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Abstract

Ribosome queuing is a fundamental phenomenon suggested to be related to topics such as

genome evolution, synthetic biology, gene expression regulation, intracellular biophysics,

and more. However, this phenomenon hasn’t been quantified yet at a genomic level. Never-

theless, methodologies for studying translation (e.g. ribosome footprints) are usually cali-

brated to capture only single ribosome protected footprints (mRPFs) and thus limited in

their ability to detect ribosome queuing. On the other hand, most of the models in the field

assume and analyze a certain level of queuing. Here we present an experimental-computa-

tional approach for studying ribosome queuing based on sequencing of RNA footprints

extracted from pairs of ribosomes (dRPFs) using a modified ribosome profiling protocol. We

combine our approach with traditional ribosome profiling to generate a detailed profile of

ribosome traffic. The data are analyzed using computational models of translation dynam-

ics. The approach was implemented on the Saccharomyces cerevisiae transcriptome. Our

data shows that ribosome queuing is more frequent than previously thought: the measured

ratio of ribosomes within dRPFs to mRPFs is 0.2–0.35, suggesting that at least one to five

translating ribosomes is in a traffic jam; these queued ribosomes cannot be captured by tra-

ditional methods. We found that specific regions are enriched with queued ribosomes, such

as the 5’-end of ORFs, and regions upstream to mRPF peaks, among others. While queuing

is related to higher density of ribosomes on the transcript (characteristic of highly translated

genes), we report cases where traffic jams are relatively more severe in lowly expressed

genes and possibly even selected for. In addition, our analysis demonstrates that higher

adaptation of the coding region to the intracellular tRNA levels is associated with lower

queuing levels. Our analysis also suggests that the Saccharomyces cerevisiae transcrip-

tome undergoes selection for eliminating traffic jams. Thus, our proposed approach is an

essential tool for high resolution analysis of ribosome traffic during mRNA translation and

understanding its evolution.
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Author summary

During translation, multiple ribosomes may translate the same mRNA. The density of

ribosomal traffic across the transcript poses several open questions, such as how often a

ribosome’s path is blocked by a second ribosome, do queues of multiple ribosomes typi-

cally form on mRNAs and what is their effect on the overall translation rate of an mRNA.

However, this phenomenon hasn’t been quantified yet at a genomic level. Nevertheless,

methodologies for monitoring translation are limited in their ability to detect ribosome

queuing. On the other hand, most of the models in the field assume and analyze a certain

level of queuing. Here we present an experimental-computational approach for studying

ribosome queuing based on sequencing of RNA footprints extracted from pairs of adja-

cent translating ribosomes, and a computational model of translation dynamics. Our data

shows that ribosome queuing in Saccharomyces cerevisiae is more frequent than previously

thought, suggesting that at least one to five translating ribosomes is in a traffic jam; these

queued ribosomes cannot be captured by traditional methods. Our analysis also suggests

that the S. cerevisiae transcriptome undergoes selection for eliminating traffic jams, while

specific regions and genes may possibly be under selection for increased queuing.

Introduction

Understanding the dynamics of protein translation is a fundamental question in biology, and

has been extensively studied using experimental and computational methods in recent years

[1,2]. During translation, multiple ribosomes may translate the same mRNA. The density of

ribosomal traffic across the transcript poses several open questions, such as how often a ribo-

some’s path is blocked by a second ribosome, do queues of multiple ribosomes typically form

on mRNAs and what is their effect on the overall translation rate of an mRNA.

Computational and mathematical modeling of translation dynamics was first proposed in

the 1960s [3–8]. A fundamental aspect of these models is ribosome queuing. Specifically, the

totally asymmetric simple exclusion process (TASEP) and variants thereof have been widely

used to study ribosome traffic [2,9]. This model assumes that the movement of the ribosomes

is only in one direction, from the 50 end to the 30 end, a ribosome can only hop to the next posi-

tion on the transcript at some known rate, and only if it is free from other ribosomes. Thus, it

enables a direct study of ribosome queuing. In an early study, Zhang et al. studied the effect of

clusters of slowly translated codons on the forming of queues across a synthetic transcript, as

well as a set of endogenous mRNAs [10]. Mitarai et al. approximated codon translation rate

using 3 categories and showed that ribosome collisions in the E. coli lacZ operon are more fre-

quent than previously thought, where about 5% of ribosome translation time is wasted because

of collisions along the mRNA [11]. In a later study, Mitarai and Pedersen compared the ribo-

some traffic on 87 wild-type sequences and sequences where the synonymous codons were

swapped randomly, and showed that wild-type genes tend to reduce ribosome collisions [12].

