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Abstract

Human microbiome studies use sequencing technologies to measure the abundance of bacterial 

species or Operational Taxonomic Units (OTUs) in samples of biological material. Typically the 

data are organized in contingency tables with OTU counts across heterogeneous biological 

samples. In the microbial ecology community, ordination methods are frequently used to 

investigate latent factors or clusters that capture and describe variations of OTU counts across 

biological samples. It remains important to evaluate how uncertainty in estimates of each 

biological sample’s microbial distribution propagates to ordination analyses, including 

visualization of clusters and projections of biological samples on low dimensional spaces. We 

propose a Bayesian analysis for dependent distributions to endow frequently used ordinations with 

estimates of uncertainty. A Bayesian nonparametric prior for dependent normalized random 

measures is constructed, which is marginally equivalent to the normalized generalized Gamma 

process, a well-known prior for nonparametric analyses. In our prior, the dependence and 

similarity between microbial distributions is represented by latent factors that concentrate in a low 

dimensional space. We use a shrinkage prior to tune the dimensionality of the latent factors. The 

resulting posterior samples of model parameters can be used to evaluate uncertainty in analyses 
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routinely applied in microbiome studies. Specifically, by combining them with multivariate data 

analysis techniques we can visualize credible regions in ecological ordination plots. The 

characteristics of the proposed model are illustrated through a simulation study and applications in 

two microbiome datasets.

Keywords

Dependent Dirichlet processes; Bayesian factor analysis; Uncertainty of ordination; Microbiome 
data analysis

1 Introduction

Next generation sequencing (NGS) has transformed the study of microbial ecology. Through 

the availability of cheap efficient amplification and sequencing, marker genes such as 16S 

rRNA are used to provide inventories of bacteria in many different environments. For 

instance soil and waste water microbiota have been inventoried (DeSantis et al., 2006) as 

well as the human body (Dethlefsen et al., 2007). NGS also enables researchers to describe 

the metagenome by computing counts of DNA reads and matching them to the genes present 

in various environments.

Over the last ten years, numerous studies have shown the effects of environmental and 

clinical factors on the bacterial communities of the human microbiome. These studies 

enhance our understanding of how the microbiome is involved in obesity (Turnbaugh et al., 

2009), Crohn’s disease (Quince et al., 2013), or diabetes (Kostic et al., 2015). Studies are 

currently underway to improve our understanding of the effects of antibiotics (Dethlefsen 

and Relman, 2011), pregnancy (DiGiulio et al., 2015), and other perturbations to the human 

microbiome.

Common microbial ecology pipelines either start by grouping the 16S rRNA sequences into 

known Operational Taxonomic Units (OTUs) or taxa as done in Caporaso et al. (2010), or 

denoising and grouping the reads into more refined strains sometimes referred to as 

oligotypes, phylotypes, or ribosomal variants (RSV) (Rosen et al., 2012; Eren et al., 2014; 

Callahan et al., 2016). We will call all types of groupings OTUs to maintain consistency. In 

all cases the data are analyzed in the form of contingency tables of read counts per sample 

for the different OTUs, as exemplified in Table 1. Associated to these contingency tables are 

clinical and environmental covariates such as time, treatment, and patients’ BMI, 

information collected on the same biological samples or environments. These are sometimes 

misnamed “metadata”; this contiguous information is usually fundamental in the analyses. 

The data are often assembled in multi-type structures, for instance phyloseq (McMurdie 

and Holmes, 2013) uses lists (S4 classes) to capture all the different aspects of the data at 

once.

Currently bioinformaticians and statisticians analyze the preprocessed microbiome data 

using linear ordination methods such as Correspondence Analysis (CA), Canonical or 

Constrained Correspondence Analysis (CCA), and Multidimensional Scaling (MDS) 

(Caporaso et al., 2010; Oksanen et al., 2015; McMurdie and Holmes, 2013). Distance-based 
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ordination methods use measures of between-sample or Beta diversity, such as the Unifrac 

distance (Lozupone and Knight, 2005). These analyses can reveal clustering of biological 

samples or taxa, or meaningful ecological or clinical gradients in the community structure of 

the bacteria. Clustering, when it occurs indicates a latent variable which is discrete, whereas 

gradients correspond to latent continuous variables. Following these exploratory stages, 

confirmatory analyses can include differential abundance testing (McMurdie and Holmes, 

2014), two-sample tests for Beta diversity scores (Anderson et al., 2006), ANOVA 

permutation tests in CCA (Oksanen et al., 2015), or tests based on generalized linear models 

that include adjustment for multiple confounders (Paulson et al., 2013).

The interaction between these tasks can be problematic. In particular, the uncertainty in the 

estimation of OTUs’ prevalence is often not propagated to subsequent steps (Peiffer et al., 

2013). Moreover, unequal sequencing depths generate variations of the number of OTUs 

with zero counts across biological samples. Finally, the hypotheses tested in the inferential 

step are often formulated after significant exploration of the data and are sensitive to earlier 

choices in data preprocessing.

These issues motivate a Bayesian approach that enables us to integrate the steps of the 

analytical pipeline. Holmes et al. (2012); La Rosa et al. (2012); Ding and Schloss (2014) 

have suggested the use of a simple Dirichlet-Multinomial model for these data; however, in 

those analyses the multinomial probabilities for each biological sample are independent in 

the prior and posterior, which fails to capture underlying relationships between biological 

samples. The simple Dirichlet-Multinomial model is also not able to account for strong 

positive correlations (high co-occurrences (Faust et al., 2012)) or negative correlations 

(checker board effect (Koenig et al., 2011)) that can exist between different species 

(Gorvitovskaia et al., 2016).

