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Abstract

South China and Indochina host striking species diversity and endemism. Complex tectonic and cli-

matic evolutions appear to be the main drivers of the biogeographic patterns. In this study, based

on the geologic history of this region, we test 2 hypotheses using the evolutionary history of

Microhyla fissipes species complex. Using DNA sequence data from both mitochondrial and nu-

clear genes, we first test the hypothesis that the Red River is a barrier to gene flow and dispersal.

Second, we test the hypothesis that Pleistocene climatic cycling affected the genetic structure and

population history of these frogs. We detect 2 major genetic splits that associate with the Red

River. Time estimation suggests that late Miocene tectonic movement associated with the Red

River drove their diversification. Species distribution modeling (SDM) resolves significant ecolo-

gical differences between sides of the Red River. Thus, ecological divergence also probably

promoted and maintained the diversification. Genogeography, historical demography, and SDM

associate patterns in southern China with climate changes of the last glacial maximum (LGM), but

not Indochina. Differences in geography and climate between the 2 areas best explain the discove-

ry. Responses to the Pleistocene glacial–interglacial cycling vary among species and regions.
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Southern China and Indochina harbor extraordinary high levels of

species diversity and share a zoogeographic fauna in the Oriental

Region (Myers et al. 2000; Holt et al. 2013). The region includes

China, Vietnam, Laos, Cambodia, Thailand, and Myanmar. This

biodiversity has attracted much attention (e.g., Stuart et al. 2006;

Matsui et al. 2010; McLeod 2010). High species richness in these

areas has been attributed in large part to its complex geological and

climatic history (e.g., Pleistocene climatic oscillations) and resulting

changes in topography and environment (Woodruff 2010; de Bruyn

et al. 2014). Advances in speciation and diversification, conserva-

tion, biogeography, and geology depend on understanding how

these historic processes shaped the spatial patterns of genetic diver-

sity, i.e., the distributions of species.

Tectonic movement and orogenesis can drive habitat fragmenta-

tion and create barriers to gene flow. Such events can drive genetic

diversification and speciation (Che et al. 2010). Probably, the most

famous geological formation of this area is the Red River shear

zone, a major geological strike-slip fault zone that demarks the

boundary between South China and Indochina tectonic plates

(Leloup et al. 1995; Hall 1998). This shear zone runs southward

from the southeastern corner of Tibet to the Gulf of Tonkin along

the Red River (Figure 1). The Red River shear zone has a complex

geological history (Hall 1998; Replumaz et al. 2001). For example,

left-lateral Red River shearing occurred in the Oligocene and early

Miocene (30�15 Ma; Tapponnier et al. 1990; Searle 2006). This

was followed several times by right-lateral strike-slips during late

Miocene (e.g., 12.17�9.19, 8.14�6.18, Zhang et al. 2009). These

events caused habitat changes along the Red River, which could act

as potential geographic barriers for species dispersal and, thus, pro-

mote speciation. Many taxa, including both plants and animals,

occur in 1 side of the Red River only (reviewed in Li and Li 1992,

1997; Bain and Hurley 2011; Fan et al. 2013; and references

therein), or show genetic differences between populations on either

side of the Red River (Zhang et al. 2010a, 2010b).

Climatic cycling, especially during the Late Pleistocene, shaped

the current distributions, genetic diversification, and demographic

dynamics of many species (Hewitt 2000, 2004). Although southern

China and Indochina were not glaciated, they experienced cooler

and possibly drier climates during the Pleistocene (Williams et al.

1998; Li et al. 2004). In pace with the cyclical cooling–warming cli-

mate, many species experienced periodic habitat expansions and

contractions to meet their ecological requirements. For example,

during glacial times, species retracted into small refugia and during

postglacial periods their ranges expanded. In southern China, both

some plants (Qi et al. 2012; Tian et al. 2015) and animals (Zhang

et al. 2008; Zhong et al. 2008; Blair et al. 2012) exhibit this pattern,

as do several Indochinese forest-dwelling animals (e.g., Luo et al.

2004; Fuchs et al. 2008; Patou et al. 2010; Morgan et al. 2011). By

comparison, several recent studies on southern China montane spe-

cies have detected unusual expansions during the glacial periods,

with demographic contractions and genetic divergence occurring

after the glacial periods. For example, this occurs in tits (Dai et al.

2011; Wang et al. 2012), Chinese bamboo partridge (Huang et al.

2010), and Elliot’s laughing thrush (Qu et al. 2011). Several studies

have questioned if the glacial climate adversely affected population

sizes and genetic structures. For example, several forest-dwelling

taxa from southern China (e.g., Song et al. 2009; Lei et al. 2012;

Yan et al. 2012; Yan et al. 2013; Wu et al. 2013) and Indochina

(Latinne et al. 2015) presented long-term stable demographic histor-

ies and deep genetic diversification that predated the Pleistocene.