Chu et al. performed two studies, accompanied by experiments expressing CFLuc, that ana-

lyzed ribosome traffic under different codon sequence variants, and demonstrated the effect of

codon usage and queuing of ribosomes in the 5’-end region on translation initiation [13,14].

In recent years, dozens of additional studies based on variants of the TASEP model have been

employed to answer fundamental questions in molecular evolution, functional genomics, syn-

thetic biology, and more [2]. However, performing an accurate transcriptome-wide assessment

of ribosome queuing remains a challenge due to the need for careful calibration of the model

[2].
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A number of studies in recent years have suggested that translation is rate-limited by the

initiation rate of a gene [15–17]. In this regime, traffic jams are less likely to form due to the

low density of ribosomes on the mRNA, and are expected to have a weaker relation with

codon usage [18]. However, an ongoing debate remains over the relative contribution of dif-

ferent factors to the control over translation rate, which is also related to the rate limiting

nature of initiation vs. elongation [14,19–22].

In recent years, ribosome profiling (Ribo-seq) has been the state-of-the-art technology for

monitoring the transcriptome-wide distribution of translating ribosomes at high-resolution

[23]. Ribosome profiling is based on deep-sequencing of ribosome-protected mRNA frag-

ments (RPFs) from living cells, such that the sequence of each fragment indicates the position

(footprint) of a translating ribosome on the transcript. Ribo-seq has been used to detect posi-

tions with significantly enriched reads. Strong peaks in the reads density have been interpreted

as ribosome pausing sites and were linked to various possible causes [24–32]. If indeed ribo-

some pausing is common, we expect queues to form around such pauses.

It should be noted that typically, Ribo-seq protocols filter fragments that are longer than a

single ribosome (approximately 30bp), with few exceptions [33]. Thus, adjacent ribosomes

and regions where pairs (or more) of ribosomes are frequent, are expected to be under-repre-

sented in most Ribo-seq datasets. This may limit the analysis of ribosome stalling and queuing

if indeed a significant portion of ribosomes are paired. However, there are currently no com-

prehensive estimates of the extent of ribosome queuing. In this study, we provide for the first

time, quantitative estimates for the portion of pairs of ribosomes and analyze the dynamics of

ribosome queuing using experimental and simulated data.

Results

Estimating the fraction of paired ribosome footprints

The probability that two ribosomes are adjacent to one another is affected by a long list of vari-

ables such as the number of ribosomes in the cell, the length and number of translated

mRNAs, the initiation rates, the distribution of elongation rates along the mRNA, etc. Thus, it

is not trivial to estimate this value without a direct experiment.

To estimate the quantity of ribosomes that are adjacent to one another in the transcrip-

tome–which is related to the extent of queuing / traffic jams on transcripts–the first steps of

the ribosome profiling protocol in yeast were performed as previously described [23,34]

(details in the Materials and Methods section). Ribosome protected footprints (RPFs) of vari-

ous sizes were generated, followed by sucrose gradient fractionation. The resulting profiles

were analyzed, along with previously reported footprint gradients [23,33,35], by employing

Gaussian mixture to model the different components within the profile (Fig 1, details in the

Materials and Methods section). Previous studies focused mostly on isolating the RPF fraction

with footprints protected by a single ribosome (referred to here as mono-RPFs), with some

exceptions [33]. Here, we estimated the size of two fractions: mono-RPFs (mRPFs) and di-

RPFs (dRPFs), the latter containing footprints protected by two ribosomes (a disome). The

area of each fraction in the profile is proportional to the number of ribosomes in each fraction.

