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ABSTRACT

There is growing interest in applying detailed mathematical models of the heart for
ion-channel related cardiac toxicity prediction. However, a debate as to whether such
complex models are required exists. Here an assessment in the predictive performance
between two established large-scale biophysical cardiac models and a simple linear
model B,¢; was conducted. Three ion-channel data-sets were extracted from literature.
Each compound was designated a cardiac risk category using two different classification
schemes based on information within CredibleMeds. The predictive performance of
each model within each data-set for each classification scheme was assessed via a leave-
one-out cross validation. Overall the Byt model performed equally as well as the leading
cardiac models in two of the data-sets and outperformed both cardiac models on the
latest. These results highlight the importance of benchmarking complex versus simple
models but also encourage the development of simple models.

Subjects Mathematical Biology, Toxicology, Cardiology, Pharmacology
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INTRODUCTION

There is a growing belief within the pharmaceutical industry that in order to improve
predictions of future experiments more detailed mathematical models of biology are
required (Peterson & Riggs, 2015; Knight-Schrijver et al., 2016). However by including more
detail not only does the number of parameters that need to be estimated increase but so
does the degree of structural uncertainty if the biology is not well understood i.e., the
degree of confidence in the actual structure of the equations (Beven, 2005). The objective
of this study is to look at this issue within the field of drug induced ion-channel cardiac
toxicity. This area has a well-defined question relating to prediction where a debate about
the complexity of the model needed is ongoing.

Numerous drugs were withdrawn from the market during the 1990s and early 2000s
for causing a fatal arrhythmia, termed Torsades de Pointes (TdeP) (Yap ¢ Camm, 2003).
Current pharmaceutical industry screening strategies on identifying these compounds at an
early stage in drug development are based on the following biological insights (Antzelevitch
& Sicouri, 19945 Witchel, 2011). Prior to observing drug induced TdeP, prolongation of
the QT interval is commonly seen within a patient. This prolongation is due to delayed
repolarisation of cardiac cells within the ventricular wall, which is due to the drugs effect
on the hERG ion-channel. Thus, the current approach in drug development involves
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screening a compounds effect against hERG in a high-throughput manner. However, there
are other ion-channels involved in this process which the safety pharmacology community
are now also screening compounds against (Colatsky et al., 2016). The question of interest
then to the safety pharmacology community is: does measuring more than hERG improve
prediction for TdeP, in humans?

In order to answer this question a clear definition of whether a compound has TdeP
liabilities or not is required (Wisniowska ¢ Polak, 2017). The first study to examine the
association between multiple ion-channel inhibition and TdeP risk (Mirams et al., 2011)
used a database created by AstraZeneca (Redfern et al., 2003). This database was built
using literature data only and has never been updated since its initial publication. More
recent studies (Kramer et al., 2013; Lancaster ¢~ Sobie, 2016) have used the CredibleMeds
database (Woosley, Heise ¢ Romero, 2017; Woosley et al., 2017) which was formerly known
as AzCERT. Their classification is based on an extensive search of both the literature and
public databases and is continuously updated in-light of new evidence. Furthermore it is
recognised by the clinical community unlike the AstraZeneca database.

In terms of the modelling approach used the literature is divided in terms of the
complexity required (Mistry, 2017). The complex models used are based on biophysical
models which describe the changes in ionic currents over time within a single cardiac cell
(Trayanova, 2011). They contain 100s of parameters and 10s of differential equations. The
drug input into these models involves scaling ion-channel conductance’s by the amount of
block at a given drug concentration (Brennan, Fink ¢ Rodriguez, 2009). Two biophysical
models that have gained favour in the literature are the gold-standard, as described by Zhou
etal. (2015), model by O’Hara et al. (2011), herein referred to as ORD, which is being put
forward for use by regulatory agencies (Colatsky et al., 2016) and another, by Ten Tusscher
¢ Panfilov (2006), forms a part of the cardiac safety simulator (Glinka ¢ Polak, 2015),
herein referred to as TT. An alternative simpler mechanistic model being put forward
analyses the net difference, via a linear combination, in drug block of the ion-channels of
interest, termed Byer (Mistry, 2017). In that study Bpe; gave similar performance to a joint
three biophysical model/machine learning approach which used more than 300 metrics
derived from the biophysical models (Lancaster ¢ Sobie, 2016).