Most of these controversies likely owe to studying different parts of

these areas and being based on species with different ecological

requirements (e.g., lowland vs. montane species). Thus, studies

involving additional widely distributed taxa can contribute to

understanding how Pleistocene climate fluctuations affected the dis-

tributions and genetic patterns among species and regions.

Pigmy narrow-mouth frogs Microhyla fissipes complex

(Microhylidae) constitute an ideal model group for testing hypothe-

ses on how tectonic and climatic processes shape the patterns of or-

ganisms in southern China and Indochina. Similar to most other

amphibians, they have low vagility and low physiological tolerance

to extremely cold temperatures and dry environmental conditions.

These characteristics can lead to isolation, which, in turn, makes

them ideal taxa for carrying footprints of historical processes

(Zeisset and Beebee 2008). These frogs occur in open lowlands (low-

land scrub forest, grassland, agricultural land, pastureland, and

some urban areas), and they range from western Myanmar eastward

through Indochina and northward into southern China including

Hainan and Taiwan (AmphibiaWeb 2016; Frost 2016). Because the

populations show subtle differences in morphological characters

and occur in similar habitats, the group was long considered to con-

stitute the single species M. fissipes only (Poyarkov et al. 2014).

Recently, Hasan et al. (2014) combined mitochondrial DNA

(mtDNA) analyses and morphological comparisons to reveal 2 spe-

cies within this complex. Populations from Bangladesh were as-

signed to M. mukhlesuri, and populations from China (1 locality

from Anhui, 2 localities from Taiwan) were considered “true”

M. fissipes (Hasan et al. 2014). However, the absence of extensive

sampling leaves the Hasan et al. (2014) hypothesis with 2 possible

scenarios of Indochinese species: “M. fissipes” from Thailand and

Laos might be same as M. mukhlesuri, or they correspond to an

undescribed and/or cryptic species. Presently, their ranges are un-

clear. The widespread distribution of this complex not only makes it

as good model for testing the hypothesis that the Red River is a geo-

graphic barrier to dispersal, but also the hypothesis that the

Pleistocene climate changes impacted both species, which occur in

similar habitats, equally.

Herein, we use both mitochondrial DNA and nuclear DNA

(nuDNA) markers to dissect the impact of geologic events and

Pleistocene climatic cycling on the current geographical patterns of

the distribution and genetic diversity of M. fissipes complex. More

specifically, we test 2 following hypotheses. First, we test the null

hypothesis (H0) that the Red River is not a barrier to dispersal and

gene flow for the M. fissipes complex. Rejection of the H0 will re-

quire investigations into the potential mechanisms of isolation that

promote diversification. Second, considering ice sheets did not cover

both southern China and Indochina during the Pleistocene, we hy-

pothesize that Pleistocene climatic changes had little effect on popu-

lations. This predicts that populations will have persisted in situ,

exhibit a high level of divergence, and keep stable population demo-

graphy throughout the Pleistocene. Alternatively, Pleistocene cli-

matic cycling affected regions differently because of different

landscapes. Signals of population shrinkages or expansions associ-

ated with cyclical Pleistocene glaciations should occur in regions

where the climate experiences extreme changes.

Materials and Methods

Sampling, sequencing, and alignment
For the ingroup, we obtained 324 individuals from the M. fissipes

complex representing 76 localities from southern China and

Indochina (Supplementary Table S1; Figure 1). For the outgroups, 1
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individual each of M. heymonsi, M. mixtura, M. okinavensis and

M. mymensinghensis was included based on the studies of Matsui

et al. (2005) and Hasan et al. (2014). Totally, new sequences from

319 individuals were analyzed, along with 9 individuals from

GenBank (Supplementary Table S1). The Animal Ethics Committee

of the Kunming Institute of Zoology, Chinese Academy of Sciences

approved the protocols for collection of specimens of this study. Toe

samples were collected mostly from adults and preserved in 95%

ethanol; several adult individuals from each population were

euthanized using benzocaine and preserved as voucher specimens

(Supplementary Table S1).

Total genomic DNA was extracted using standard phenol–

chloroform extraction protocol (Sambrook et al. 1989). A partial

fragment of the mitochondrial gene encoding cytochrome b (CYTB)

was amplified for 319 individuals. Partial sequences of the nuclear

gene encoding recombinase activating 2 protein (RAG2) were ampli-

fied for 201 individuals representing each matriline and most local-

ities (Supplementary Table S1). Primers were summarized in

Supplementary Table S2. Standard polymerase chain reactions (PCR)

were conducted in a 25 uL volume reaction using the following

cycling conditions: an initial denaturing step at 95�C for 5 min; 35

cycles of denaturing at 94�C for 1 min, annealing at 55�C

(Supplementary Table S2) for 1 min, and extension at 72�C for 1 min;

and a final extension step of 72�C for 10 min. PCR products were

purified with Gel Extraction Mini Kit (Watson BioTechnologies,

Shanghai, China) or a modification of the Exo-SAP method (Werle

et al. 1994). Cleaned products were sequenced directly with the cor-

responding PCR primers using the BigDye Terminator Cycle

Sequencing Kit (v.2.0, Applied Biosystems) and an ABI PRISM 3730

DNA Analyzer (Applied Biosystems, Foster City, CA).