We propose a Bayesian procedure, which jointly models the read counts from different 

OTUs and sample-specific latent multinomial distributions, allowing for correlations 

between OTUs. The prior assigned to these multinomial probabilities is highly flexible, such 

that the analysis learns the dependence structure from the data, rather than constraining it a 
priori. The method can deal with uncertainty coherently, provides model-based 

visualizations of the data, and is extensible to describe the effects of observed clinical and 

environmental covariates.

Bayesian analysis with Dirichlet priors is a convenient starting point for microbiome data, 

since the OTU distributions are inherently discrete. Moreover, Bayesian nonparametric 

priors for discrete distributions, suitable for an unbounded number of OTUs, have been the 

topic of intense research in recent years. General classes of priors such as normalized 

random measures have been developed, and their properties in relation to classical 

estimators of species diversity are well-understood (Ferguson, 1973; Lijoi and Prünster, 

2010). The problem of modeling dependent distributions has also been extensively studied 

since the proposal of the Dependent Dirichlet Process (MacEachern, 2000) by Müller et al. 

(2004), Rodríguez et al. (2009), and Griffin et al. (2013)).
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In this paper, we try to capture the variation in the composition of microbial communities as 

a result of a group of unobserved samples’ characteristics. With this goal we introduce a 

model which expresses the dependence between OTUs abundances in different environments 

through vectors embedded in a low dimensional space. Our model has aspects in common 

with nonparametric priors for dependent distributions, including a generalized Dirichlet type 

marginal prior on each distribution, but is also similar in spirit to the multivariate methods 

currently employed in the microbial ecology community. Namely, it allows us to visualize 

the relationship between biological samples through low dimensional projections.

The paper is organized as follows. Section 2 describes a prior for dependent microbial 

distributions, first constructing the marginal prior of a single discrete distribution through 

manipulation of a Gaussian process and then extending this to multiple correlated 

distributions. The extension is achieved through a set of continuous latent factors, one for 

each biological sample, whose prior has been frequently used in Bayesian factor analyses. 

Section 3 derives an MCMC sampling algorithm for posterior inference and a fast algorithm 

to estimate biological samples’ similarity. Section 4 discusses a method for visualizing the 

uncertainty in ordinations through conjoint analysis. Section 5 contains analyses of 

simulated data, which serve to demonstrate desirable properties of the method, followed by 

applications to real microbiome data in Section 6. Section 7 discusses potential improvement 

and concludes. The code for implementing the analyses discussed in this article is included 

in the Supplementary Materials.

2 Probability Model

In Table 1, we illustrate an example of a typical OTU table with 10 biological samples, 

where half are healthy subjects, and half are Inflammatory Bowel disease (IBD) patients. 

This contingency table is a subset of the data in Morgan et al. (2012) and records the 

observed frequencies of five most abundant genus level OTUs in all biological samples 

based on 16S rRNA sequencing results. Let Zi be the ith observed OTU (e.g. Z1 is 

Bacteroides) and ni,j be the observed frequency of OTU Zi in biological sample j. As an 

example, n11 = 1822 is the observed frequency of Bacteroides in the biological sample Ctrl1. 

We will denote an OTU table as (ni,j)i≤I,j≤J, where I is the number of observed OTUs and J 
the number of biological samples.

For the biological sample j, we will assume the vector (n1,j, …, nI,j) follows a multinomial 

distribution, noting that our analysis extends easily to the case in which the total count 

 is a Poisson random variable. The unobserved multinomial probabilities of OTUs 

present in biological sample j determine the distribution of the frequencies ni,j. These 

probabilities form a discrete probability measure, which we call a microbial distribution, on 

the space  of all OTUs.

We denote this discrete measure as Pj and Pj({Zi}) gives the probability of sampling Zi from 

biological sample j. If we consider all J biological samples, we expect there will be variation 

in the respective Pj’s. This variation usually can be explained by specific characteristics of 

the biological sample. For instance, in Table 1, we can see the empirical multinomial 

probability of Enterococcus is higher in healthy controls than in IBD patients on average. 
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This variation has been discovered in prior publication (Morgan et al., 2012) and is 

attributed to the IBD status. Microbiome studies aim to elucidate the characteristics that 

explain these types of variations.

Our method focuses on modeling the distributions Pj’s and the variations among them. For 

biological samples labelled in , we assume they have the same infinite set of 

OTUs . We let the number of OTUs present in a biological sample be infinity 

to make our model nonparametric in consideration of the fact that there might be an 

unknown number of OTUs that are not observed in the experiment. We specify the 

probability mass assigned to a group of OTUs  as

(1)

where σi ∈ (0, 1), Xi, Yj ∈ ℝm,  is the indicator function, and . In addition, 

〈·,·〉 is the standard inner product in ℝm.

In this model specification, σi is related to the average abundance of OTU i across all 

biological samples. When σi is large, the average probability mass assigned to OTU Zi will 

also be large. We refer to Xi and Yj as OTU vector and biological sample vectors 

respectively. The variation of the Pj’s is determined by the vectors Yj, which can be treated 

as latent characteristics of the biological samples that associate with microbial composition; 

for example, an unobserved feature of the subject’s diet, such as vegetarianism, could affect 

the abundance of certain OTUs. We assume there are m such characteristics, and the lth 

component in Yj is the measurement of the lth latent characteristic in biological sample j. 
The vector Xi denotes the effects of each of the m latent characteristics on the abundance of 

the OTU Zi. Therefore Xi has m entries.