In this study the predictive performance of ORD, TT and Byt models using a consistent
and reliable definition of TdeP risk from CredibleMeds across three literature data-sets
(Mirams et al., 2011; Kramer et al., 2013; Crumb Jr et al., 2016) was analysed. Two of these
data-sets, Mirams et al. (2011) and Kramer et al. (2013), measured drug effect against three
ion-channels, hERG, Cav 1.2 and Nav 1.5 peak. The third and latest data-set, from Crumb
Jretal. (2016), considers drug effect on 7 ion-channels, hERG (IKr), KCNQI + KCNE1
(IKs), Kv4.3 (Ito), Kir2.1 (IK1), Cav 1.2 (ICaL), Navl.5 peak (INa) and Nav1.5 late (INaL),
the largest number studied so far.

By using a consistent definition of TdeP risk across different data-sets that have different
dimensionality in terms of ion-channels studied the analysis conducted will provide a
detailed view on the performance of each model. Thus enabling scientists to make a more
informed decision about which modelling approach is likely to be the most useful for the
prediction problem considered.
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Table 1 Description of the two classification schemes constructed from the CredibleMeds database.

CredibleMeds Description QT/TdeP TdeP
Known Risk (KR) Known TdeP Risk +ive +ive
Possible Risk (PR) Known QT Risk +ive —ive
Conditional Risk (CR) Conditional TdeP Risk (e.g., drug-drug interaction) —ive —ive
No Risk (NR) Not listed on CredibleMeds —ive —ive
METHODS
Data

Ion-channel IC50 values, defined as concentration of drug that reduces the flow of
current by 50%, were collected from three publications (Mirams et al., 2011; Kramer

et al., 2013; Crumb Jr et al., 2016). Compounds within those data-sets were placed into
two classification schemes based on the information in Credible Meds (Woosley, Heise
& Romero, 2017; Woosley et al., 2017), see Table 1. The first classification scheme termed
QT/TdeP focusses on both QT prolongation and TdeP risk, which was used in two
previous studies (Kramer et al., 2013; Lancaster ¢ Sobie, 2016). The second classification
scheme focusses on known TdeP risk only. All data is provided in the Supplemental

Information.

Model input data

The percentage block against a given ion-channel inputted into all models was calculated
using the mean maximal concentration observed corrected for plasma protein binding and
is referred to as the effective therapeutic concentration (EFTPC), which was provided in
the original articles, using a pore block model,

%BlOCk = T ICs0

EFTPC

MODELS

Single cell cardiac model simulations

The AP predict platform (Williams ¢ Mirams, 2015) which is a web-based cardiac
modelling simulation platform (https://appredict.cs.ox.ac.uk) was used to simulate the
ORD and TT models in all cases except for one simulation study. A MATLAB version of
the ORD model available on the Rudylab website (http://rudylab.wustl.edu) was used when
simulating the block of seven ion-channels since that model on AP predict does not allow
blocking of INaL—a current measured in the Crumb et al. data-set. The default settings
within the AP predict platform were used i.e., 1 Hz pacing for 5 min with the APD90,
time taken for the action potential to repolarise by 90%, recorded using the last cycle. The
same protocol was applied in MATLAB when exploring the seven ion-channels within the
ORD model i.e., 1 Hz pacing for 5 min with APD90 recorded using the last cycle. In all
simulations drug block was initiated at the beginning of simulations.
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Bnet

Bhet was defined as the net difference in block between repolarisation and depolarisation
ion-channels as,

n m
But= Ri=) _D;
=1 j=1

where R; and D; represent the percentage block against repolarisation and depolarisation
ion-channels respectively for a specific drug. Ionic currents responsible for repolarisation
are IKr IKs and Ito, and that for depolarisation are ICaL, INa (peak), INa (late) and IK1.