Sequences from each gene were aligned using MEGA 5.05

(Tamura et al. 2011). For CYTB, identical haplotypes were col-

lapsed using DNASP 5.10 (Librado and Rozas 2009), and the overall

value of nucleotide diversity (p) and haplotype diversity (H) were

also estimated using the same program.

Phylogenetic analyses
Matrilineal relationships among mitochondrial haplotypes of CYTB

and a nuclear gene tree based on RAG2 gene were independently

constructed using Bayesian inference (BI) and maximum likelihood

(ML) methods. Best-fit nucleotide substitution models were selected

for the 3 codon position partitions using Akaike information criter-

ion (AIC) in JMODELTEST 2.1.6 (Guindon and Gascue 2003; Darriba

Figure 1. Geographic distribution of samples of the M. fissipes complex. Localities are detailed in Supplementary Table S1 (supporting information). Colored tri-

angles and circles correspond to the major matrilines in Figure 2. Dotted line denotes the Red River. Inset shows a simplified genealogy with major matrilines cor-

responding to Figure 2. The abbreviations HN and TW refer to Hainan and Taiwan, China, respectively.
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2012). BI analyses were performed using MRBAYES 3.1.2 (Ronquist

and Huelsenbeck 2003) with 10 million generations, and 4 metrop-

olis-coupled Markov chain Monte Carlo (MCMC) chains

(temp¼0.2) runs starting with a random tree. Trees were sampled

every 100 generation with a burn-in of 25000. Within each run, the

average standard deviation of split frequencies (ASDSF) and the po-

tential scale reduction factor (PSRF) statistics from MRBAYES were

used to evaluate topological and branch-length convergence, re-

spectively. We monitored effective sample size (ESS) values with

TRACER 1.4 (Rambaut and Drummond 2007). Support was assessed

by Bayesian posterior probabilities (BPP). ML analyses were con-

ducted using RAxML 7.0.4 (Stamatakis et al. 2008) but with only

the GTRþ IþG model for same data partition as BI analyses.

Support values were estimated from 1000 non-parametric bootstrap

replicates. Uncorrected pair-wise genetic distances (p distances) be-

tween major lineages and sublineages were calculated for CYTB

using MEGA 5.0 (Tamura et al. 2011).

Divergence time estimation
Time to the most recent common ancestor (TMRCA) of matrilines

in the M. fissipes complex was estimated using a Bayesian approach

implemented in BEAST 1.7.5 (Drummond and Rambaut 2007). We

employed a likelihood ratio test (LRT) to assess if our CYTB data

followed a constant rate of molecular evolution (Huelsenbeck and

Crandall 1997). The test was based on unconstrained and clock-

enforced matrilineal genealogies estimated using PHYLIP 3.6.9

(Felsenstein 2004). Due to the absence of a fossil record, we

assumed a range of substitution rate of 0.65–1.00% (mean¼0.8%)

per Ma for CYTB based on evolutionary rates commonly proposed

for anurans (Macey et al. 1998, 2001; Monsen and Blouin 2003;

Yan et al. 2013) and generally for mtDNA (Brown et al. 1979). Five

tree-priors (Bayesian skyline, constant size, expansion growth, expo-

nential growth, and logistic growth) were performed with a different

model of nucleotide substitution for each of the 3 codon positions.

The best prior was determined using a Bayes factor test with TRACER

1.4 (Rambaut and Drummond 2007). For each process, Markov

chains were run for 30 million generations. Trees were sampled

every 1000 generations. Burn-in and convergence of the chains were

determined with TRACER 1.4. Further, ESSs were required to have

values greater than 200.

Historical demography
Two analyses of the CYTB data served to assess historical changes

in effective population size. Considering that population subdivision

could have influenced the effect of expansion (Grant et al. 2012;

Heller et al. 2013), we analyzed well-supported (BPP >0.95) matri-

lines N1, N2, S1, S2, S3, and S5, which harbored more than 10 sam-

ples and contained 3 haplotypes. First, we used non-genealogical

summary statistics including Tajima’s D (Tajima 1989) and Fu’s Fs

statistics (Fu 1997) to detect past demographical expansions.

Summary statistics were calculated using ARLEQUIN 3.5 (Excoffier

and Lischer 2010) with 10,000 coalescent simulations. Second, co-

alescent-based Bayesian skyline plots (BSPs) (Drummond et al.

2005) were generated using BEAST 1.75 (Drummond and Rambaut

2007). BSPs provided a temporal reference to demographical events

such as bottlenecks and expansions. This analysis was performed

using the same settings as above for the divergence time estimation,

except the coalescent tree prior was specified as the Bayesian skyline

with 4 groups. Plots for each analysis were visualized using TRACER

1.4 (Rambaut and Drummond 2007).

