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Abstract

This work develops a material reconstruction method for spectral CT, namely Total Image 

Constrained Material Reconstruction (TICMR), to maximize the utility of projection data in terms 

of both spectral information and high signal-to-noise ratio (SNR). This is motivated by the 

following fact: when viewed as a spectrally-integrated measurement, the projection data can be 

used to reconstruct a total image without spectral information, which however has a relatively high 

SNR; when viewed as a spectrally-resolved measurement, the projection data can be utilized to 

reconstruct the material composition, which however has a relatively low SNR. The material 

reconstruction synergizes material decomposition and image reconstruction, i.e., the direct 

reconstruction of material compositions instead of a two-step procedure that first reconstructs 

images and then decomposes images. For material reconstruction with high SNR, we propose 

TICMR with nonlocal total variation (NLTV) regularization. That is, first we reconstruct a total 

image using spectrally-integrated measurement without spectral binning, and build the NLTV 

weights from this image that characterize nonlocal image features; then the NLTV weights are 

incorporated into a NLTV-based iterative material reconstruction scheme using spectrally-binned 

projection data, so that these weights serve as a high-SNR reference to regularize material 

reconstruction. Note that the nonlocal property of NLTV is essential for material reconstruction, 

since material compositions may have significant local intensity variations although their 

structural information is often similar. In terms of solution algorithm, TICMR is formulated as an 

iterative reconstruction method with the NLTV regularization, in which the nonlocal divergence is 
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utilized based on the adjoint relationship. The alternating direction method of multipliers is 

developed to solve this sparsity optimization problem. The proposed TICMR method was 

validated using both simulated and experimental data. In comparison with FBP and total-variation-

based iterative method, TICMR had improved image quality, e.g., contrast-to-noise ratio and 

spatial resolution.

Index Terms

Image reconstruction; spectral CT; nonlocal TV

I. Introduction

With the rapid development of X-ray CT technology, CT imaging has been extensively used 

in medical diagnosis, radiation therapy, and industrial evaluations. Spectral CT based on 

energy-resolved photon-counting detector (PCD) has been recently introduced for medical 

imaging, such as spectral breast CT [1]–[3] and k-edge imaging [4], [5]. Conventional CT 

imaging scans at a fixed tube voltage and reconstructs a single image, which represents the 

effective x-ray attenuation coefficient of the object for the input spectrum. Spectral CT, on 

the other hand, exploits the energy dependence of the x-ray attenuation coefficients for 

different materials, and reconstructs spectral images. The traditional approach for spectral 

CT measures the energy-dependent information using two independent exposures at 

different beam energies. The application of this method is limited not only by the radiation 

dose from additional exposures, but also the potential mis-registration between dual-energy 

images. The introduction of the semiconductor-based PCD offers a new solution for spectral 

CT. This emerging x-ray detector technology can count individual photons and sort them 

according to their energies, which allows spectral information to be acquired within a single 

exposure. Multiple energy thresholds can be set in the application-specific integrated circuit, 

so that the energy specific images can be reconstructed for 2 to 6 energy bins [2], [4]. Thus, 

spectral CT based on PCD can sample more data points on the energy-dependent x-ray 

attenuation curves of different materials without additional radiation dose. In the mean time, 

the spectrum overlap between the multi-energy images is minimized. Moreover, images 

reconstructed from different energy bins are perfectly registered, as they are all acquired 

simultaneously. With these unique advantages, PCD-based spectral CT exhibits great 

potentials in material decomposition with high efficiency and accuracy [2].

Spectral CT aims to reconstruct the material compositions from the multi-energy projection 

data. It can be determined in a two-step procedure, i.e., image reconstruction for spectral 

images and then material decomposition from these spectral images to material 

compositions [3], [6]–[16], or alternatively material-specific sinogram decomposition and 

then material reconstruction [4], [17]–[19]. Various iterative reconstruction models have 

been developed [20], with energy-by-energy reconstruction [3], [4], [9], [11], [17]–[19] and 

joint reconstruction [7], [10], [15], [16], such as total variation (TV) sparsity [14], [16], 

HYPR algorithm [8], tight frame sparsity [3], [11], bilateral filtration [12], [13], patch-based 

low-rank model [15], rank-and-sparsity decomposition model [7] and its tensor version [10]. 

