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Abstract

The inclusion of transition metal catalysts into nanoparticle scaffolds permits the creation of 

catalytic nanosystems (nanozymes) able to imitate the behaviour of natural enzymes. Here we 

report the fabrication of a family of nanozymes comprised of bioorthogonal ruthenium catalysts 

inserted in the protective monolayer of gold nanoparticles. By introducing simple modifications to 

the functional groups at the surface of the nanozymes, we have demonstrated control over the 

kinetic mechanism of our system. Cationic nanozymes with hydrophobic surface functionalities 

tend to replicate the classical Michaelis Menten model, while those with polar groups display 

substrate inhibition behaviour, a key mechanism present in 20 % of natural enzymes. The 

structural parameters described herein can be used for creating artificial nanosystems that mimic 

the complexity observed in cell machinery.
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Bioorthogonal nanozymes displaying different kinetic behaviorscan be created through 

modifications in their surface functional groups
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Introduction

Enzymes have evolved to perform a wide variety of transformations,1 coupling efficiency 

with a complex suite of regulatory mechanisms.2 These properties make enzymes important 

catalysts for synthetic processes, particularly in the area of sustainable chemistry.3 There are, 

however, many limitations for enzymatic catalysis ranging from instability to the fact that 

despite their enormous breadth of mechanisms, there are many reactions that enzymes 

cannot catalyze.4

Bioorthogonal catalysis has opened a promising direction, with transition metal catalysts 

(TMCs)5-8 providing access to transformations using chemical processes that are orthogonal 

to biocatalysis.9–14 Loading of TMCs into nanomaterial scaffolds provides water solubility 

and a protective environment for TMCs,12,14,15 playing a role similar to that of the protein 

scaffold in enzymatic catalysis. These scaffolds also have the potential to access more 

complex attributes of enzymatic behaviour, an area that to date has not been well-explored.

In our recent studies we have developed a family of gold nanoparticles (2 nm core, ∼7 nm 

overall diameter) loaded with ruthenium or palladium catalysts, and shown that these 

“nanozymes” (NZs) have catalytic behaviour that can be described as consistent with 

enzymes, and can be characterized using classical Michaelis-Menten kinetics.15 We report 

here the extension of this biomimetic capability to more complex kinetic behaviours. In this 

study, structural motifs present on the monolayer were used to regulate catalysis, providing 

systems that feature substrate inhibition, an important mechanism observed in processes that 

regulate neutrotransmission16 and DNA methylation,17 among others.18 We believe this 

study constitutes a starting point for the creation of nanozyme-based systems that could 

eventually replicate the complexity of cellular pathways.

Experimental Section

Materials

All chemicals used were purchased from Fischer Scientific and were used without any 

previous treatment. Synthesis of nanoparticle scaffolds (NPs) can be found in ESI-2. The 

substrate (Pro-Rho) was prepared as early reported.9,15

Instrumentation

All fluorescence determinations were carried out in a SpectraMax M5 microplate 

spectrophotometer. The hydrodynamic diameter of NZs was measured in a Malvern 

Zetasizer Nano ZS instrument. The ICP-MS analyses were performed on a Perkin-Elmer 

NexION 300× ICP mass spectrometer.

Nanozyme preparation

Nanozymes were synthesized following a previous method.15 A 3 mg/mL solution of the 

ruthenium catalyst ([Cp*Ru(cod)Cl] in acetone was mixed (1:1 v/v) with an aqueous 

solution of NPs (20 μM). The acetone was slowly removed by evaporation to favour the 

encapsulation of the catalyst in the particle monolayer. The mixture was then submitted to 

filtration (Millex-GP filter; 25 mm PES, pore Size: 0.22μm) to remove the precipitated 
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catalyst. The nanozyme solutions were subsequently submitted to 5 filtration sessions 

(Amicon® ultra 4, 10K) and dialysed (Snake Skin® dialysis tubing, 10K) against water (5L, 

24h) to remove unbound catalyst. The amount of encapsulated catalyst was measured by 

ICP-MS by tracking 101Ru relative to 197Au.15 (ESI-3)

Kinetic studies of nanozymes—The catalytic reactions of the nanozymes were carried 

out in phosphate buffered saline (PBS, pH 7.4). Nanozymes and substrate stock solutions 

were mixed in a 96-well plate to provide 100 μL final solution containing 400 nM of NZs 
and Pro-Rho at 2, 4, 6, 8, 10, 20, 30 and 40 μM concentrations. Fluorescence evolution of 

the allyl-carbamate deprotection process was registered immediately after mixing (Ex: 488 

nm, Em: 521 nm, Cut-off: 515 nm) for 20 mins at 30 second intervals.