SDM
We compared ecological niche models (ENMs) for the current and

LGM habitats to approximate the distributions of M. fissipes and

M. mukhlesuri; this approach assumed niche conservatism over time

for the species (Peterson et al. 1999; Wiens and Graham 2005).

Separate modeling was conducted for each species considering their

relatively high level of divergence in both matrilineal relationships

and nuclear genes. Their potential geographic ranges were con-

structed using the maximum entropy algorithm implemented in

MAXENT 3.3.1 (Phillips et al. 2006; Phillips and Dud�ık 2008).

Current and LGM (21 ka) climatic conditions were downloaded

from the global climate database WorldClim (Hijmans et al. 2005).

Considering the controversy about whether correlated variables

should be included or not, we took the conservative approach and

used all of the 19 bioclimatic variables. All layers were cropped to

span from 91�E to 122�E and from 7.0�N to 33�N with a spatial

resolution of 2.5 arc-minutes. We built ENMs using 75 localities for

M. fissipes, and 57 localities for M. mukhlesuri. These data included

52 localities with GPS information downloaded from VertNet

(http://vertnet.org; 24 localities for M. fissipes from north of the Red

River and 28 localities for M. mukhlesuri from south of the Red

River), and coordinates for the other localities were taken by us in

the field.

We projected the present-day models on the climatic reconstruc-

tions of the LGM under the assumption that the climatic niche of

each lineage remained conserved in these periods (Elith et al. 2010).

Data were randomly partitioned into training (75%) and testing

(25%) datasets. Bootstrapping with 100 replicates was used to gen-

erate the pseudoreplicate datasets. We compared area under the

curve (AUC) to evaluate the performance of the models.

Point-based analysis of environmental variables
A point-based method of analysis was performed to compare ecolo-

gical niche differences between the 2 species. The values for each of

the 19 present bioclimatic variables were extracted for all sampling

sites using DIVA-GIS (Hijmans et al. 2005). Principal component ana-

lysis (PCA) was conducted in SPSS 16.0 to convert the 19 variables to

a set of values that accounted for most of the variance. Principal

components with eigenvalues >1 that explained >10% of the vari-

ation were retained. We used independent sample T test for the 19

bioclimatic variables to determine significant differences in environ-

mental conditions between the populations from each side of the

Red River.

Results

Sequence characteristics
For CYTB, we obtained sequences for 324 individuals of the M. fis-

sipes complex, and the 4 outgroup samples (Supplementary Table

S1). For this dataset, we sequenced 319 individuals de novo and

retrieved 9 from the previous studies (Matsui et al. 2005; Zhang

et al. 2005; Hasan et al. 2014). After trimming the ends, 588 base

pairs (bp) were retained for downstream analyses. All nucleotide se-

quences successfully translated to amino acids without premature

stop codons and heterozygotes. A total of 136 potentially parsi-

mony-informative sites resulted in 89 haplotypes for the ingroup.

The overall nucleotide diversity (p) was 0.054; haplotype diversity

(H) was 0.948. The best-fit models for the first, second, and third

codon positions of CYTB were K80þG, HKYþ I, and GTRþG,

respectively.
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One nuclear gene fragment, RAG2, was obtained from a subset

of our samples representing matrilines of M. fissipes complex and 1

individual of M. mixtura (Supplementary Table S1). The data

included 201 sequences. After trimming the ends, a 587-bp fragment

was resolved, of which 42 sites were potentially parsimony inform-

ative. The best-fit models for the first, second, and third codon pos-

itions were all GTRþG. All newly obtained sequences were

deposited in GenBank (Supplementary Table S1).

Matrilineal genealogy and nuclear gene tree
The BI and ML analyses produced extremely similar matrilines

based on the mtDNA data. The BI tree was presented in Figure 2B.

Distinctive matrilines N and S corresponded to M. fissipes and M.

mukhlesuri, respectively. Microhyla fissipes (Lineage N) was

broadly distributed mainly north of the Red River where it covered

most regions of southern China including Taiwan and Hainan (cir-

cles, Figure 1; Figure 2). It contained 6 sublineages (N1–N6) whose

relationships were unresolved. Only N1, N2, N4, and N5 were

highly supported. Sublineage N1 occurred in coastal southern

China, Hainan, and Taiwan (type locality of M. fissipes). Sublineage

N2 mainly occurred from west of N1 from eastern Sichuan to

Jiangxi. Sublineage N3 occurred at localities 19–21 (Figure 1).

Sublineage N4 occurred at localities 11 and 36–38. Sublineage N5

occurred at localities 17, 18, and 26. Finally, sublineage N6

occurred at localities 16, 17, 18, 22, 35, and 39. Genetically distinct

sympatric pairs of sublineages occurred at 9 localities in southern

China (localities 9, 10, 11, 17, 18, 22, 29, 35, and 39; Figure 1 and

Figure 2B). Haplotypes 9 (localities 1–13, 31) and 10 (localities 9,

10, 22, 25, 27–34) from sublineage N1 and N2, respectively, were

broadly distributed (Supplementary Table S1).