In order to fully utilize the image similarity in the spectral dimension, the joint 
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reconstruction is a natural formulation [7], [10], [15], [16]. Although the image intensity 

with different energies can be significantly different, the global sparsity, such as low-rank 

models, is efficient to characterize the spectral similarity. With local sparsity (such as TV), 

cautiousness is required to handle such an intensity difference for joint spectral 

reconstruction [16]. Nevertheless, with the aforementioned two-step procedure where image 

reconstruction is independent of material decomposition, there are two major limitations: (1) 

it may not fully utilize the prior that material compositions share common structures; (2) 

given that the number of energy bins is often more than the number of materials, 

reconstructing a larger number of spectral images, which are subsequently decomposed into 

a smaller number of materials, may be unstable and can possibly deteriorate the 

reconstruction quality. Therefore, the reconstruction of an overdetermined set of spectral 

images independent of material decomposition is unnecessary.

In contrast, the material compositions can also be reconstructed in a one-step procedure, i.e., 

the direct material reconstruction from multi-energy projection data [7], [21]–[24]. For that 

purpose, the spectral image dependence of the materials is often linearly modeled, i.e., for 

dual-energy CT [21], [22], [24] or multi-energy CT [7], [23], during which either energy-

independent density and material volume fraction can be both explicitly modeled or their 

product [22], [23], i.e., the material composition, needs to be reconstructed [7], [21], [24]. 

The explicit model of both energy-independent density and material volume fraction was 

introduced for beam hardening correction purpose [22] or when the number of energies is 

less than the number of materials [22], [23], for which additional steps may be needed, such 

as image segmentation and nonoverlapping material assumption [22]. Here we consider the 

multi-energy CT setting where the number of energies is often more than the number of 

materials, and therefore directly model the material composition [7], [21], [24].

In this work, we propose a material reconstruction method for spectral CT that maximizes 

the utility of projection data in terms of both spectral information and high signal-to-noise 

ratio (SNR), i.e., Total Image Constrained Material Reconstruction (TICMR). This is 

motivated by the following observations: when viewed as a spectrally-integrated 

measurement, the projection data can be used to reconstruct a total image without spectral 

information, which however has a relatively high SNR; when viewed as a spectrally-

resolved measurement, the projection data can be used to reconstruct the material 

composition, which however has a relatively low SNR. The constraint via total image for 

improved SNR is achieved via nonlocal total variation (NLTV) regularization [25], [26]. As 

mentioned earlier, even if spectral images or material compositions share common 

structures, their intensity values may differ significantly. Therefore, the prior of spectral 

similarity may not be efficient to regularize locally. Instead, we use NLTV as a global 

sparsity method to extract image features from the total image and then use these high-SNR 

features to regularize the material reconstruction. That is, first we reconstruct a total image 

using spectrally-integrated measurement without spectral binning, and build the NLTV 

weights from this image that characterize nonlocal image features; then the NLTV weights 

are incorporated into a NLTV-based iterative material reconstruction scheme using 

spectrally-binned projection data, so that these weights serve as a high-SNR reference to 

regularize material reconstruction.
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In the following, first we will describe the TICMR method for spectral CT, including the 

spectral model (Section II-A), the material-attenuation matrix (Section II-B), the TICMR 

method (Section II-C), the NLTV regularization (Section II-D), and the solution algorithm 

(Section II-E); next we will present its validation in comparison with FBP and the TV 

method using simulated and experimental data (Section III).

II. Method

A. Spectral Model

Consider a set of spectral measurement Yim, i = 1, …, N, m = 1, …, Ne, where Ne is the 

number of spectral energies, Nυ is the number of projection views, Nd the number of 

detectors, and N = Nd · Nυ. Let M = N · Ne be the total number of spectral data, s(E) the 

incident spectrum, ΔEm the length of the mth energy interval, and Li the path of line integral 

for Yim. Assuming the perfect detector response [27], the expectation  of spectral 

measurement Yim is given by the following spectral model for i = 1, …, N and m = 1, …, Ne

(1)

where multi-energy attenuation coefficient u(x, E) linearly depends on the material 

composition Z [7], i.e.,

(2)

Here Nz is the number of basis materials, Zk(x) is the material composition of the kth basis 

material at the spatial location x, which is spectrally independent, and Bk(E) is the 

attenuation coefficient of the kth basis material at the energy E, which is spatially 

independent. For example, the incident spectrum s(E) with 65KeV tube voltage and B(E) for 

several materials are plotted in Fig. 1.