Pro-Rho adsorption on nanoparticles—The experiments for determining the 

adsorption capacity of each NPs for Pro-Rho were carried out in PBS (pH 7.4). Each 

nanoparticle was mixed with stock substrate solutions in a 96-well plate to provide 100 μL 

final solution containing 400 nM of each nanoparticle and Pro-Rho at 2, 4, 6, 8, 14, 16, 18 

and 25 μM concentrations. Fluorescence variations of adsorbed Pro-Rho was registered (Ex: 

488 nm, Em: 521 nm, Cut-off: 515 nm) 5 mins after mixing. Calibration curves and details 

of the determination can be found in ESI-5.

Results and discussion

Design and synthesis of the nanozymes

Gold nanoparticles with core diameters of 2 nm capped with a monolayer (∼2.5 nm thick) 

were used as the scaffold for the catalysts, with the goal of creating protein-sized systems 

(Fig. 1a).

The activity of most of enzymes is modulated by the amino acids residues located on their 

surfaces.19 Mutations on these amino acids can produce drastic changes in their tertiary 

structure, thus influencing their kinetic behaviour.19 With these concepts in mind, the effect 

of various modifications in the hydrophobicity of nanozyme ligands was explored (Fig. 1b). 

The structure of the protecting monolayer of the nanozyme platform is ruled by two major 

interactions: the long hydrophobic segments will interact through attractive Van der Waals 

forces, while the alkyl ammonium groups generate electrostatic repulsions between these 

ligands of the monolayer. The balance between these opposing forces should define the 

degree of compaction of the nanozyme monolayer, and thus, their kinetic behaviour (Fig. 

1c). We reasoned that increasing the hydrophobicity of the positively charged head groups 

would produce a favourable effect towards the compaction of the monolayer, thus impacting 

the kinetic behaviour of the nanozymes. In this regard, ligands bearing methyl (TTMA), 

benzyl (DMBzA) and tolyl (DMTolA) substituents were used for constructing the NP 

scaffolds (Fig. 1b). More hydrophobic ligands were also included in the designs; however, 

the resulting nanozymes proved insoluble in PBS (see ESI-4).

Figure 1d shows some of the characteristics of our family of nanozymes. It can be observed 

that the three types of nanozymes used were dispersed in PBS and display sizes comparable 

with proteins (See also ESI-4).
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Kinetic behaviour of nanozymes—The kinetic behaviour of our nanozymes was 

studied using an allylcarbamate-protected derivative of rhodamine 110 (Pro-Rho), as 

substrate (Fig. 2a). Pro-Rho is a hydrophobic molecule with low fluorescence. After the 

catalytic deallylation, Pro-Rho is transformed into the zwitterionic, strongly fluorescent 

rhodamine 110 (Fig. 2a).9 The fluorogenesis of this dye provides a direct way for 

monitoring reaction kinetics.9 In addition, the zwitterionic nature of catalysed Pro-Rho 
molecules drastically increases its hydrophilic behaviour, presumably reducing affinity for 

the hydrophobic pocket of our nanozymes.

Figure 2b shows the kinetic behaviour of the nanozymes in PBS. DMTolA-NZ displayed a 

classical Michaelis-Menten kinetic model, where the rate of conversion tends to asymptote 

to a steady-state level at high concentration of substrates. Such relationship demonstrates 

saturation of all nanozyme active sites. The kinetic behaviour of DMTolA-NZ can be 

represented by the classical Michaelis-Menten expression:

(1)

where V is the rate of product formation, [NZ] is the concentration of nanozymes, [S] is 

concentration of substrate and KM and kCat are the Michaelis-Menten and catalytic 

constants, respectively.