Microhyla mukhlesuri (Lineage S) hosted 5 matrilines (Figure 2,

S1–S5). The species occurred mainly in Indochina and extreme

southwestern China south of Red River (triangles, Figure 1).

Sublineage S1, the sister group of S2, consisted of individuals from

central Vietnam to eastern Thailand. Sublineage S2 occurred at lo-

cality 76 in northern Vietnam only. Sublineage S3 was distributed in

northwestern Thailand and 1 site in Yunnan (locality 53). Two

haplotypes from southern Yunnan and 1 haplotype from

Bangladesh (the type locality of M. mukhlesuri) formed sublineage
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Figure 2. Bayesian nuclear gene tree (A) and maternal genealogy (B) for the M. fissipes complex. Vertical color bars show lineage/sublineage assignment.

Bootstrap proportions �70% and BPP� 90% shown, and lower values were treated as “-”.
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S4 but without high support. Sublineages S3 and S4 clustered to-

gether with strong support. Sublineage S5 occurred mainly in south-

ern Vietnam. Locality 53 contained sympatric sublineages S3 and

S4, and locality 65 hosted both S1 and S3. No single haplotype

occurred across the distribution of the species (Figure 1,

Supplementary Table S1). The p distances for CYTB between matri-

lines N and S were 9.1%; distances between the 6 sublineages of

matriline N ranged from 1.0% to 2.4% and the 5 sublineages of

matriline S ranged from 3.4% to 6.8% (Supplementary Table S3).

BI and ML analyses of the RAG2 data (Figure 2A) also resolved

well-supported matrilines N and S (M. fissipes and M. mukhlesuri,

respectively). Owing to a limited number of potentially parsimony-

informative sites, no strong historical patterning was recovered

within either group. Within each species, the nuclear gene did not

form geographic units, but were mixed together.

Estimated divergence times
The null hypothesis of clock-like evolution for CYTB was not re-

jected by the LRT (v2¼37.22, df¼63, P>0.05). Therefore, a strict

molecular clock was used. The Bayes factor test suggested Bayesian

skyline as being the best tree prior process (Supplementary Table S4).

The estimated times were presented in Figure 3. The MRCA of the

M. fissipes complex and M. mymensinghensis dated to 10.07 Ma

(95% CI: 6.95–13.22 Ma). Microhyla fissipes and M. mukhlesuri

diverged about 7.89 Ma (95% CI: 5.13–10.53 Ma). Sublineages N1–

N6 subsequently diverged starting from 1.93 Ma (95% CI: 0.9–2.60

Ma) to 0.5 Ma (95% CI: 0.20–1.51 Ma). Sublineage S5 diverged first

within M. mukhlesuri about 4.88 Ma (95% CI: 3.04–6.81 Ma).

Sublineages S3 and S4 split at about 2.54 Ma (95% CI: 1.87–3.63

Ma), and S1 and S2 about 3.22 Ma (95% CI: 2.05–2.57 Ma).

Historical demography
Based on the CYTB data, ESSs values were generally high (> 200)

for all parameters in all BSPs analyses, indicating good MCMC mix-

ing in the combined chains. Sublineages N1 and N2 from north of

the Red River had similar demographic histories. Significant nega-

tive values of Tajima’s D and Fu’s Fs indicated population expan-

sions (Table 1). The most prominent feature of the BSPs was a slight

decline followed by a sharp increase in effective population size. As

shown in Figure 4A and Figure 4B, the population sizes of subli-

neages N1 and N2 were relatively stable until approximately 25,000

years near the LGM. The decline spanned from 25,000 to 5,000

years ago with expansion starting about 5,000 years ago.

According to the coalescent-based BSPs analyses, the effective

population sizes of sublineages S1–S3 and S5 were stable during

LGM (Figure 4C–F). Significant negative values (P<0.05) of

Tajima’s D and Fu’s Fs were also revealed for sublineages S1 and S5

(Table 1). However, compared with BSP, which directly quantified

demography from gene genealogies (Drummond et al. 2005), these

summary statistics did not take into account tree structure and they

were not based on all available information (Pybus et al. 2000).
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Figure 3. BEAST time-tree for the M. fissipes complex. Branch lengths are proportional to divergence times. Bars on the nodes are 95% confidence intervals.

Matrilines N and S1–S5 correspond to Figure 2. Numbers at nodes are the average ages.