We then consider a spatially discretized version of (1) with a piecewise-constant spatial grid 

xj, j = 1, …, Nx. Let A be the system matrix for discretized X-ray transform with the matrix 

element Aij, e.g., the length of the ray Li overlapping with the grid xj. Then

(3)

where Zjk is the kth material composition at the grid xj.

Next we introduce the effective attenuation coefficient Bkm of the kth basis material for the 

energy interval ΔEm, i.e.,
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(4)

where

(5)

Here (4) is justified by the mean value theorem for definite integrals, thanks to the continuity 

of B(E) with respect to E.

In the matrix notation, (4) is

(6)

where Y* ∈ ℝM is the column vector of spectral measurement, S ∈ ℝM the column vector of 

source spectrum distribution formed by replicating {sm} in spatial dimension, A ∈ ℝN × Nx 

the system matrix, Z ∈ ℝNx × Nz the material composition, and B ∈ ℝNz ×Ne the material-

attenuation matrix.

Last, assuming Poisson distribution for Y, we consider the following maximum likelihood 

function to infer Z for Y,

(7)

and particularly its logarithmic version

(8)

where we have applied a second-order Taylor expansion for e−[AZB]im [28], [·]im denotes the 

matrix element, and C contains the terms that are independent of Z.

Thus our spectral model to reconstruct material composition Z from spectral measurement 

Y, i.e., the data fidelity term, can be formulated as the following quadratic functional

(9)
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where  and W = diag(Y) ∈ ℝM ×M.

B. Material-Attenuation Matrix

Here we consider how to determine the material-attenuation matrix Bkm. Based on the 

previous derivation from Bk(E) to Bkm in (4), we have

(10)

Assuming Z is known for the calibration purpose, we can compute B by solving the 

overdetermined linear system (10).

Alternatively, we rewrite (10) as

(11)

Now considering a unit circular/spherical domain of the kth material, (11) is reduced to

(12)

Given the material-attenuation function B(E) (e.g., Fig. 1), the material-attenuation matrix B 
can be efficiently computed by (12).

Here the effective discrete material-attenuation matrix B models the spectral dependence of 

attenuation coefficients for each material that reduces or alleviates the beam-hardening 

artifact. However, when only a limited number of energy bins are available, the energy 

windows ΔEm, i.e., the integration limits for each bin, need to be properly chosen, in order 

for B to capture the sharp spectral changes, such as the K-edge.

C. Total Image Constrained Material Reconstruction

The proposed TICMR consists of two steps: (i) to reconstruct a total image using spectrally-

integrated measurement without spectral binning, and build the NLTV weights from this 

image that characterize nonlocal image features; (ii) to incorporate these NLTV weights 

computed from high-SNR total image into material reconstruction using spectrally-resolved 

projection data.

Let Y0 be the spectrally-integrated measurement, i.e., Y0i = ∑m Yim, i = 1, …, N. Then the 

total image X* ∈ ℝNx is reconstructed by either filtered backprojection (FBP) or the 

following TV based iterative method
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(13)

where  with total source energy s0 = ∑m sm, W0 = diag(Y0) ∈ ℝN × N, and |

∇X|1 an isotropic TV norm with regularization parameter λ, e.g.,

(14)

Then the material composition Z* is reconstructed by the following NLTV based iterative 

method

(15)

where |∇wZ|1 is the NLTV norm that will be given in the next section.

To summarize, TICMR is achieved in this work through the NLTV regularization, during 

which the total image X* reconstructed by FBP or TV (13) provides high-SNR NLTV 

weights for the material reconstruction of Z* by (16).

Note that the NLTV regularization in (16) is quite error-forgiving as the weights involve the 

averaging with Gaussian kernel (18). As a result, the proposed TICMR method is not 

sensitive to the beam-hardening artifact that may be present in the total image (see Fig. 3(a) 

and 4(c)). In addition, for the ”invisible” object on the total image that is visible on the 

spectral image (e.g., Object 3 in Fig. 2), TICMR does not decrease the reconstruction quality 

(see Fig. 5), although it does not increase the reconstruction quality either since no 

information is provided by the total image.