Classification evaluation

For each compound the percentage change in APD90 compared to control (no block)
from the biophysical model simulations was recorded as was the By, value. These values
were then placed within a logistic regression analysis to assess their correlative value to
either QT/TdeP or TdeP risk. This was done via a leave one out cross validation (LOOCV).
This involves training a classifier to n— 1 compounds and testing on the nth. Thus,

all compounds perform part of the test-set. The predicted probability of risk for each
test compound is then used to generate a ROC AUC (area under the receiver operating
characteristic curve) which is reported. Note that LOOCYV has been the method of choice
within this field when assessing the correlation between metrics and drug risk (Mirams et
al., 2011; Kramer et al., 2013; Lancaster ¢ Sobie, 2016).

RESULTS

Data

The total number of compounds and their classification according to CredibleMeds across
the three data-sets of interest can be seen in Fig. 1. Although the total number of compounds
differs from one data-set to another the proportions that are KR, PR and CR/NR does not
appear to.

The distribution of block against each ionic current, at the EFTPC, across all data-sets can
be seen in Fig. 2. The plots show that the activity of the compounds is greatest against IKr
across all data-sets. After IKr, ICaL appears to be the next channel for which a substantial
amount of activity is seen. A somewhat surprising result is the degree of activity against
INaL but not INa in the Crumb et al. data-set. The amount of activity against INaL in that
data-set mirrors that of ICaL activity.

Classification evaluation
The results of the leave-one-out cross validation for each data-set using various models for
the two classification schemes can be seen in Tables 2 and 3. For the Mirams et al. data-set
it’s noticeable that ORD performs no better than using just block against hERG for either
classification scheme. Furthermore for the QT/TdeP classification ORD is no better than
random chance. Both TT and B¢ show a similar improvement over using just hRERG block
for both classification schemes.

Moving onto the Kramer et al. data-set the performance of all models improves
dramatically over the Mirams et al. data-set. Here all three models show superior
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Figure 1 Stacked bar-chart shows the proportion of compounds in each data-set that are KR, PR or

CR/NR based on information within the CredibleMeds database.

Full-size &8l DOL: 10.7717/peer;j.4352/fig-1

Table 2 ROC AUC values from the leave one out cross validation for assessing the joint QT/TdeP risk
across all data-sets for all models considered.

Leave One Out Cross Validation ROC AUC

Data-set 3 ion-channels hERG
Byt ORD: AAPD90 TT: AAPD90 % Block IKr

Mirams et al. (2011) 0.71 0.53 0.68 0.51

Kramer et al. (2013) 0.96 0.86 0.94 0.67

Crumb Jr et al. (2016) 0.71 0.65 0.65 0.61

7 ion-channels
Crumb Jr et al. (2016) 0.82 0.67 0.60°
Notes.

*based on 6 ion-channels—INaL not modelled by TenTusscher et al. (TT); AAPD90: percentage change in APD90.

performance over just hERG block regardless of the classification scheme used. Note
that again the performance of ORD is not as high as B¢ or TT. In addition the difference

between By and TT is negligible.

Within the latest data-set by Crumb et al. the performance of all models, when using only
three ion-channels, drops to a level similar to that seen within the Mirams et al. data-set.
The key difference between the results between those two data-sets is that ORD now shows
similar performance to TT regardless of the classification scheme used. Furthermore,
neither biophysical model performs overly better than using hERG block. Byt however
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Figure 2 Boxplots show the distribution of block for each ionic current across all 3 data-sets.
Full-size Gal DOI: 10.7717/peerj.4352/fig-2

Table 3 ROC AUC values from the leave one out cross validation ROC AUC for assessing TdeP risk
only across all data-sets for all models considered.

Leave One Out Cross Validation ROC AUC

Data-set 3 ion-channels hERG
Bt ORD: AAPD90 TT: AAPD90 % Block IKr

Mirams et al. (2011) 0.78 0.66 0.75 0.62

Kramer et al. (2013) 0.86 0.80 0.84 0.68

Crumb Jr et al. (2016) 0.68 0.61 0.62 0.57

7 ion-channels
Crumb Jr et al. (2016) 0.77 0.63 0.59
Notes.

*based on six ion-channels—INaL not modelled by TenTusscher et al. (TT); AAPD90: percentage change in APD90.
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appears to give reasonable performance again and appears to show an improvement over
using hERG block for both classification schemes. Finally, when moving onto using all the
ion-channel data from the Crumb et al. data set the difference in performance between
the models is quite striking. Bypet’s performance improves with the addition of more
information whereas there is little improvement in either biophysical model.