In subsection 2.1 we consider a single microbial distribution Pj with fixed parameter Yj and 

define a prior on σ = (σ1, σ 2, …) and (Xi)i≥1 which makes Pj a Dirichlet process (Ferguson, 

1973). The degree of similarity between the discrete distributions {Pj; } is 

summarized by the Gram matrix ( ; j, ). Subsection 2.2 discusses 

the interpretation of this matrix. Subsection 2.3 proposes a prior for the parameters {Yj, 

} which has been previously used in Bayesian factor analysis, and which has the 

effect of shrinking the dimensionality of the Gram matrix (ϕ(j, j′)) and is used to infer the 

number of latent characteristics m. The parameters {Yj, } or (ϕ(j, j′)) can be used to 

visualize and understand variations of microbial distributions across biological samples.
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2.1 Construction of a Dirichlet Process

The prior on σ = (σ1, σ1, …) is the distribution of ordered points (σi > σi+1) in a Poisson 

process on (0, 1) with intensity

(2)

where α > 0 is a concentration parameter. Denote the index of component of Yj and Xi as l. 
Fix j, and let Yj = (Yl,j, l ≤ m) be a fixed vector in ℝm such that 〈Yj, Yj〉 = 1. We let Xi = 

(Xl,i, l ≤ m) be a random vector for i = 1, 2, … and Xl,i be independent and N(0, 1) a priori 
for l = 1, 2, …, m and i = 1, 2, … Finally, let G be a nonatomic probability measure on the 

measurable space ( , ℱ), where ℱ is the sigma-algebra on , and Z1, Z2, … is a 

sequence of independent random variables with distribution G. We claim that the probability 

distribution Pj defined in Equation (1) is a Dirichlet Process with base measure G.

We note that the point process σ defines an infinite sequence of positive numbers, the 

products 〈Xi, Yj〉, i = 1, 2, …, are independent Gaussian N(0, 1) variables, and that the 

intensity ν satisfies the inequality . These facts directly imply that with 

probability 1, 0 < Mj(A) < ∞ when G(A) > 0. It also follows that for any sequence of 

disjoint sets A1, A2, … ∈ ℱ the corresponding random variables Mj(Ai)’s are independent. 

In different words, Mj is a completely random measure (Kingman, 1967). The marginal 

Lévy intensity can be factorized as μM(ds) × G(dz), where

The above expression shows that Mj is a Gamma process. We recall that the Lévy intensity 

of a Gamma process is proportional to the map s ↦ exp(−c × s) × s−1, where c is a positive 

scale parameter. In Ferguson (1973) it is shown that a Dirichlet process can be defined by 

normalizing a Gamma process. It directly follows that Pj is a Dirichlet Process with base 

measure G.

Remark—Our construction can be extended to a wider class of normalized random 

measures (James, 2002; Regazzini et al., 2003) by changing the intensity ν that defines the 

Poisson process σ. If we set

β ∈ [0, 1), in our definition of Mj, then the Lévy intensity of the random measure in (1) 

becomes proportional to
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In this case the Lévy intensity indicates that Mj is a generalized Gamma process (Brix, 

1999). We recall that by normalizing this class one obtains normalized generalized Gamma 

processes (Lijoi et al., 2007), which include the Dirichlet process and the normalized Inverse 

Gaussian process (Lijoi et al., 2005) as special cases.

A few comments capture the relation between our definition of Pj(A) in (1) and alternative 

definitions of the Dirichlet Process. If we normalize h independent Gamma(α/h, 1/2) 

variables, we obtain a vector with Dirichlet(α/h,…, α/h) distribution. To interpret our 

construction we can note that, when α/h < 1/2, each of the Gamma(α/h, 1/2) components 

can be obtained by multiplying a Beta(α/h, 1/2 − α/h) variable and an independent 

Gamma(1/2, 1/2). The distribution of the 〈Xi, Yj〉+2 variables in (1) is in fact a mixture with 

a Gamma(1/2, 1/2) component and a point mass at zero. Finally if we let h increase to ∞, 

the law of the ordered Beta(α/h, 1/2 − α/h) converges weakly to the law of ordered points of 

a Poisson point process on (0, 1) with intensity ν (see Supplementary Document S1).

2.2 Dependent Dirichlet Processes

We use the representation for Dirichlet processes from Equation (1) to define a family of 

dependent Dirichlet processes labelled by a general index set . The dependency structure 

of this family is related to  Send a message . Geometrically ϕ(j, j′) 

is the cosine of the angle between Yj and . The dependent Dirichlet processes is defined 

by setting

(3)

for every A ∈ ℱ. Here the sequence (Z1, Z2,…) and the array (X1, X2,…), as in Section 2.1, 

contain independent and identically distributed random variables, while σ is our Poisson 

process on the unit interval defined in (2). We will use the notation Qi,j = 〈Xi, Yj〉. This 

construction has an interpretable dependency structure between the Pj’s that we state in the 

next proposition.

Proposition 1—There exists a real function η : [0, 1] ⟶ [0, 1] such that the correlation 

between Pj(A) and  (A) is equal to η (ϕ(j, j′)) for every A that satisfies G(A) > 0. In 

different words, the correlation between Pj(A) and  (A) does not depend on the specific 

measurable set A, it is a function of the angle defined by Yj and .

The proof is in the Supplementary Document S2. The first panel of Figure 1 shows a 

simulation of Pj’s. In this figure . When ϕ(j, j′), the cosine of the angle 

between two vectors Yj and , corresponding to distinct biological samples j and j′, 

decreases to −1 the random measures tend to concentrate on two disjoint sets. The second 

panel shows the function η that maps the ϕ(j, j′)’s into the correlations 

. As expected the correlation increases with ϕ(j, j′).
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We want to point out that the construction in (3) extends easily to the setting where we are 

given any positive semi-definite kernel  capturing the similarity 

between biological samples labelled by . Mercer’s theorem (Mercer, 1909) guarantees the 

kernel is represented by the inner product in an ℒ2 space, whose elements are infinite-

dimensional analogues of the vectors Yj. The analysis presented in this section is unchanged 

in this general setting.

The next proposition provides mild conditions that guarantee a large support for the 

dependent Dirichlet processes that we defined.