Interestingly, at high concentrations of substrate, DMBzA-NZ and TTMA-NZ tend to 

reduce the conversion rate of substrate. This type of catalytic behaviour is known as 

substrate inhibition and is also present in a large group of natural enzymes.18 In such cases, 

at high concentrations, substrate can bind inactive pockets of the enzyme, producing 

antagonistic effects. 16-18 In the case of the NZs, any hydrophobic pocket without the 

ruthenium catalyst can be, in principle, able to bind substrate, producing the 

abovementioned allosteric attenuation of catalysis (Fig. 2c right)

The behaviour of DMBzA-NZ and TTMA-NZ was modelled by the equation used for 

describing substrate inhibition mechanism:16

(2)

In equation 2, Ki represents the dissociation constant of substrate binding the allosteric sites 

(Fig. 2c right) and producing a 50% reduction of catalytic activity (for comparison, see in 

figure 2a simulated curves for TTMA-NZ and DMBzA-NZ without substrate inhibition 

effect).

With the increase in the hydrophobicity of the substituent of the alkyl ammonium head 

groups, the value of increases Ki until no additional substrate can influence the activity of 
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nanozymes, as in the case of DMTolA-NZ (Fig. 2d. Note also that for large Ki values 

equation 2 tends to equation 1). An increase in the hydrophobicity of the positively charged 

head group also tended to increase the value of KM. However, variations on KM are not as 

pronounced as in Ki.

The observed kinetic results suggest that increased compaction of the monolayer, driven by 

an increasingly hydrophobic ligand, induces nanozyme behaviour to follow the classical 

Michaelis-Menten model. To test this hypothesis a nanozyme bearing an uncharged head 

group was synthesized and studied (See ESI 7). In this design, ligands in the protecting 

monolayer of the nanozyme do not experience electrostatic repulsion; thus, attractive Van 

der Waals forces should dominate. ESI 7 shows that TEGOH-NZs displayed classical 

Michaelis-Menten behaviour. These results are consistent with our understanding of the 

effect of monolayer compaction on the kinetic mechanism of the nanozyme.

Substrate adsorption experiments—The observed trend for magnitudes of both KM 

and Ki suggests that the affinity of substrate for nanozymes tends to decrease with increasing 

hydrophobicity of the alkyl ammonium head group. Therefore, an experiment to explore the 

capacity of our NP scaffolds to adsorb substrate was carried out. Adsorption capacity of NPs 
was determined in PBS by monitoring the quenching effect of gold particles on the residual 

fluorescence of adsorbed Pro-Rho. It should be noted that adsorption experiments are 

carried out in equilibrium conditions; thus, only the NP scaffolds (without the ruthenium 

catalyst) can be used.

Figure 3a shows the number of molecules of Pro-Rho adsorbed in the monolayer of each of 

our NPs at different concentrations of this substrate. Increasing the hydrophobicity of the 

alkyl ammonium group was observed to reduce the adsorption capacity of the corresponding 

NP. In addition, Pro-Rho adsorption curves shift to sigmoidal shapes for the NPs bearing 

the most hydrophobic surface functionalities (Fig. 3a). This sigmoidal behaviour (as 

DMTolA-NP) indicates that the inclusion of Pro-Rho into the monolayer of NPs is not 

favoured at low concentrations of the substrate. However, insertion of the first few molecules 

into this monolayer contributes to subsequent adsorption of the substrate via a cooperative 

effect (Fig. 3b). In the case of TTMA-NPs, the linear behaviour suggests that the amount of 

adsorbed Pro-Rho is only dependent on the concentration of substrate in solution (Fig. 3c).

The trend observed for Pro-Rho adsorption could be caused by different levels of 

compaction of the monolayer of our NP scaffolds, with DMTolA-NP displaying the most 

compact one and TTMA-NP the less. To confirm this assumption, the same adsorption 

experiment was carried out in deionized water. Under low ionic strength conditions, the 

monolayer of our NP scaffolds should acquire a lower compaction degree.20,21 All NPs 

scaffolds displayed increased substrate adsorption capacity in deionized water than PBS (see 

ESI-4). These results suggest that the more expanded the monolayer of our NPs the greater 

their capacity to associate substrates (see ESI-5).