In summary the results show that the performance of the models is data-set dependent.
However, within each data-set the B,; model performs just as well if not better than leading
biophysical models.

DISCUSSION

There appears to be a strong belief within the field of ion-channel cardiac drug toxicity
that large scale single cell (Mirams et al., 2011) and even whole heart models (Okada et al.,
2015) are required to answer a well-defined question: does measuring more than hERG
improve prediction for TdeP, in humans? The evidence base, that suggests that large-scale
biophysical models perform better than simpler models for this question, simply does not
exist. Previous studies have shown that the performance of the large-scale cardiac models
can be mirrored by simpler models (Mistry, Davies ¢ Di Veroli, 2015; Mistry, 2017).

This study builds on those previous studies (Mistry, Davies ¢» Di Veroli, 2015; Mistry,
2017) of comparing the performance of complex biophysical models versus simpler models
in the following way. First a consistent definition of TdeP risk based on the CredibleMeds
database was used across all data-sets (Woosley, Heise ¢» Romero, 2017; Woosley et al., 2017).
Second in addition to data-sets that considered drug activity against only 3 ion-channels
(Mirams et al., 2011; Kramer et al., 2013) a third data-set (Crumb Jr et al., 2016) which
measured drug affinity against seven ion-channels was also assessed.

The three models evaluated in this study were: (1) the gold-standard (Zhou et al., 2015)
single cell model by O’Hara et al. (2011); (2) the single cell model by Ten Tusscher ¢
Panfilov (2006) which is used within the cardiac safety simulator (Glinka ¢ Polak, 2015);
(3) a linear mechanistic model evaluating the net difference in block between ion-channels
involved in repolarising and depolarising the action potential, Byee (Mistry, 2017). Each
model was assessed via a leave-one-out cross validation using two different classification
schemes based on the CredibleMeds database. The first scheme focussed on the joint
QT prolongation and TdeP risk whereas the second scheme focussed on TdeP risk only.
In addition to using outputs from the aforementioned models within the classification
exercise the amount of block against hERG channel was used as a naive benchmark.

Opverall the analysis conducted showed that the performance of B was superior to
the more complex cardiac models regardless of the classification scheme used. By was
also the only model that consistently showed the benefit of measuring more than hERG.
Finally Bt was the only model whose performance improved when moving from using
information against three ion-channels to seven. These results may appear surprising but
are not uncommon in prediction problems in other fields (Makridakis ¢ Hibon, 2000,
Green & Armstrong, 2015). The key reason why complex models are not necessarily more
predictive than simpler models is due to model error i.e., error in the structure of the model
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itself (Beven, 2005). The concept of model error has only recently been assessed (Beattie
et al., 2017) within the cardiac modelling field and so more needs to be done. Thus, the
effect of model error on predictivity is largely unknown, although in other fields it tends
to dominate prediction uncertainty (Orrell et al., 2001; Refsgaard et al., 2006).

This study is not without its caveats. The first is that the data-sets used may be too
small to understand how large a discrepancy there truly is between the different models.
However it is hoped that by continuing to assess new data-sets as they become available
that the community will eventually have a comprehensive compound list. Second, the latest
data-set by Crumb Jr et al. (2016) although measured the affinity of drugs against seven
ion-channels the compounds only really showed activity against three. Thus, whether the
results seen here will hold for a set of compounds with activity against a large number
of ion-channels still remains unknown. Similar to the previous caveat this can only be
assessed as more data is generated. The final caveat relates to the By model itself. The
model currently doesn’t consider the kinetics of blocking which has been highlighted as
an important factor (Di Veroli et al., 2014). However, these studies have been on a small
numbers of compounds and so a true assessment of the importance of kinetics cannot be
determined from those studies alone. If sufficient evidence regarding the importance of drug
kinetics does eventually become available, adjustments to the Bper model could be made.

CONCLUSION

In summary, the study conducted here highlights the importance of benchmarking complex
models against simpler ones. Furthermore, it highlights that simple mechanistic models
can not only give similar performance to large-scale mechanistic models but can out
perform them. Finally, it is hoped this study highlights that there is more than one solution
to a problem and that although the question and quality of data dictates the modelling
approach it should not dictate the size of the model.
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