Thus, the ratio between the dRPFs fraction and the mRPFs fraction can provide an estimation

for the ratio between the number of ribosomes that are directly adjacent to one another and

the number of isolated ribosomes on the transcript. The ratio obtained ranged from 0.196 to

0.352 in the four datasets, suggesting that at least 1 in 6 ribosomes is adjacent to another and

form a pair. When considering the existence of larger clusters of ribosomes, however, in

smaller quantities, the probability of observing a pair of adjacent ribosomes is expected to be

Ribosome queuing in budding yeast
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Fig 1. Sucrose gradient fractions. (A) Quantification of ribosome protected footprints (RPFs) according to size. The plot shows the estimated components underlying

the observed distribution, by means of Gaussian mixture. Each component reflects a set of footprints with a typical size, originating from a single ribosome (mono-RPF,

mRPF), a pair of ribosomes (di-RPF, dRPF), etc. The ratio of dRPFs to mRPFs is reported in the caption. (B) Same for Ingolia 2009 data, profile reproduced from [23].

(C) Same for Guydosh 2014 data, profile reproduced from [33] (Fig 1 in the original paper). (D) Same for Shirokikh 2017 data, profile reproduced from [35] (Figure 5 in

the original paper). See also S1 Fig.

https://doi.org/10.1371/journal.pcbi.1005951.g001
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even higher, at least 1 in 5 as justified by the computational model in the next sections. We

obtained similar results using different methods (S1 Fig).

The variance between different studies may reflect the condition in which the experiment

was performed, such as the type and amount of RNase used (which may cut dRPFs at some

rate and relocate them to the mRPF fraction), but possibly also additional conditions that affect

translational efficiency in cells. The high fraction of dRPFs detected in all the experiments,

however, suggests that ribosome queuing is more prominent and widespread than typically

assumed, and that the distribution and determinants of traffic jams in the transcriptome are

important fundamental questions. This may also suggest that due to the large extent of queu-

ing, previous results that attempted to answer these questions by sequencing only mRPFs were

based on limited data.

Measurement of queues

In order to study the locations where queues form, we sequenced both fractions of mRPFs and

dRPFs (details in the Materials and Methods section). Next, the distribution of mRPFs and

dRPFs in the transcriptome was analyzed using our data and Guydosh and Green’s dataset

[33]. RPKM (reads per kilobase per million) values of genes according to both RPF types

showed a strong correlation between the two (r = 0.88, p<10−307, n = 6,664; Spearman’s rho

and its asymptotic p-value; Fig 2A), however still lower than typically observed between repli-

cates of the mRPF fraction [36]. We expect differences between the distribution of mRPFs and

dRPFs to reflect the location of ribosomal traffic jams.

Meta-gene profiles of normalized footprint counts (NFC, i.e. read counts divided by the

transcript’s mean read count) were calculated for mRPFs and dRPFs (Fig 2, S2 Fig and S3 Fig

for the separate datasets). When examining the 5’-end of genes (Fig 2B), an enrichment of

dRPFs compared to mRPFs was observed. In addition, it can be seen that the profile of dRPFs

decreases into the gene. Genes were divided into two sets of highly and lowly expressed (top /

bottom 50% according to their protein abundance). In order to control for the number of

reads in the sets, the highly expressed genes were downsampled to have the same total number

of reads as the lowly expressed genes. We found that both mRPF and dRPF profiles had higher

normalized counts in the set of highly expressed genes compared with lowly expressed genes

(p = 3x10-13 / 7x10-11, respectively, rank-sum p-value). Both mRPFs and dRPFs had a median

normalized count significantly higher than the background (1.24–1.35-fold for mRPFs and

1.58–1.61-fold for dRPFs, p<0.01, empirical p-value based on random sampling of positions

within the same set of genes). This may imply that ribosome queuing is frequent in the 5’-end

region, and specifically in highly expressed genes.

Peak calling was performed in order to detect regions with significant ribosome pausing,

and study its association with the traffic around the peak. Peaks were defined as positions that

are at least 5 standard deviations above the ORF’s mean (ignoring positions empty of reads).

In the vicinity of detected peaks in the mRPF profiles a dRPF peak can be observed, distanced

9 codons upstream (Fig 2C). These di-footprints mark the position of two ribosomes–a ribo-

some positioned 9 codons upstream to the mRPF peak, and a second one approximately

where the mRPF was detected. Unlike in the 5’-end region, mRPF peaks were more extreme in

lowly expressed genes (p = 9x10-52, 3.44-fold above background compared with 1.92 in top

genes). Similarly, the associated dRPF peaks were mostly related to lowly expressed genes

(p = 3x10-8, 2.05-fold above background compared with 1.28). Correspondingly, in the vicinity

of peaks detected in dRPF profies an mRPF peak was detected 9 codons downstream (Fig 2D).