Table 1. Statistics of neutrality tests for matrilines of the M. fissipes

complex

Tajima’s D Tajima’s D P value Fu’s Fs test Fs P value

N1 �2.127 0.002 �3.488 0.013

N2 �1.706 0.031 �6.136 0.002

S1 �1.809 0.019 �4.279 0.025

S2 0.755 0.799 �0.780 0.193

S3 �1.369 0.078 �3.300 0.095

S5 �1.563 0.043 �6.804 0.004
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Historical dynamics of distributions
The ENMs had excellent predictive power for occurrences under con-

ditions of both today and the LGM. The AUC had values higher than

0.85 in all analyses, which implied that the results greatly differed

from random prediction (AUC¼0.5). For M. fissipes, suitable habi-

tats occurred presently north of the Red River in southern China and

coastal northern Vietnam (Figure 5A). In contrast, the LGM

MAXENT projection predicted a more narrow distribution and shift

to 4 major areas including coastal southeastern China, Taiwan,

Zhejiang and northern Fujian, and eastern Sichuan, Chongqing and

Guizhou (Figure 5B). For M. mukhlesuri, suitable habitats occurred

presently south of the Red River including Hainan (Figure 5C). The

resulting LGM MAXENT projection predicted a similar continuous

distribution compared with the current range, although some subtle

differences existed for the most suitable areas (Figure 5D).

Point-based analysis
Four principal components (PC1¼49.86%, PC2¼17.34%,

PC3¼15.13%, PC4¼7.80%) explained 90.13% of the total vari-

ation for the present ecological niche differences (Table 2). Plots

from PC1 and PC3 (Figure 6A), PC1 and PC4 (Figure 6B) indicated

that M. fissipes and M. mukhlesuri were well differentiated across

the Red River. The independent sample T test indicated that the

habitats of these 2 species differed significantly (P<0.05) between

the Red River for 12 of the 19 bioclimatic variables (Table 3).

Discussion

Species boundary
Hasan et al. (2014) hypothesized the existence of 2 or more species

within M. fissipes complex based on morphology and mtDNA
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sequences, though with limited sampling. Analyses of our nuDNA

sequences also resolve 2 major clades (N and S) and these corres-

pond with the matrilines. This discovery supports of the recognition

of both M. fissipes and M. mukhlesuri. Further, our extensive sam-

pling clearly defines the distributions of both species. Microhyla fis-

sipes occurs north of the Red River throughout southern China,

including Taiwan (type locality) and Hainan Island (Figure 1).

Samples of M. mukhlesuri are from Bangladesh (type locality),

southern Yunnan, Thailand, Laos, and Vietnam south of the Red

River. Although M. mukhlesuri has 5 divergent matrilines, the nu-

clear gene tree shows no sign of further division. Despite the absence

samples from Myanmar and Cambodia, the widespread occurrence

of M. mukhlesuri from Bangladesh to Thailand, Laos, and Vietnam

implies that it also occurs in these areas. Further studies in these re-

gions can fine-tune the distribution of M. mukhlesuri.

Red River barrier
Our study supports the allopatric occurrence of M. fissipes and

M. mukhlesuri along the Red River shear zone (Figure 1). No lo-

cality examined hosts both species. This finding implies the

absence of gene flow across the Red River. Two other species of

frogs exhibit the same pattern: the spiny frog Nanorana yunna-

nensis (Zhang et al. 2010a) and the megophryid frog

Leptobrachium ailaonicum (Zhang et al. 2010b). Both of these

species occur around the Red River in Yunnan, which suggests

that the river serves as an effective geographical barrier to con-

temporary dispersal. The Red River forms a major geological

strike-slip fault zone that marks the boundary between South

China and Indochina tectonic plates (Leloup et al. 1995; Hall

1998). The complex geology of the Red River was suggested to

divide once continuous populations (Hall 1998; Zhang et al.

2010a, 2010b). The divergence of M. fissipes and M. mukhlesuri

dates to 7.89 Ma, which broadly coincides with 1 period of the

extrusion of the Indochina block shearing along the Red River

fault in the Late Miocene (Hall 1998; Xiang et al. 2004; Zhang

2009). These geological events coincided with extremely dry, hot

climatic conditions along the Red River basin and were likely re-

sponsible for the initial fragmentation of habitats.

Differing environmental conditions between north and south of

the Red River likely promoted and maintained the divergence of

Figure 5. ENMs for lineages N (A, B) and S (C, D). SDMs at present (A, C) and LGM (�21 ka; B, D) were presented. Color scale refers to probability of occurrence

(habitat suitability) from MAXENT.
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M. fissipes and M. mukhlesuri. The Red River largely demarks the

location of change between subtropical and tropical climates (Peel

et al. 2007; Chen and Chen 2013) where temperature and precipita-

tion can differ greatly. Differing climate and landscape features can

promote local adaptations (Sobel et al. 2010) especially for frogs

whose reproductive periods are strongly influenced by environmen-

tal variables. Both the ENMs and T tests indicate significant ecolo-

gical differences between M. fissipes and M. mukhlesuri both at

present and during the LGM (Figure 5). The PCAs based on the pre-

sent environment data are consistent with these findings. Bioclimatic

variables for the populations on either side of Red River generally

form 2 clusters (Figure 6). Twelve of the 19 bioclimatic variables

involved in temperature and precipitation differ significantly (T test,

P<0.05) across the Red River (Table 3). Ecological differences be-

tween populations could generate localized adaptations (Zhou et al.