The results obtained by these adsorption experiments with our NPs scaffolds shed some 

light on how DMTolA-NZ displays Michaelis-Menten kinetic behaviour while DMBzA-NZ 
and TTMA-NZ exhibit substrate inhibition. We hypothesized that the higher compaction of 
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the monolayer of DMTolA-NZ reduces the affinity for Pro-Rho; thus, decreases the 

possibility of insertion of substrate in allosteric sites. However, in the case of DMBzA-NZ 
and TTMA-NZ, with a more opened monolayer, at high concentrations Pro-Rho can bind 

both active and allosteric sites. Our next steps will focus on answering questions regarding 

the key structural parameters that modulate the efficiency and selectivity of these 

bioorthogonal nanozymes.

Conclusion

In conclusion, we have demonstrated the construction of bioorthogonal nanozymes featuring 

different kinetic behaviours present in natural enzymes. The kinetic mechanism of 

nanozymes was observed to be strongly influenced by their surface functionalities. The 

ability to fabricate bioorthogonal nanozymes featuring sophisticated enzymatic behaviours is 

essential for developing a platform of nanodevices able to modulate complex cell 

bioprocesses through abiotic catalytic reactions, with envisaged applications in both 

fundamental science and biomedical procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Design, System, Application

Nanocatalysis is an important tool for sustainable chemistry and biology. Maximizing the 

efficiency of nanocatalysts is crucial, however little work has been done towards 

developing nanosystems able to mimic the sophisticated kinetic behaviors of natural 

enzymes. Here we report the construction of nanocatalysts comprised of bioorthogonal 

ruthenium catalysts inserted into the protecting monolayer of gold nanoparticles. By 

introducing simple modifications in their surface functional groups, these “nanozymes” 

could be engineered to display kinetic behaviors observed in natural enzymes, including 

both “simple” classical Michaelis-Menten as well as substrate inhibition mechanisms. 

These studies provide initial steps toward understanding the structural parameters that 

modulate the catalytic behavior of nanozymes required for developing new nanodevices 

with controlled kinetic characteristics.
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Figure 1. 
Structure of nanozymes. a) Encapsulation of TMCs in the hydrophobic pocket of gold 

nanoparticles. b) Structure of the nanoparticle scaffolds for generating cationic nanozymes 

with different hydrophobic surface functional groups. c) Schematic representation of the 

interacting forces among the ligands in the monolayer. Black arrows represent Van der 

Waals attraction. Red arrows represent repulsive electrostatic interaction. d) Table containing 

the size (determined via dynamic light scattering) and the amount of Ru catalyst per 

nanozyme. Mean values ± standard deviation, N = 3
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Figure 2. 
Kinetic study of nanozymes. a) Schematic representation of the activation of allyl carbamate 

protected rhodamine 110 (Pro-Rho). B) Nanozyme kinetics are shown as a function of 

substrate concentration. Solid lines are the regression curves corresponding to each 

mechanism. Dashed lines correspond to simulated kinetic curves for TTMA-NZ and 

DMBzA-NZ without substrate inhibition effect. c) Schematic representations of two 

possible kinetic behaviours of nanozymes. Left, nanozymes with monolayers bearing 

hydrophobic quaternary alkyl ammonium groups display the Michaelis-Menten mechanism. 

Right, nanozymes bearing hydrophilic quaternary alkyl ammonium groups display a 

substrate inhibition mechanism. d) Kinetic parameters for each nanozyme. Mean values ± 

standard deviation, N = 3
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Figure 3. 
Adsorption of Pro-Rho on the nanoparticle scaffolds used. a) Adsorption curves of Pro-Rho 
on each NP in PBS. Adsorbed Pro-Rho molecules on the NPs were plotted as function of 

Pro-Rho concentration. b) Schematic representations of the cooperative adsorption 

mechanism observed in DMTolA-NP featuring compact monolayer: The first adsorbed 

molecules favour the further adsorption of substrate c) Non-cooperative adsorption of 

substrate on TTMA-NP. The adsorption of Pro-Rho molecules is only dependent on its 

concentration in solution. Adsorbed molecules do not influence the further adsorption of 

substrate. Mean values ± standard deviation, N = 3
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