Furthermore, the dRPF peaks were more extreme in lowly expressed genes (p = 2x10-17,

6.66-fold above background compared with 4.49), and the associated mRPF reads were
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enriched in lowly expressed genes (p = 0.005, 1.61-fold above background compared with

1.09). One hypothesis that may explain this result is that when traffic jams form in lowly

expressed genes, they tend to be more severe. Traffic jams are expected to form in regions with

high ribosomal density–for example, in highly expressed genes with high initiation and trans-

lation rates. On the other hands, highly expressed genes are under selective pressure to

increase translation efficiency and to reduce traffic jams, for example by developing a ramp in

their 5’-end [37,38]. Due to this, lowly expressed genes may still contribute significantly to the

observed queues despite being less dense.

Whenever ribosomes form a queue, the traditional ribosome profiling protocol (which

sequences mRPFs) is expected to fail to fully capture the present ribosomal density. We tried

to estimate the percentage of queued positions and locations of such queues by detecting miss-

ing mRPFs in the profiles. The following rule was employed: a position had a significant

Fig 2. Ribosome profiling. (A) mRPFs vs. dRPFs, RPKM values for each gene. Spearman’s rho and an asymptotic p-value are reported in the caption. (B) Top: Meta-gene

analysis around the beginning of the ORF for mRPFs and dRPFs, plotted for highly and lowly expressed genes. Read counts were normalized per gene according to gene

average (NFC), and the average across genes per position is shown. Bottom: The distribution for all genes of the mean NFC across the window in the top panel. P-values

according to rank-sum test compare highly and lowly expressed genes. The background bands show the resulting medians when sampling random positions across the

same genes (95% of the sampled medians fall within this range). Background ratio (BR) of the observed median vs. null is reported below (�� denotes empirical p-

value< 0.01). (C) Same, around peaks detected in mRPF profiles. (D) Same, around peaks detected in dRPF profiles. See also S2 Fig, S3 Fig.

https://doi.org/10.1371/journal.pcbi.1005951.g002
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number of mRPFs missing if the number of mRPFs in that position was in the bottom 10% of

that gene, while the number of dRPFs in that position was in the top 10% of that gene. For

each gene with at least 10% dRPF reads coverage, the percentage of positions with missing

mRPFs was calculated according to this rule (median: 9%). In addition, the calculation was

repeated for 3 regions of the gene: the first 100 codons, the last 100 codons and the rest of the

gene (Fig 3A). The percentage of positions with missing mRPFs was significantly higher in the

first / last regions (p = 4x10-5 / 0.03, respectively; rank-sum p-value), compared with the mid-

region, suggesting that these regions tend to contain more traffic jams.

Finally, the correlation between the percentage of positions with missing mRPFs in a gene

and various features related to its expression and translational efficiency was computed, while

controlling for dependencies between the features using partial Spearman correlations. Signifi-

cant negative correlations were observed with the gene’s adaptation of the coding sequence to

the tRNA pool as measured via tAI [39] (r = -0.21, p = 1.4x10-6), and its protein abundance

(PA, r = -0.39, p = 3x10-55). Significant positive correlations were observed with the initiation

rate of the gene (r = 0.10, p = 10−4), the PA per RNA copy (r = 0.33, p = 8x10-39), and ORF

length (r = 0.15, p = 2x10-9; Fig 3B). Initiation rates for the aforementioned test were inferred

using a simulation of ribosome traffic, as discussed in the next section and the Materials and

Methods, with ribosomal densities and RNA copies estimated from Ribo-seq and RNA-seq

data. Similar results were observed using different thresholds for detection of missing mRPF

and appear in S4 Fig. The test was repeated for the dRPF-to-mRPF ratio with similar results

(Fig 3B). We further discuss these results below.