Proposition 2—Consider a collection of probability measures (Fj, j = 1,…, J) on  and a 

positive definite kernel ϕ. Assume that  and the support of G coincides with 

. The prior distribution in (3) assigns strictly positive probability to the neighborhood 

, where ε > 0 and fi, i = 1,…, 

L, are bounded continuous functions.

In what follows we will replace the constraint 〈Yj, Yj〉 = 1 with the requirement 〈Yj, Yj〉 < 

∞. The two constraints are equivalent for our purpose, because we normalize 

 and 〈Yj, Yj〉 can be viewed as a scale parameter.

2.3 Prior on biological sample parameters

This subsection deals with the task of estimating the parameters Yj, , 

that capture most of the variability observed when comparing J biological samples with 

different OTU counts. We define a joint prior on these factors which makes them concentrate 

on a low dimensional space; equivalently, the prior tends to shrinks the nuclear norm of the 

Gram matrix . The problem of estimating low dimensional factor loadings 

or a low-rank covariance matrix is common in Bayesian factor analysis, and the prior 

defined below has been used in this area of research.

The parameters Yj can be interpreted as key characteristics of the biological samples that 

affect the relative abundance of OTUs. As in factor analysis, it is difficult to interpret these 

parameters unambiguously (Press and Shigemasu, 1989; Rowe, 2002); however, the angles 

between their directions have a clear interpretation. As observed in Figure 1, if the kernel 

, the two microbial distributions  and  will be very 

similar. If ϕ(j1, j2) ≈ 0, then there will be little correlation between OTUs’ abundances in the 

two samples. If , then the two microbial distributions are 

concentrated on disjoint sets. This interpretation suggests Principal component analysis 

(PCA) of the Gram matrix  as a useful exploratory data analysis technique.

It is common in factor analysis to restrict the dimensionality of factor loadings. In our 

model, this is accomplished by assuming Yj to be in ℝm and adding an error term ε in the 

definition of Qi,j, the OTU-specific latent weights,
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(4)

where the εi,j are independent standard normal variables. Recall that each sample-specific 

random distribution Pj is obtained by normalizing the random variables . If we 

denote the covariance matrix of (Qi,1, …, Qi,J) as Σ, this factor model specification indicates 

Σ = Y⊤Y + I conditioning on Y, where I is the identity matrix and Y = (Y1, …, YJ). As a 

result, the correlation matrix S induced by Σ only depends on Y.

In most applications the dimensionality m is unknown. Several approaches to estimate m 
have been proposed (Lopes and West, 2004; Lee and Song, 2002; Lucas et al., 2006; 

Carvalho et al., 2008; Ando, 2009). However, most of them involve either calculation of 

Bayes Factors or complex MCMC algorithms. Instead we use a normal shrinkage prior 

proposed by Bhattacharya and Dunson (2011). This prior includes an infinite sequence of 

factors (m = ∞), but the variability captured by this sequence of latent factors rapidly 

decreases to zero. A key advantage of the model is that it does not require the user to choose 

the number of factors. The prior is designed to replace direct selection of m with the 

shrinkage toward zero of the unnecessary latent factors. In addition, this prior is nearly 

conjugate, which simplifies computations. The prior is defined as follows,

(5)

where the random variables γ = (γl, ; l, j ≥ 1) are independent and, conditionally on these 

variables, the Yl,j’s are independent.

When al > 1, the shrinkage strength a priori increases with the index l, and therefore the 

variability captured by each latent factor tends to decrease with l. We refer to Bhattacharya 

and Dunson (2011) for a detailed analysis of the prior in (5). In practice, the assumption of 

infinitely many factors is replaced for data analysis and posterior computations by a finite 

and sufficiently large number m of factors. The choice of m is based on computational 

considerations. It is desirable that posterior variability of the last components (l ~ m) of the 

factor model in (4) is negligible. This prior model is conditionally conjugate when paired 

with the dependent Dirichlet processes prior in subsection 2.2, a relevant and convenient 

characteristic for posterior simulations. We summarize the full model with a plate diagram, 

shown in Figure 2.
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3 Posterior Analysis

Given an exchangeable sequence W1,…, Wn from  as defined in 

subsection 2.1, we can rewrite the likelihood function using variable augmentation as in 

James et al. (2009),

(6)

Here  is the list of distinct values in (W1,…Wn) and n1,…, nI are the 

occurrences in (W1,…Wn), so that . We use expression (6) to specify an 

algorithm that allows us to infer microbial abundances P1,…, PJ in J biological samples.

We proceed, similarly to Muliere and Tardella (1998) and Ishwaran and James (2001), using 

truncated versions of the processes in subsection 2.2. We replace σ= {σi, i ≥ 1} with a finite 

number I of independent Beta(εI, 1/2 −εI) points in (0, 1). Supplementary Document S1 

shows that when I diverges, and εI = α/I, this finite dimensional version converges weakly to 

the process in (2). Each point σi is paired with a multivariate normal Qi = (Qi,1,…, Qi,J) with 

mean zero and covariance Σ. The distribution of  is a mixture of a point mass 

at zero and a Gamma distribution. In this section Q and σ are finite dimensional, and the 

normalized vectors Pj, which assign random probabilities to I OTUs in J biological samples, 

are proportional to (M1,j,…, MI,j), j = 1,…, J. Note that Pj conditional on 

 follows a Dirichlet distribution with parameters proportional to 

The algorithm is based on iterative sampling from the full conditional distributions. We first 

provide a description assuming that Σ is known. We then extend the description to allow 

sampling under the shrinkage prior in Section 2.3 and to infer Σ.