In practice, we may consider the following constrained material decomposition model

(16)

For example, ZC = D may refer to the constraint where the summation of all material 

compositions is equal to one in the region-of-interest and zero otherwise.

In the result section, we compare TICMR with FBP and the following TV based material 

reconstruction
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(17)

Note that in terms of the regularization in (17), the alternative strategies can be used, such as 

tensor framelet transform (as a natural high-order generalization of isotropic TV) [3], [11], 

[29]–[31], and low-rank models [7], [10], [15], [32], [33].

D. Nonlocal Total Variation

An essential component of NLTV is to characterize the patch-by-patch similarity [34] 

instead of pixel-by-pixel similarity (e.g., TV). That is, for a given image X, the following 

weights can be constructed between any two spatial node x and y,

(18)

where G is a Gaussian kernel with the standard deviation σ, and Ω1 represents the spatial 

neighborhood to be compared around x and y.

Such a patch-by-patch similarity at the spatial grid x from a high-SNR image X can be used 

to regularize the low-SNR image u via the following nonlocal gradient at x [25], i.e.,

(19)

Here Ω2 is the spatial neighborhood around x where the nonlocal gradient ∇wu(x, y) is 

computed by (19).

Then the NLTV norm of Z in (16) is given by

(20)

where the nonlocal weights w are constructed based on the total image X* reconstructed 

from (13).

On the other hand, we need to compute the adjoint of (19) during the reconstruction, for 

which we utilize the following adjoint relationship with a nonlocal divergence operator divw

(21)
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with the nonlocal divergence operator [25] defined as

(22)

As an illustrative example for discretization of the NLTV transform and its adjoint, consider 

a 2D image u ∈ ℝM×N with Ω1 = ℝ(2a+1)×(2b+1), Ω2 = ℝ(2m+1)×(2n+1), the reference image X 
based NLTV weights are defined as

(23)

and the nonlocal gradient ∇wu ∈ ℝM×N×(2m+1)×(2n+1) can be defined as

(24)

where [∇wu]i, j,:,: is the (two-dimensional) submatrix obtained by staking the third and 

fourth dimensions of ∇wu at each i th position in the first dimension and j th in the second 

dimension, and its adjoint divw(∇wu) ∈ ℝM×N is

(25)

In this work we empirically set a = b = 3, m = n = 5.

E. Solution Algorithm

The solution algorithm for sparsity-based reconstruction problems (13), (16), and (17) is 

based on alternating direction method of multipliers [35] or split Bregman method [36]. 

Here we give the details for solving (16).
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In order to solve this L1-type problem (16) with non-differentiable L1 norm, we introduce a 

dummy variable d = ∇wZ to decouple the sparsity regularization from the data fidelity and 

another dummy variable z = Z to decouple the inequality constraint, i.e.,

(26)

Then the augmented Lagrangian of (26) is

(27)

To obtain saddle points of the augmented Lagrangian (27) based on ADMM is to iteratively 

solve

(28)

The optimal condition for the first subproblem in (28) provides

(29)

The equation (29) is a linear system that can be solved by conjugate gradient method 

efficiently.

The vector dk+1 in the second subproblem in (28) can be analytically solved by applying the 

shrinkage operator pointwisely
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(30)

where the operator .

The vector zk+1 in the third subproblem in (28) can be analytically solved by applying the 

restriction operator pointwisely

(31)

where the operator Π[L,U](x) = min(max(x, L),U).

III. Results

A. Simulation Results

Simulations were performed at tube voltage of 65 kVp. The mean glandular dose was 

estimated to be approximately 2 mGy for a 10 cm breast with 40% density. A 10 cm PMMA 

phantom (Fig. 2) which contains both iodine and calcium of various concentrations (Table I) 

was used. To evaluate the robustness of TICMR, Object 6 had the high contrast with the 

beam-hardening artifact on the total image, and Object 3 was invisible on the total image.

Here the analytic detector response function [27] was utilized to simulate the non-ideal 

detector response. With properly selected energy intervals, the raw spectral data with non-

ideal detector response were corrected to the spectral data for ideal detector response so that 

the proposed TICMR method can be applied directly based on the model (4) with ideal 

detector response.