Translation simulation

Simulating ribosome movement enables a study of traffic on the mRNA in greater detail. A

simulation of translation in 5,450 yeast genes was performed based on the totally asymmetric

simple exclusion process (TASEP) model, with parameters calibrated using Arava et al.’s

experimental measurements of the number of ribosomes on each transcript as well as RNA

copy numbers [40] (details in the Material and Methods section, simulation results reported in

S1 Table). Translation initiation rates of genes were fitted to achieve the measured ribosomal

density. In addition, RNA and ribosome numbers were scaled globally to achieve the total

quantities of transcripts and translating ribosomes that are generally accepted in the literature

(details in the Materials and Methods section). The resulting initiation rates (median: 0.09s-1,

with rates ranging from 0.019s-1 in the 10th percentile to 0.29s-1 in the 90th percentile) were in

good agreement with previous results (r = 0.70, p<10−307, n = 5,162; asymptotic p-value for

Spearman’s rho) [41]. The correlation between the resulting translation rates and PA per RNA

copy was moderate (r = 0.32, p = 2.2x10-16, n = 5,132), and similar to their correlation with the

ratio of Ribo-seq RPKM to RNA-seq RPKM (r = 0.37, p = 1.3x10-170, n = 5,384). To test the

simulated profiles at the codon level, density profiles of the 1,000 densest genes in a high-reso-

lution ribosome profiling dataset were utilized [42]. A median correlation of 0.10 was observed

between simulated and measured ribosome density profiles of genes, smoothed using a

10-codon wide sliding window. This value is comparable to the correlation between two

mRPF profiles from different experiments (r = 0.16 for Brar et al. vs. Guydosh et al.; this is sim-

ilar to previous reports [36]).

We generated a simulated distribution of the fractions of RPFs in the simulation (ribosomes

were taken to be 10 codons long), counting the number of isolated, pairs, triplets of ribosomes

etc. throughout the transcriptome (S4 Fig). First, only directly adjacent ribosomes were con-

sidered, with no codons between them, resulting in a dRPF-to-mRPF ratio of 0.11, which is

lower than reported in the section above. However, when considering simulated RPFs
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comprising of ribosomes up to 1–4 codons apart on the footprint, the observed ratio increased

to 0.17–0.32 –results that are in good agreement with the ones above (Fig 3C). Thus, it is possi-

ble that some of the RPFs that are typically collected in a ribosome profiling experiment con-

tain ribosomes with 1–4 free codons between them. Other parameters that may affect this ratio

are the growth conditions, and the existence and frequency of ribosome pausing, which was

not simulated here [25]. Similarly, the simulation was utilized to estimate the size of the frac-

tion of tri-RPFs (containing 3 ribosomes), which was 3- to 5-times smaller than the dRPF frac-

tion, suggesting that dRPFs represent the majority of queued ribosomes (Fig 3C, S4 Fig).

Moreover, the model enables to extrapolate and estimate the fraction of total ribosomes that

are not isolated since they are adjacent an additional ribosome, and therefore are unlikely to

be detected via mRPF sequencing. We estimate that this fraction ranges from 14% (0 codon

separation between neighboring ribosomes) to 34% (up to 4 codon separation) (Fig 3C).

Simulated queue properties

We analyzed the distribution across the transcriptome of queued ribosomes and their waiting

times in the simulation, that is, ribosomes that cannot complete an elongation cycle due to the

next codon being covered by another ribosome. The probability of observing a queue in a gene

was 0.21 (median over genes, with probabilities ranging from 0.024 in the 10th percentile to

0.58 in the 90th percentile). Typically, 3.67% of the translating ribosomes on an mRNA were

delayed due to traffic jams (median over genes, with the 10th and 90th percentiles being 0.9%

and 14.2%), and 5.9% of all translating ribosomes in the cell were delayed at any given time.

This fraction is related to the number of observed dRPFs in the previous section, however it is

expected to be smaller than the latter since some of the ribosomes that are within a footprint’s

range from one another may not interfere with another ribosome’s progress at all times (only

at time intervals when the two are directly adjacent and the downstream ribosome is elongat-

ing more slowly than the upstream ribosome). The total delay time of a ribosome during the

synthesis of a complete gene was 3.5s (median over genes, with delay times ranging from 1.07s

in the 10th percentile to 11.65s in the 90th percentile).

Next, the meta-gene analyses in the above section were repeated for simulated profiles. In

windows surrounding observed Ribo-seq peaks (the ones detected in Fig 2), a significant

enrichment was observed in the queued fraction of (simulated) ribosomes (QFR) (1.09-fold

compared with background around mRPF and dRPF peaks, Fig 3D). Similarly, peaks were

detected in the profiles of the QFR values per position, with significant enrichment of mRPF

and dRPF reads observed in their vicinity (Fig 3D). Thus, the simulated traffic has a significant

relation with the measured RPFs. Differences between the experimental data and simulation

can be partially explained by the high level of inter-experiment variance, and by the fact that

our model does not include long translational pauses, which may affect a significant portion of

ribosomal traffic [25].