2012). This process probably likely plays the key role in speciation

within the M. fissipes complex.

Previous studies were limited to the narrow confines of geo-

graphic regions (e.g., Yunnan; Zhang et al. 2010a, 2010b) or

involved either side of the Red River (e.g., reviewed in Li and Li

1992; Bain and Hurley 2011; Fan et al. 2013). Thus, they focused

on the Red River as being a geographical barrier to dispersal alone;
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Table 2. Nineteen biological environmental variables used in Point-based analysis and the PCA on these variables used in a comparison of

climatic conditions between occurrence locations for matrilines N and S of the M. fissipes complex

Bio-variable Component

1 2 3 4

BIO1¼Annual Mean Temperature 0.389 �0.238 0.211 0.036

BIO2¼Mean Diurnal Range 0.883 0.012 �0.586 �0.237

BIO3¼ Isothermality �0.945 0.122 �0.137 �0.392

BIO4¼Temperature Seasonality 0.436 �0.101 0.104 0.268

BIO5¼Max Temperature of Warmest Month 0.938 �0.664 0.403 0.203

BIO6¼Min Temperature of Coldest Month �0.879 �0.118 0.252 �0.087

BIO7¼Temperature Annual Range 0.655 �0.171 �0.104 0.195

BIO8¼Mean Temperature of Wettest Quarter 0.952 �0.395 0.218 0.479

BIO9¼Mean Temperature of Driest Quarter 0.382 �0.103 0.188 �0.127

BIO10¼Mean Temperature of Warmest Quarter 0.981 �0.596 0.573 0.378

BIO11¼Mean Temperature of Coldest Quarter 0.418 �0.095 0.09 �0.112

BIO12¼Annual Precipitation 0.541 0.712 0.477 0.021

BIO13¼ Precipitation of Wettest Month �0.764 0.724 0.254 0.181

BIO14¼ Precipitation of Driest Month 0.755 0.123 0.564 �0.09

BIO15¼ Precipitation Seasonality 0.561 0.22 �0.452 0.269

BIO16¼ Precipitation of Wettest Quarter �0.699 0.748 0.222 0.168

BIO17¼ Precipitation of Driest Quarter �0.124 0.175 0.626 �0.146

BIO18¼ Precipitation of Warmest Quarter �0.199 0.702 �0.076 0.577

BIO19¼ Precipitation of Coldest Quarter 0.94 0.141 0.734 �0.463

Initial eigenvalues 9.473 3.294 2.875 1.481

% of variance 49.857 17.337 15.129 7.796
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they did not identify environmental differences as the driver of the

pattern. Future studies with detail biogeographic analyses should

consider and test for alternative mechanisms of speciation.

Effect of the LGM
The effects of Pleistocene climatic cycling varied with regions, des-

pite the M. fissipes complex having similar habitat requirements

(lowland scrub forest and grassland, agricultural land and pasture-

land). Our results demonstrate that late Pleistocene climatic cycling

had little influence on the distribution of M. mukhlesuri in

Indochina. By comparison, it greatly affected the current genetic

structure and population demography of M. fissipes in southern

China.

LGM climatic change does not appear to have affected the popu-

lation size and genetic structuring of M. mukhlesuri from Indochina.

Demographic reconstructions do not detect any bottlenecking for

any sublineage but rather predict stable demographic histories

(Figure 4C–F). Further, the absence of widely distributed haplotypes

rejects a hypothesis of recent population expansion. Divergence esti-

mates for the 5 sublineages predate Pleistocene climatic changes,

which implies that population structuring does not associate with

climatic cycling. However, analyses of the nuDNA data do not ob-

tain the same pattern. This is not surprising given the slower diver-

gence rates of the nuDNA markers and usually higher effective

population size, which could result in incomplete lineage sorting

(Zhang and Hewitt 2003; Brito and Edwards 2009).

Large areas of suitable habitat during the LGM explain the sta-

ble demographic history of M. mukhlesuri. ENMs analyses reveal

widespread suitable climatic conditions for M. mukhlesuri during

the LGM (Figure 5C, D). In tropical Indochina, temperatures low-

ered during the LGM, but the consequences of this on humidity and

types of vegetation are a hot topic of debate. Some palaeoclimatic

studies suggested that most of the tropical rain forest was eliminated

and replaced by pine grassland savannah during the LGM (Hope

et al. 2004; Bird et al. 2005; Wurster et al. 2010). Consistent with

this, several studies of forest-dwelling species in these regions

identified population shrinkages during the LGM followed by dras-

tic expansions, such as for Asian colobine monkeys (Brandon-Jones

1996), stone oaks (Cannon and Manos 2003), mosquito Anopheles

dirus (O’Loughlin et al. 2008; Morgan et al. 2010), and the black

fly Simulium tani (Pramual et al. 2005). In contrast, records of pol-

len and phytoliths indicated the existence of a large and continuous

tract of tropical lowland rain forest during the LGM (Cannon et al.