With I OTUs and J biological samples, the typical dataset is n = (n1,…, nJ), where nj = (n1,j,

…, nI,j) and ni,j is the absolute frequency of the ith OTU in the jth biological sample. We use 

the notation , , σ = (σ1,…, σI), Y = (Yj, j = 1,…, J) and Q = 

(Qi,j, 1 ≤ i ≤ I, 1 ≤ j ≤ J). By using the representation in (6) we introduce the latent random 

variables T = (T1,…, TJ) and rewrite the posterior distribution of (σ, Q):

(7)
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(8)

where π is the prior. In order to obtain approximate (σ, Q) sampling we specify a Gibbs 

sampler for (σ, Q, T) with target distribution

(9)

The sampler iterates the following steps:

[Step 1] Sample Tj independently, one for each biological sample j = 1, …, J,

[Step 2] Sample Qi independently, one for each OTU i = 1, …, I. The conditional density of 

Qi = (Qi,1 … Qi,J) given σ, T, n is log-concave, and the random vectors Qi, i = 1, …, I, given 

σ, T, n are conditionally independent.

We simulate, for j = 1, …, J, from

(10)

where Qi, −j = (Qi,1, …, Qi,j−1, Qi,j+1, …, Qi,J), μi,j = E[Qi,j|Qi, −j], , with 

the proviso 0° = 1. Since Qi is a multivariate normal, both μi,j and sj have simple closed form 

expressions.

When ni,j = 0 the density in (10) reduces to a mixture of truncated normals:
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and . Here N(·; μ, s2) and Φ(·; μ, s2) are the density and cumulative density 

functions of a normal variable with mean μ and variance s2.

When ni,j > 0 the density p[Qi,j|Qi,−j, σ, T, n] remains log-concave, and the support becomes 

(0, +∞). We update Qi,j using a Metropolis-Hastings step with proposal identical to the 

Laplace approximation  of the density in (10),

(11)

Here  maximizes the density (10), and  is obtained from the second derivative of the 

log-density at . We found the approximation accurate. In Supplementary Document S4 

we provide bounds of the total variation distance between the target (10) and the 

approximation (11). When ni,j increases, the bound of the total variation decreases to zero. 

See also Figure S1 in the Supplementary Document.

[Step 3] Sample σi independently, one for each OTU i = 1, …, I, from the density 

. The σi’s are a priori independent 

Beta(α/I, 1/2 −α/I) variables. We use piecewise constant bounds for 

, σ ∈ [0, 1] and an accept/reject step to sample from p(σi|Q, T, 

n).

We now consider inference on Σ using the prior on Y in subsection 2.3. The goal is to 

generate approximate samples of Y from the posterior. We exploit the identity of the 

conditional distributions of Y given (σ, T, Q, n) and Q. In order to sample Y from the 

posterior we can therefore directly apply the MCMC transitions in Bhattacharya and Dunson 

(2011), with Q replacing the observable variables in their work.

3.1 Self-consistent estimates of biological samples’ similarity

We discuss an EM-type algorithm to estimate the correlation matrix S of the vectors (Qi,1,

…, Qi,J), i = 1,…, I. Under our construction in subsection 2.3, we interpret S as the 

normalized version of Gram matrix  between biological samples. In this 

subsection we describe an alternative estimating procedure, distinct from the Gibbs sampler, 

which does not require tuning of the prior probability model. The algorithm can be used for 

MCMC initialization and for exploratory data analyses. It assumes that the observed OTU 

abundances are representative of the microbial distributions, i.e. Pj = (n1,j/nj,…, nI,j/nj). 

Under this assumption, for each biological sample j,

(12)
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For σi, i = 1,…, I, we use a moment estimate . The 

procedure uses these estimates and at iteration t + 1 generates the following results:

[Expectation] Impute repeatedly Q, ℓ = 1,…, D times, consistently with the constraints (12) 

and using a N(0, Σt) joint distribution. Here Σt is the estimate of Σ, the covariance matrix of 

(Qi,1,…, Qi,J), after the t-th iteration. For each replicate ℓ = 1,…, D, we fix  for all (i, j) 

pairs with strictly positive ni,j counts at  and sample jointly, conditional on these 

values, negative  values for the remaining (i, j) pa b irs with ni,j = 0. We use these 

values to approximate ℒ (Σ), the full data log-likelihood, our target function as in any other 

EM algorithm. [Maximization] Set Σt+1 equal to the empirical covariance matrix of the 

( ,…, ) vectors, thus maximizing the ℒ (Σ) approximation.

We iterate until convergence of Σt. Then, after the last iteration, the inferred covariance 

matrix of (Qi,1,…, Qi,J) directly identifies an estimate of S. We evaluated the algorithm using 

in-silico datasets from the simulation study in Section 5. Overall it generates estimates that 

are slightly less accurate compared to posterior estimation based on MCMC simulations. We 

use the datasets considered in Figure 3(a), with number of factors fixed at three and nj at 

100,000, for a representative example. In this case the average RV-coeffcient between the 

true S and the estimated matrix is 0.93 for the EM-type algorithm and 0.95 for posterior 

simulations. In our work the described procedure reduced the computing time to 

approximately 10% compared to the Gibbs sampler. More details on this procedure are 

provided in the Supplementary Document S5.

4 Visualizing uncertainty in ordination plots

Ordination methods such as Multidimensional Scaling of ecological distances or Canonical 

Correspondence Analysis are central in microbiome research. Given posterior samples of the 

model parameters, we use a procedure to plot credible regions in visualizations such as Fig 

3(f). The methods that we consider here are all related to PCA and use the normalized Gram 

matrix S between biological samples. We recall that in our model S is the correlation matrix 

of (Qi,1,…, Qi,J). Based on a single posterior instance of S, we can visualize biological 

samples in a lower dimensional space through PCA, with each biological sample projected 

once. Naively, one could think that simply overlaying projections of the principal component 

loadings generated from different posterior samples of S on the same graph would show the 

variability of the projections. However, these super-impositions could be spurious if we 

carry out PCA for each S sample separately. One possible problem is principal component 

(PC) switching, when two PCs have similar eigenvalues. Another problem is the ambiguity 

of signs in PCA, which would lead to random signs of the loadings that result in symmetric 

groups of projections of the same biological sample at different sides of the axes. More 

generally PCA projections from different posterior samples of S are difficult to compare, as 

the different lower dimensional spaces are not aligned.
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We alternatively identify a consensus lower dimensional space for all posterior samples of S 
(Escoufier, 1973; Lavit et al., 1994; Abdi et al., 2005). We list the three main steps used to 

visualize the variability of S.