Fig 3. Queue analyses. (A) Fraction of positions with detected missing mRPFs in genes, divded into 3 regions: first 100 codons, last 100 codons and the

rest of the gene. mRPF profiles were downsampled to have the same number of reads as the dRPF profiles. Rank-sum p-values reported. (B) Partial

Spearman correlations between the dRPF-to-mRPF ratio per gene, and the fraction of missing mRPFs (across the entire ORF) vs. various features

(initiation rate, tRNA adaptation index, protein abundance–PA, PA per RNA copy and ORF length), while controlling for their dependencies. mRPF

profiles were downsampled to have the same number of reads as the dRPF profiles. n indicates the number of genes, and the threshold for missing mRPF

detection is indicated in percentage. See also S4 Fig. (C) The ratio between simulated dRPFs and mRPFs, as well as the estimated fraction of missing

ribosomes when sequencing mRPFs, for different values of the maximal allowed space between ribosomes on a footprint (see also S4 Fig). (D) Top:

Enriched simulated queued ribosomes in windows surrounding measured mRPF and dRPF peaks (empirical p-value< 0.01). Y-axis shows the average

QFR (normalized similarly to NFC). Bottom: Enriched mRPFs and dRPFs in windows surrounding peaks in simulated profiled of the fraction of queued

ribosomes per position (empirical p-value< 0.01). (E) Partial Spearman correlations between ribosome delay per codon of a gene, and various features

while controling for their dependencies. (F) Distribution of the queued fraction of ribosomes (QFR) in 3 regions of the gene. Sign-rank p-value between

box-plots.

https://doi.org/10.1371/journal.pcbi.1005951.g003
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We tested the relation between ribosome delay times per codon and various sequence/

expression-related features of the gene, including the inferred initiation rate, tRNA Adaptaion

Index (tAI) score, protein abundance (PA), PA per RNA copy, and ORF length. Partial Spear-

man correlations were computed between ribosome delay times per codon and each feature

given the other 4 features (Fig 3E). A strong positive correlation with initiation rates (r = 0.69;

p<10−307; n = 5,080; asymptotic p-value) and a strong negative correlation with tAI scores (r =

-0.50, p<10−307, n = 5,080) were observed, implying that genes that contain codons recognized

by less abundant tRNA species tend to exhibit ribosome congestion and traffic jams across

their sequence. These results are similar to the ones reported above based on Ribo-seq data

(Fig 3B). Furthermore, weak yet significant correlations were observed with PA (r = -0.13;

p = 1.4x10-21; n = 5080), PA/RNA (r = 0.13; p = 3.2x10-32; n = 5,080) and gene length (r =

-0.07; p = 10−7; n = 5,080). Next, QFR was computed in 3 different regions of the ORF–the

first 100 codons (median: 2.8%), the last 100 codons (2.25%) and the rest of the sequence

(2.48%)–for 4,204 genes with appropriate length (Fig 3F). On average, the percentage of

queued ribosomes in the first region was 1.9/2.1-fold higher in the first region compared with

the middle/last region (respectively) in that gene; this is with agreement with the 5’-end

enrichment observed in Ribo-seq data.

The simulation was repeated for 100 random genomes where the order of synonymous

codons within each gene was permuted, as well as for 100 random genomes where the global

rates of codons were shuffled (without altering the gene sequence, details in the Material and

Methods section), and employed them to calculate two empirical p-values: p1 controlling for

codon order, and p2 controlling for the general decoding rates of the different codons. We

found that traffic jams were less prevalent in the real genome according to the various proper-

ties discussed above, including: ribosome delay time (p1<0.01, p2<0.01), queue probability

(p1<0.01, p2 = 0.01) and QFR (p1<0.01, p2<0.01), as well as the ratio of simulated dRPF to

mRPF (p1<0.01, p2<0.01). Interestingly, the percentage of queued ribosomes in the first 100

codons was higher than in permuted sequences (p1<0.01), while in other regions of the gene it

was lower than in permutations (p1<0.01). This is in agreement with previous suggestions that

selection acts on codon order to decrease congestion downstream by delaying ribosomes when

entering the ORF [38].