2009; Wang et al. 2009b). Latinne et al. (2015) compared the suit-

able habitats for 3 Southeast Asian forest-dwelling murine rodents

(Leopoldamys) in the present and LGM. They reported that these

species did not experience significant range contractions during the

LGM. However, little is known about how lowland species re-

sponded to these climate changes, especially in mainland Indochina.

Our study documents a stable demographic history for 1 species of

lowland frog.

Microhyla fissipes from southern China underwent demographic

and range contractions in response to climate changes during the

late Pleistocene, especially sublineages N1 and N2. Our coalescent-

based BSP analyses suggest both population sizes of the sublineages

N1 and N2 experienced declines during the LGM followed by re-

cent, rapid expansions (Figure 4A, B). Further, widely distributed

haplotypes (Hap 9, 10) occur across large areas of southern China,

which possibly indicates recent population expansions. These 2 sub-

lineages cover most of the distribution of M. fissipes, which suggests

the climatic change possibly affected most of the populations of

M. fissipes. The occurrence of several recently divergent sublineages

within southern China reflects a pattern of range fragmentation into

multiple refugia during the LGM. Moreover, the 9 or more pairs of

sympatric haplotypes (Figure 1) may indicate secondary contact

owing to recent population expansions from different refugia.

Drastic historic climatic change in southern China possibly con-

tributed to the genetic pattern and population history of M. fissipes.

Although no glacier covered these regions, the temperature of south-

ern China was reduced by 6–7�C and precipitation decreased by 400–

600 mm/year during the LGM (Zhou et al. 1991). Under this climate,

drastic population size changes are likely to have happened, especially

for the lowland frogs that are sensitive to the environment oscilla-

tions. Consistent with this scenario, our ENMs analyses suggest that

the predicted range of M. fissipes from southern China shrink exten-

sively during the LGM compared with today (Figure 5A, B).

Considering previous studies in southern China, we suggest that

species with different ecological requirements vary in their responses

to the same climatic changes even in similar regions. For example,

the lowland and montane species in southern China show different

responses to Late Pleistocene climatic changes. Similar to M. fis-

sipes, population contractions and postglacial range expansions

were also found in the lowland dwelling cricket frogs of southern

China (Fejervarya multistriata; Zhong et al. 2008). In contrast,

montane spiny frogs (Quasipaa boulengeri; Yan et al. 2013) and

stream newts (Pachytriton; Wu et al. 2013) in southern China ap-

pear to have deep population divergences and stable demographic

histories. The opposing patterns also correspond with differing types

of vegetation in these regions, such as plants growing in thickets at

forest margins (e.g., Qi et al. 2012; Tian et al. 2015) vs. those limi-

ted to montane forests of mixed evergreen and deciduous broadleaf

trees (e.g., Wang and Ge 2006; Wang et al. 2009a). Montane species

can shift their habitats along elevational gradients and survive envi-

ronmental perturbations intact, but not lowland species (Hewitt

2000, 2004; Wu et al. 2013). These studies indicate that it is neces-

sary to consider the ecological requirements of species when investi-

gating how historic changes in climate shape genetic patterns.

Table 3. Results of T test for the 19 biological environmental vari-

ables, and 4 principal components derived from the PCA

Bio-variable F P value

BIO1¼Annual Mean Temperature 0.383 0.537

BIO2¼Mean Diurnal Range* 69.435 0.000

BIO3¼ Isothermality 1.963 0.163

BIO4¼Temperature Seasonality* 12.092 0.001

BIO5¼Max Temperature of Warmest Month* 6.935 0.009

BIO6¼Min Temperature of Coldest Month 0.091 0.764

BIO7¼Temperature Annual Range 3.122 0.079

BIO8¼Mean Temperature of Wettest Quarter* 7.692 0.006

BIO9¼Mean Temperature of Driest Quarter 1.637 0.203

BIO10¼Mean Temperature of Warmest Quarter* 4.357 0.039

BIO11¼Mean Temperature of Coldest Quarter* 4.217 0.035

BIO12¼Annual Precipitation* 15.186 0.000

BIO13¼ Precipitation of Wettest Month* 8.284 0.005

BIO14¼ Precipitation of Driest Month* 11.975 0.001

BIO15¼ Precipitation Seasonality 0.974 0.325

BIO16¼ Precipitation of Wettest Quarter* 10.311 0.002

BIO17¼ Precipitation of Driest Quarter* 8.746 0.004

BIO18¼ Precipitation of Warmest Quarter* 18.085 0.000

BIO19¼ Precipitation of Coldest Quarter 0.841 0.361

“*” denotes significant differences (P< 0.05) between the habitats of M. fis-

sipes and M. mukhlesuri at the Red River.
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