First, 66 measurements were generated linearly with respect to the energy with 1keV gap, 

i.e.,

(32)

where AZB was computed by the parallel computation of X-ray transform [37] with 300 

views and 768 detectors per view and with total exposure of 600mR for each energy scan. 

Here the R matrix is defined as

(33)
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where the detector response function D(E′, E) is calibrated using X-ray fluorescence [27], 

and then the Poisson noise was added to the measurements pointwisely, i.e.,

(34)

Finally, with a proper choice of energy intervals, the interval 10 ≤ Ẽ ≤ 65 was divided into 

five energy groups 10 ≤ E1 ≤ 32, 33 ≤ E2 ≤ 39, 40 ≤ E3 ≤ 47, 48 ≤ E4 ≤ 57, 58 ≤ E5 ≤ 65, and 

then corrected projection data and total projection data were as follows,

(35)

and

(36)

where , for 1 ≤ m ≤ 5, , for 1 ≤ m, k ≤ 5.

The effective material-attenuation matrix B was calibrated by (12) as follow:

The total image reconstructed with sinogram P̄ (36) by FBP and (13) are respectively shown 

in Fig. 3.

To compare with the proposed TICMR method (13) and (16) (namely ”TICMR”) and the 

TICMR method with the total image from FBP (namely ”TICMR_f”), we applied the FBP 

method to reconstruct material compositions from the material-specific projection data P̂ in 

(37), i.e.,

(37)

In addition, we compared with the TV method (17) that reconstructs material compositions 

directly from the projection data P in (35). No constraint was applied during any of these 

methods in the simulation study.

The reconstructed material composition images are shown in Fig. 4 with the zoom-in details 

in Fig. 5. While TICMR_f (Fig 4(c)) and TICMR (Fig 4(d)) had the similar image quality, 
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they provided significantly improved image quality from FBP (Fig 4(a)) and TV (Fig 4(b)). 

Note that the small objects of calcium can be clearly observed in the TICMR results, which 

suggests that the spatial resolution was well preserved.

Regarding the performance of TICMR with respect to the beam-hardening artifact on the 

total image (i.e., Fig. 3(a)), TICMR was not sensitive to the beam-hardening artifact, since 

the NLTV regularization in (16) is quite error-forgiving as the weights involve the averaging 

with Gaussian kernel (18).

Regarding the performance of TICMR with respect to the invisible object on the total image 

(i.e., Object 3 in Fig. 2), TICMR did not decrease the reconstruction quality (Fig. 5), 

although it did not increase the reconstruction quality either since no information was 

provided by the total image.

For quantitative evaluation, the CNR was defined by

(38)

where MG, MB are the mean intensity of target and back-ground respectively, and σG, σB are 

standard deviation of target and background respectively.

The CNR of iodine and calcium are plotted in Fig. 6, which clearly shows TICMR had the 

best CNR among all three methods. Here the significant improvement of CNR of TICMR 

and TV from FBP was due to the piecewise-constant representation of simulation phantom 

(i.e., the standard deviation was close to 0 in (38)). Comparing with experimental data, the 

CNR improvement was less due to the fact that the image in reality is not piecewise-

constant.

The mean material concentration is plotted in Fig. 7, which shows that all the methods 

provided the accurate material concentration.

In order to evaluate the spatial resolution of reconstructed material compositions, two 

material composition curves were drawn along the horizontal and central line passing 

through Object 11 as shown in Fig. 8, which suggest that the TICMR had the best spatial 

resolution.

To summarize, the TICMR result had not only the highest SNR, but also the best spatial 

resolution. This is enabled by high-SNR total image constrained material reconstruction 

through the NLTV regularization.

B. Experimental Results

Both the calibration phantom data and the postmortem breast tissue data were acquired with 

a spectral CT system based on a CZT photon-counting detector at a mean glandular dose of 

1.2 mGy. All X-ray photons interacting with the CZT detector were sorted into five user-

definable energy bins.
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For quantitative analysis, the calibration phantom (Fig. 9(a)) had two inner circles with the 

water at the top and the lipid at the bottom and its outer circle was filled with the protein. As 

a result, the material composition was one in the region-of-interest and zero otherwise. Here 

we applied two constraints in FBP material decomposition method and all iterative 

reconstruction methods: ZC = D where the sum of material compositions is equal to one in 

the region-of-interest and zero otherwise, and L ≤ Z ≤ U with L = 0 and U = 1. The B matrix 

was obtained using another slice in the calibration phantom data that was distinct from the 

slice as shown in Fig. 9(a).