P2 values were also utilized to test the simulation calibration. The simulation results were in

better agreement with experimental data for the selected set of codon decoding rates than for

random assignments of the same 61 rates. For example, the correlation between simulated and

measured footprint density profiles was significantly higher for the selected parameters

(p2<0.01), as was the correlation between simulated translation rates and PA/RNA (p2 = 0.01),

and the correlation between simulated translation rates and Ribo-seq/RNA-seq RPKM ratio

(p2 = 0.01).

Functional gene groups with extreme traffic conditions

We studied gene sets that exhibited extreme traffic conditions, either with respect to the rest of

the genes or with respect to randomized variants of these genes. The resulting z-scores from

comparing an observed property of a gene (e.g., its translation rate) with the distribution of

that property in variants with shuffled synonymous codons and the same ribosomal load on

the transcript can be regarded as an optimality score for the sequence (details in the Materials

and Methods section). The set of genes with the highest translation rate compared to its

respective random set (top 5%) has a significant subset of common genes with the set of genes

with the lowest fraction of queued ribosomes compared to random (bottom 5%, p = 5x10-50,

hypergeometric p-value), and vice versa (p = 10−88, Fig 4A). This is expected, as genes with an
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Fig 4. Functional enrichment. (A) Sets of genes with extreme properties relative to randomizations of their synonymous codon order. Left: Intersection between the set

of genes with the highest QFR compared to random, and genes with the highest/lowest translation rate compared to random. Right: The same for the lowest QFR

compared to random. (B)-(C) Functional enrichment in different gene sets with extreme properties, according to their rank among genes, or according to their z-scores

vs. codon randomizations. Each of the stacked bars represents the enrichment p-value of the corresponding term (longer bars for smaller p-values) in the gene set

(denoted by color, see legend). The ramp score was defined by the ratio of QFR in the first 100 codons and the middle of the gene (excluding the first/last 100 codons).

The scale of the 0.05-threshold is shown below the legend.

https://doi.org/10.1371/journal.pcbi.1005951.g004
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optimized codon order (and reduced traffic jams) can reach a higher translation rate while

occupying the same average number of ribosomes (see for example [37]). In addition, a signifi-

cant negative correlation was observed between the z-scores of QFR and the inferred initiation

rates of genes reported in the sections above (r = -0.13, p = 6.2x10-21, n = 5,450). This result is

in agreement with the hypothesis that highly expressed genes are expected in many cases to be

under selective pressure to optimize their sequence as to minimize queuing (see for example

[37]).

Functional enrichment was performed for the above sets of genes (Fig 4B and 4C, sets

appear in S2 Table), detecting a number of biological processes and pathways over-repre-

sented in genes with a low QFR z-scores, such as cytoplasmic translation (p = 0.0305, hyper-

geometric p-value adjusted for FDR, light brown in Fig 4B), and glucose fermentation

(p = 0.004, light brown in Fig 4B). The largest subset of QFR-optimized genes was associated

with transmembrane transport (p = 0.0215, light brown in Fig 4B). Interestingly, the same

process was also enriched in genes with high z-scores of dense queuing in the first 100 codons

compared with the middle codons of the genes (p = 0.0216, light blue in Fig 4C). Many of

these genes are not highly expressed, as discussed below, and may be selected for these proper-

ties for reasons other than translational efficiency, such as co-translational folding [43].

Next, functional enrichment was performed for sets of highly and lowly ranked genes,

according to their properties (sets appear in S2 Table). A number of pathways were enriched

both in highly translated genes (top 5%, dark green in Fig 4C), as well as in rate-optimized

genes (top 5% of z-scores, light green in Fig 4C) according to translation rate, namely cyto-

plasmic ribosomal proteins (prank = 2.8x10-41, pzs = 0.0422 for the highly ranked and highly

optimized sets, respectively), glycolysis (prank = 7.1x10-3, pzs = 0.0285) and glucose fermenta-

tion (prank = 4.2x10-4, pzs = 0.0382). A number of pathways were enriched in highly translated

genes (dark green in Fig 4C), as well as in QFR-optimized genes (light brown in Fig 4B),

namely cytoplasmic translation (prank = 2.5x10-39, pzs = 0.0305), carbon metabolism (prank =

1.2x10-3, pzs = 5.2x10-3), cell wall organization (prank = 0.0385, pzs = 0.0424), glycolysis (pzs =

4.1x10-3) and glucose fermentation (pzs = 4.4x10-3). This is expected, as highly translating

genes also tend to have higher ribosomal densities and therefore their codon usage may be

under selection to decrease traffic jams.

