than three states (Mathieu et al. (2007). Thus, we will model both 

datasets using time- homogeneous MSMs.

Besides baseline age, we will also consider another risk factor in the four-state model: 

APOE4 (1 = at least one ε4 allele, 0 = no ε4 allele). There are 157 (29.9%) subjects with at 

least one APOE4 allele.

In the model, baseline ages were centered at age 75 for NUN and at age 60 for BRAiNS. 

The difference in centering for the cohorts is due to the difference in mean age at baseline: 

73.2 ± 7.4 for BRAiNS versus 84.3 ± 5 years for Nun’s). Tables 3 and 4 list the parameter 

estimates of the discrete-time MSM and continuous- MSM on the NUN’s data and the 

BRAiNS’ data, respectively. Both discrete-time and continuous-time MSMs show similar 

effects of baseline age and APOE4 on the NUN’s and BRAiNS’ data. Baseline age has 

significant effects on increasing the hazard of all transition paths except for GI (or MCI) 

back to NSI (or Normal) and GI (or MCI) directly to Death. APOE4 has significant effects 

on increasing the hazard of transition from NSI (or Normal) to GI (or MCI). In the BRAiNS’ 

data, the discrete-time MSM also show APOE4 has significant effect of increasing the 

hazard of transition from Normal to Dementia.

Figure 3 plots the estimated transition probabilities from state 1 to state 3 and from state 2 to 

state 3 from both the NUN and BRAiNS data. The transition probabilities were estimated at 

5 years baseline age (baseline age were center at age 75 for NUN and at 60 for BRAiNS), 

and with or without APOE4. The results show that the difference between discrete-time 

MSM and continuous-time MSM estimates is much smaller in BRAiNS’ data than in NUN’s 

data.

5. Discussion

In longitudinal chronic disease studies, the natural development of a chronic disease is often 

expressed in terms of distinct states and MSMs are widely used to model the progression of 

individuals through these states. There are advantages to modeling the true disease 

progression as a discrete time Markov chain. For example, reverse transitions are much 

easier to study under the discrete model as illustrated by Abner et al. (2012). In addition, 

nonstationary risk factors such as a subject’s age can be incorporated into a Markov chain 
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model (see, e.g., Yu et al. (2010)). However, while Markov chain models can accommodate 

the simultaneous analysis of multiple events of interest and inclusion of competing risks 

through the states defined in the model, use of Markov chains have some potential 

limitations. As it requires the time intervals between two consecutive assessments are all 

equal among subjects, and it does not allow unobserved transitions between two consecutive 

assessments. In real studies, the data are often unevenly spaced and multiple unobserved 

transitions may take place between cycle assessments. A more general model, continuous-

time MSM could be an alternative approach which can accommodate the evenly spaced data 

under different types of observation schemes.

To the best of our knowledge, this research is the first to compare the performance of the 

widely used discrete-time multi-state model with the continuoustime multi-state model for 

unevenly spaced data. The simulation study compares the one-year transition probability 

under three types of observed data, one evenly spaced data and two unevenly spaced data. 

The results show that when the longitudinal observations are evenly spaced, both versions of 

MSMs work equally well. Since the calculation of transition probabilities through the 

transition intensities is usually complicated, the discrete-time MSMs have the computational 

advantage over the continuous-time version MSMs. When longitudinal observations are 

unevenly spaced, the discrete-time MSMs would be biased. In this case, the continuous-time 

MSMs are recommended.

In the application of the two types of models to the Nun’s data, the discrete-time model has 

relative worse performance compared to the continuous-time model. Both models provided 

similar results of the effects of baseline age and APOE4 in the model. However, the 

estimations of the transition probabilities are different by the two models. The discrete-time 

model has relative lower long-term transition probability estimations from state NSI to 

dementia and from state GI to dementia. The average time interval between two consecutive 

assessments was 1.4 ± 0.6 years (larger than 1 year assumption of the discrete-time model) 

in the Nun’s data, which is one of the reason the discrete-time model underestimates the 

long-term transition probabilities from NSI to dementia and from GI to dementia.

Different with the NUN’s data, the BRAiNS’ data contain more evenly spaced longitudinal 

observations. In the application of the two types of MSMs to the BRAiNS’ data, the 

discrete-time model and continuous-time model have very close results. Their transition 

probability estimates are close as shown in the transition probability plots. The prevalence 

estimates of the absorbing state (Death) by the two models are also very close.

In conclusion, discrete-time Markov chain models are useful tools for survival analysis that 

allow for more nuanced modeling that is available in most standard time to event methods. 

However, most journal readers and reviewers may readily comprehend the results from 

discrete-time Markov chain models, but they may lack familiarity with the underlying 

statistical assumptions. If so, they may neglect to challenge investigators to demonstrate 

these assumptions are tenable (Abner, Charnigo, and Kryscio 2013). A continuous time 

MSM could be an alternative approach and should have a potential to being used much more 

by practitioners, although the lack of knowledge of the available software may be 

responsible for its lack of popularity. Given that improper use of Markov models may result 
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in biased estimation, perhaps some standardization in the reporting of MSM results and 

assumption verification is needed.
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Figure 1. 
Transition flows and frequencies of the NUN’s data and the BRAiNS data.
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Figure 2. 
Histogram of time intervals between two consecutive assessments.
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Figure 3. 
Estimated transition probabilities from state 1 to state 3 and from state 2 to state 3 from 

NUN and BRAiNS with and without APOE4. (Solid line: Transition probabilities estimated 

by the continuous-time model; and dashed line: transition probabilities estimated by the 

discrete-time model.)
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