1. Identify a normalized Gram matrix S0 that best summarizes K posterior samples 

of normalized Gram matrix S1,…, SK. One simple criterion is to minimize L2 

loss element-wise. This leads to . Alternatively, we can define S0 

as the normalized Gram matrix that maximizes similarity with S1,…, SK. One 

possible similarity metric between two symmetric square matrices A and B is the 

RV-coefficient (Robert and Escoufier, 1976), 

. We refer to Holmes (2008) for a 

discussion on RV-coefficients.

2. Identify the lower dimensional consensus space V based on S0. Assume we want 

dim(V) = 2; the basis of V will be the orthonormal eigenvectors v1 and v2 of S0 

corresponding to the largest eigenvalues λ1 and λ2. The configuration of all 

biological samples in V is visualized by projecting rows of S0 onto 

. As in a standard PCA, this configuration best 

approximates the normalized Gram matrix in the L2 sense: 

.

3. Project the rows of posterior sample Sk onto V by 

. Over laying all the ψk displays uncertainty of S 
in the same linear subspace. Posterior variability of the biological samples’ 

projections is visualized in V by plotting each row of the matrices , k = 

1,…, K, in the same figure. A contour plot is produced for each biological 

sample (see for example Fig 3(f)) to facilitate visualization of the posterior 

variability of its position in the consensus space V.

5 Simulation Study

In this section, we evaluate the procedure described in Section 3 and explore whether the 

shrinkage prior allows us to infer the number of factors and the normalized Gram matrix 

between biological samples S. We also consider the estimates E(Pj|n) obtained with our joint 

model, one for each biological sample j, and compare their precision with the empirical 

estimator. Throughout the section, we assumed the number of factors is m = 10 when 

running the posterior simulations.

We first defined a scenario with distributions Pj generated from the prior (1), with I = 68 

OTUs and J = 22 biological samples. The true number of factors is m0, and for biological 

samples j = 1, …, m0/2, the vector Yj = (Yl,j, 1 ≤ l ≤ m0) has elements l = m0/2+1, …, m0 

equal to zero, while symmetrically, for j = J/2+1, …, J, the vectors Yj have the elements l = 

1, …, m0/2 equal to zero. The underlying normalized Gram matrix S is therefore block-

diagonal. After generating the distributions Pj, we sampled with fixed total counts (nj) per 
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biological sample nj= 1,000. We produced 50 replicates with m0 =3, 6, and 9. In our 

simulations the non-zero components Yl,j’s are independent standard normal.

We use PCA-type summaries for the posterior samples of Y generated from p(Y|n). 

Computations are based on the J × J normalized Gram matrix S. At each MCMC iteration 

we generate approximate samples Y from the posterior, compute S by normalizing the Gram 

matrix Y′Y, and operate standard spectral decomposition on S. This allows us to estimate 

the ranked eigenvalues, i.e. the principal components’ variance of our Q latent vectors (after 

normalization), by averaging over the MCMC iterations. Figure 3(a) shows the variability 

captured by the first 10 principal components, with the box-plots illustrating posterior 

means’ variability across our 50 replicates. The proportion of variability associated to each 

principal component decreases rapidly after the true number of factors m0 = 3, 6, 9. This 

suggests that the shrinkage model (Bhattacharya and Dunson, 2011) tends to produce 

posterior distributions for our Y latent variables that concentrates around a linear subspace.

Figure 3(c) illustrates the accuracy of the estimated normalized Gram matrix Ŝ with nj equal 

to 1,000, 10,000, and 100,000. We estimated the unknown J × J normalized Gram matrix S 
with the posterior mean of the normalized Gram matrix, which we approximate by averaging 

over MCMC iterations. We summarized the accuracy using the RV coefficient between Ŝ 
and S, see Robert and Escoufier (1976) for a discussion on this metric. The box-plots 

illustrate variability of estimates’ accuracy across 50 simulation replicates. As expected, 

when the total counts per sample increases from 10,000 to 100,000, we only observe limited 

gain in accuracy. Indeed the overall number of observed OTUs with positive counts per 

biological sample remains comparable, with expected values equal to 30 and 33 when the 

total counts per biological sample are fixed at 10,000 and 100,000 respectively. We also note 

that when m0 increases, the accuracy decreases.

We investigate interpretability of our model by using distributions Pj generated from a 

probability model that slightly differs from the prior. More precisely, the ith random weight 

in Pj, conditionally on Y and X, is defined proportional to a monotone function of 〈Xi, Yj〉+. 

We considered for example

(13)

When the monotone function is quadratic the probability model becomes identical to our 

prior. In Figure 3(b) and Figure 3(d) we used model (13) with a = 1 to generate datasets. We 

repeated the same simulation study summarized in the previous paragraphs.

We evaluated the effectiveness of borrowing information across biological samples for 

estimating the vectors Pj. The accuracy metric that we used is the total variation distance. 

We compared the Bayesian estimator E(Pj|n) and the empirical estimator  which assigns 

mass ni,j/nj to the ith OTUs. The advantage of pooling information varies with the similarity 

between biological samples. To reflect this, we generated Pj with non-zero components of Y 
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sampled from a zero mean multivariate normal with  equal to θ. We considered 

the case when Pj is generated either from our prior or model (13) with a = 0.5, 1, 3. In 

addition, we considered θ = 0.5, 0.75, 0.95, I = 68, J = 22, and m0 = 3, while nj varies from 

10 to 100.