The total image reconstructed with all projection data by (13) is shown in Fig. 9. The 

reconstructed material compositions are shown in Fig. 10 and Fig. 12 for calibration 

phantom and breast tissue respectively, which again show that TICMR had improved image 

quality from FBP and TV. Note that the protein composition in the postmortem breast tissue 

is much lower than water or lipid.

For calibration phantom, since the ground truth was known, the means in the ROI were 

summarized in Table II, and the spatial profile of two red lines in Fig. 10 is plotted in Fig. 

11, which demonstrates that TICMR had improved image quality from FBP and TV in 

comparison with the ground truth. In addition, the CNR was computed as shown in Table III. 

For breast tissue, only the CNR was computed as shown in Table IV, i.e., CNR(ROI2, ROI1) 

and CNR(ROI3, ROI1) for water and lipid respectively with ROI’s drawn in Fig. 12.

IV. Conclusion

TICMR is proposed for spectral CT with improved image quality, i.e., both CNR and spatial 

resolution. Such an improvement is enabled by the total image constraint via the NLTV 

regularization. That is, a high-SNR total image is first reconstructed with energy-integrated 

projection data of relatively high SNR, and then built into the NLTV weights to regularize 

the material reconstruction with energy-resolved projection data of relatively low SNR via 

the NLTV regularization.
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Fig. 1. 
Incident spectrum at 65KeV and material-attenuation functions.
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Fig. 2. 
The simulation phantom.
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Fig. 3. 
Total image: (a) FBP; (b) TV.

Liu et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Simulation results. (a) FBP; (b) TV; (c) TICMR_f; (d) TICMR. (1) adipose; (2) iodine; (3) 

calcium.
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Fig. 5. 
Zoom-in details. (a) FBP; (b) TV; (c) TICMR_f; (d) TICMR.
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Fig. 6. 
Left: CNR of iodine (object 2–5); right: CNR of calcium (object 6–9).
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Fig. 7. 
Left: material concentration of iodine (object 2–5); right: material concentration of calcium 

(object 6–9).
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Fig. 8. 
Material composition curve along the horizontal and central line passing through Object 11. 

Left: iodine; right: calcium.
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Fig. 9. 
Total image for experimental data: (a) calibration phantom; (b) breast tissue.
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Fig. 10. 
Experimental results for calibration phantom. (a) FBP; (b) TV; (c) TICMR. (1) protein; (2) 

water; (3) lipid.
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Fig. 11. 
Material composition profile along the line L1 and L2 in Fig. 10. Left: water(L1); right: 

lipid(L2).
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Fig. 12. 
Experimental results for breast tissue. (a) FBP; (b) TV; (c) TICMR. (1) protein; (2) water; 

(3) lipid.
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TABLE I

The Concentration and Size of Phantom Objects

Object Material Radius Concentration

1 adipose 48mm

2 iodine 8mm 16mg/ml

3 iodine 8mm 7.38mg/ml

10 iodine 8mm 8mg/ml

4 iodine 8mm 4mg/ml

5,11 iodine 8mm 2mg/ml

6 calcium 8mm 600mg/ml

7,10 calcium 8mm 200mg/ml

8 calcium 8mm 100mg/ml

9,11 calcium 8mm 50mg/ml

12 calcium 4mm 400mg/ml

13 calcium 2mm 400mg/ml

14 calcium 0.6mm 400mg/ml
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TABLE II

The Mean Results for Calibration Phantom

Material Ground Truth FBP TV TICMR

protein 1.000 0.982 0.981 0.996

water 1.000 0.984 1.017 1.011

lipid 1.000 1.039 1.034 1.030
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TABLE III

The CNR Results for Calibration Phantom

Material FBP TV TICMR

water 16.26 31.42 45.48

lipid 1.26 1.51 2.24
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TABLE IV

The CNR Results for Breast Tissue

Material FBP TV TICMR

water 11.67 20.16 23.78

lipid 12.33 16.34 18.89
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