The results are summarized in Figure 3(e) which shows the average difference in total 

variation, contrasting the Bayesian and empirical estimators. The results, both when the 

model is correctly specified, and when mis-specified, quantify the advantages in using a 

joint Bayesian model.

We complete this section with one illustration of the method in Section 4. We simulate a 

dataset with two clusters by generating Yl,j for l = 1, …, m0 from N(−3, 1) when j = 1, …, 
J/2 and from N(3, 1) when j = J/2 + 1, …, J. All Yl,j are different from zero. We expected a 

low nj to be sufficient for detecting the clusters. We sampled Pj from the prior and set J = 22, 

I = 68, m = 3, and nj = 100. The PC plot and the biological sample specific credible regions 

are shown in Figure 3(f). In the PC plot the two clusters are illustrated with different colors. 

In this simulation exercise the posterior credible regions leave little ambiguity both on the 

presence of clusters and also on samples-specific cluster membership. To compare this with 

the Principal Coordinates Analysis (PCoA) method used in microbiome studies, we plot the 

ordination results using PCoA based on the Bray-Curtis dissimilarity matrix derived from 

the empirical microbial distributions (See Figure S3). We can see that the PCoA point 

estimate is similar to the centroids identified by the proposed Bayesian ordination method.

6 Application to microbiome datasets

In this section, we apply our Bayesian analysis to two microbiome datasets. We show that 

our method gives results that are consistent with previous studies, and we show our novel 

visualization of uncertainty in ordination plots. We start with the Global Patterns data 

(Caporaso et al., 2011) where human-derived and environmental biological samples are 

included. We then considered data on the vaginal microbiome (Ravel et al., 2011).

6.1 Global Patterns dataset

The Global Patterns dataset includes 26 biological samples derived from both human and 

environmental specimens. There are a total of 19,216 OTUs, and the average total counts per 

biological sample is larger than 100,000. We collapsed all taxa OTUs to the genus level—a 

standard operation in microbiome studies—and yielded 996 distinct genera. We treated these 

genera as OTUs’ and fit our model to this collapsed dataset. We ran one MCMC chain for 

50,000 iterations and recorded posterior samples every 10 iterations.

We first performed a cluster analysis of biological samples based on their microbial 

compositions. For each posterior sample of the model parameters, we computed Pj for j = 1, 

…, J and calculated the Bray-Curtis dissimilarity matrix between biological samples. We 

then clustered the biological samples using this dissimilarity matrix with Partitioning 

Among Medoids (PAM) (Tibshirani et al., 2002). By averaging over the MCMC iterations 

for the clustering results from each dissimilarity matrix, we obtained the posterior 

probability of two biological samples being clustered together. Figure 4(a) illustrates the 
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clustering probabilities. We can see that biological samples belonging to a specific specimen 

type are tightly clustered together while different specimens tend to define separate clusters. 

This is consistent with the conclusion in Caporaso et al. (2011), where the authors suggest, 

that within specimen microbiome variations are limited when compared to variations across 

specimen types. We also observed that biological samples from the skin are clustered with 

those from the tongue. This is to some extent an expected result, because both specimens are 

derived from humans, and because the skin microbiome has often OTUs frequencies 

comparable to other body sites (Grice and Segre, 2011).

We then visualized the biological samples using ordination plots and applying the method 

described in Section 4. We fixed the dimension of the consensus space V at three. We plotted 

all biological samples’ projections onto V along with contours to visualize their posterior 

variability. The results are shown in Figure 4(b–d). We observe a clear separation between 

human-derived (tongue, skin, and feces) biological samples and biological samples from 

free environments. This separation is mostly identified by the first two compromise axes. 

The third axis defines a saline/non-saline samples separation. Biological samples derived 

from saline environment (e.g. Ocean) are well separated when projected on this axis from 

those derived from non-saline environment (e.g. Creek freshwater). We observed small 95% 

credible regions for all biological samples projections. This low level of uncertainty captured 

by the small credible regions in Figure 4(b–d) is mainly explained by the large total counts 

nj for all biological samples. Finally, to compare the ordination results to those given by 

standard methods used in microbiome studies, we generated ordination results using PCoA. 

Figure S4 shows that the relative positions of different types of biological samples in PCoA 

plots and in the Bayesian ordination plots are similar.

6.2 The Vaginal Microbiome

We also consider a dataset previously presented in Ravel et al. (2011) which contains a 

larger number of biological samples (900) and a simpler bacterial community structure. 

These biological samples are derived from 54 healthy women. Multiple biological samples 

are taken from each individual, ranging from one to 32 biological samples per individual. 

Each woman has been classified, before our microbiome sequencing data were generated, 

into vaginal community state subtypes (CST). This dataset contains only species level 

taxonomic information, and we filtered OTUs by occurrence. We only retain species with 

more than five reads in at least 10% of biological samples. This filtering resulted in 31 

distinct OTUs. We ran one MCMC chain with 50,000 iterations.

We performed the same analyses as in the previous subsection. The results are shown in 

Figure 5. Clustering probabilities indicate strong within CST similarity (panel a). There is 

one exception, CST IV-A samples, in some cases, presenting low levels of similarities when 

compared to each other and tend to cluster with CST I, CST III, and CST IV-B samples. 

This is because CST IV-A is characterized as a highly heterogeneous subtype (Ravel et al., 

2011). The ordination plots are consistent with the discoveries in Ravel et al. (2011). A 

tetrahedron shape is recovered, and CST I, II, III, IV-B occupy the four vertices. CST II is 

well separated from other CSTs by the third axis. This pattern is similar to the one observed 

in the plots generated using PCoA (Figure S5). We also observed a sub-clustering in CST II 
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which has not been detected and discussed in Ravel et al. (2011). This difference in the 

results can be due to distinct clustering metrics in the analyses.

Note that there are two biological samples with large credible regions, indicating high 

uncertainty of the corresponding positions. This uncertainty propagates on their cluster 

membership. Both biological samples have small total counts compared to the others. The 

lack of precision when using biological samples with small sequencing depth leads to high 

uncertainty in ordination and classification. It is therefore important to account for 

uncertainty in the validation of subgroups biological differences—in our case CST subtypes

—based on microbiome profiling. Our example suggests also the importance of uncertainty 

summaries when microbiome profiles are used to classify samples. Uncertainty summaries 

allow us to retain all samples, including those with low counts, without the risk of 

overinterpreting the estimated locations and projections. This also argues for the retention of 

raw counts in microbiome studies (McMurdie and Holmes, 2014). By using raw counts, we 

can evaluate the uncertainty of our estimates and exploit the information and statistical 

power carried by the full dataset; whereas if we downsample the data we lose information 

and increase uncertainty on the projections.

It is ubiquitous to have biological samples with relevant differences in their total counts, and 

in some cases the number of OTUs and the total number of reads can be comparable. In this 

cases, the empirical estimates of microbial distributions are not reliable, and an assessment 

of the uncertainty is necessary for downstream analyses. The two biological samples with 

low total counts in the vaginal microbiome dataset are examples. For biological samples 

with a scarce amount of data our model provides measures of uncertainty and allows 

uncertainty visualizations with ordination plots.

7 Conclusion

We propose a joint model for multinomial sampling of OTUs in multiple biological samples. 

We apply a prior from Bayesian factor analysis to estimate the similarity between biological 

samples, which is summarized by a Gram matrix. Simulation studies give evidence that this 

parameter is recovered by the Bayes estimate, and in particular, the inherent dimensionality 

of the latent factors is effectively learned from the data. The simulation also demonstrated 

that the analysis yields more accurate estimates of the microbial distributions by borrowing 

information across biological samples.

In addition, we provide a robust method to visualize the uncertainty in ecological 

ordinations, furnishing each point in the plot with a credible region. Two published 

microbiome datasets were analyzed, and the results are consistent with previous findings. 

The second analysis demonstrates that the level of uncertainty can vary across biological 

samples due to differences in sampling depth, which underlines the importance of modeling 

multinomial sampling variations coherently. We believe our analysis will mitigate artifacts 

arising from rarefaction, thresholding of rare species, and other preprocessing steps.

There are several directions for development which are not explored here. We highlight the 

possibility of incorporating prior knowledge about the biological samples, such as the 

Ren et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2018 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subject or group identifier in a clinical study. To achieve this, we can augment the latent 

factors Yj by a vector of covariates , whose coefficients b could be given a 

normal prior, for example. The posterior distribution of the coefficients could be used to 

infer the magnitude of covariates’ effects. A less straightforward extension involves moving 

away from the assumption of a priori exchangeability between OTUs to include prior 

information about phylogenetic or functional relationships between them. In our present 

analysis, these relationships are not taken into account in the definition of the prior for 

microbial distributions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
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Figure 2. 
Plate diagram. We include the factor model for the latent variables Qi,j as well as the matrix 

S. Nodes encompassed by a rectangle are defined over the range of indices indicated at the 

corner of the rectangle, and the connections shown within the rectangle are between nodes 

with the same index. We use j to index biological samples, i to index microbial species and l 
to index the components of latent factors.
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Figure 3. 
(a–b) Estimated proportion of variability captured by the first 10 PCs. Each box-plot here 

shows the variability of the estimated proportion across 50 simulation replicates. We show 

the results when the data are generated from the prior (Panel a) and from the model in (13) 

with a = 1 (Panel b). (c–d) Accuracy of the correlation matrix estimates  The box-plots 

show the variability of the accuracy in 50 simulation replicates, with data generated from the 

prior (Panel c) and from model (13) with a = 1 (Panel d). We vary the true number of factors 

m0 (colors) and nj and show the corresponding accuracy variations. (e) Comparison between 

Bayesian estimates of the underlying microbial distributions Pj and the empirical estimates. 

We consider the average total variation difference, averaging across all J biological samples. 

Each curve shows the relationship between nj and average accuracy gain. We set m0 = 3 and 

the parameter a varies from 0.5 to 3 (shapes). The similarity parameter θ is equal to 0.5, 0.75 

or 0.95 (colors). (f) PCoA plot with confidence regions. We visualize the confidence regions 

using the method in Section 4. Each contour illustrates the uncertainty of a single biological 
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sample’s position. Colors indicate cluster membership and annotated numbers are biological 

samples’ IDs.

Ren et al. Page 26

J Am Stat Assoc. Author manuscript; available in PMC 2018 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(a) Posterior Probability of each pair of biological samples (j, j′) being clustered together. 

The labels on axes indicate the environment of origin for each biological sample. (b–d) 

Ordination plots of biological samples and 95% posterior credible regions. We illustrate the 

first three compromise axes with three panels. Panel (b) plots projections on the first and 

second axes. Panel (c) plots projections on the first and third axes. Panel (d) plots projections 

on the second and third axes. The percentages on the three axes are the ratios of the 

corresponding S0 eigenvalues and the trace of the matrix. The credible regions for some 

biological samples are so small that appears as single points. Colors and annotated text 

indicate the environments.
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Figure 5. 
(a) Posterior Probability of each pair of biological samples (j, j′) being clustered together. 

The labels on axes indicate the CST for each biological sample. (b–d) Ordination plots of 

biological samples and posterior credible regions. We illustrate the first three compromise 

axes with three panels. The percentages on the three axes are the ratios of the corresponding 

S0 eigenvalues and the trace of the matrix. Colors and indicate CSTs.
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