Discussion

Ribosome traffic jam is a phenomenon that has been mentioned many times in the context of

genome evolution, biophysics of translation, translation modeling, biotechnology, and more.

To the best of our knowledge, this study provides the first comprehensive experimental quanti-

fication of traffic jams during translation. We estimated that at least 20% of the ribosomes in

the budding yeast S. cerevisiae are positioned close enough to another ribosome on the tran-

script to be collected as a single footprint in a ribosome profiling experiment. This is a direct

indication for the level of queuing in transcripts. Our estimates using sucrose gradient analyses

have been consistent across experiments, and with simulated ribosome traffic based on empiri-

cal parameters. The observed variance in results obtained from different datasets may have

been related to the experiment’s particular conditions and protocol. The current experimental

resolution limits the accuracy of analysis to footprints containing a single (mRPF) or a pair

(dRPF) of ribosomes, but future Ribo-seq experiments may enable the analysis of larger

footprints.

The results reported here suggest that queuing is not a negligible phenomenon. It appears

to have important effects on organism evolution and fitness. Since translation is the process

that consumes most of the energy in the cell [44], an increase of x percentage in ribosome
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density should be related to a similar increase in growth rate or fitness (as it is directly related

to the energy consumed by the cell). It is clear that even a change of 1% or even 0.1% (as was

estimated in Fig 3D) in the fitness of a micro-organism should have a very strong effect on its

evolution (for example, in the case of S. cerevisiae, an organism with a doubling time of 90min,

a mutant with 0.1% increase in fitness is expected to practically be 97% of the population after

8 months). Moreover, increase in traffic jams may have an even stronger impact when consid-

ering its potential effect on ribosome abortion, that can be related again to energy waste, as

well as to the production of nonfunctional and even toxic truncated proteins. Thus, from a bio-

logical/evolutionary point of view these values are potentially significant. We believe that fur-

ther comprehensive experimental and computational efforts should be spent in the future to

better understand and quantify the effect of local increase/decrease in ribosome densities/

queues on organism fitness.

Due to these implications, ribosome queuing should be considered when designing Ribo-seq

experiments (or using any other technology for studying translation), when analyzing mRNA

translation, or when modeling mRNA translation. Specifically, the results reported here support

the usage of the dozens of TASEP based models in studies that have been published in recent

years [2,9,45]. These results also support the idea that the genomes of various organisms are

under selection for generally minimizing queuing (see, for example, [10,38,41,46]).

Our approach has enabled the detection of transcript properties that are associated with

high/low levels of queuing; for example, we showed that higher initiation may tend to increase

queuing while higher adaptation to the tRNA pool may tend to decrease queuing. Thus, our

methodology can be used for developing better models of translation and for designing syn-

thetic genes with increased/decreased queuing levels.

In summary, we believe that the computational-experimental approach demonstrated here

will enable the analysis of translation at a higher resolution. It is essential to perform similar

studies in various organisms and in different conditions to understand the significance of

queuing across the tree of life. In the current study, we focused on translation under standard

growth medium for yeast. It is important to emphasize that it is generally believed that under

stress condition there are more traffic jams due to non-typical expression of tRNA species

[47]; thus, it is possible that the estimates reported here serve as a lower bound for the ribo-

some traffic levels observed in the environment and evolution of yeast and other micro-

organisms.

Materials and methods

Ribosome profiling

Ribosome profiling was performed as previously described [23,34], with minor modifications.

rRNA was depleted using Ribo-Zero by EpiCentre. The small RNA sequencing kit from New

England BioLabs [48] was utilized. Sucrose gradient fractionation was employed for filtering

reads containing one or two ribosomes. Additional filtering of DNA was performed with Blue-

Pippin to select the relevant length prior to sequencing.

Ribosome profiling analyses

A Gaussian mixture model was fitted to the sucrose gradient profiles of ribosome footprints.

To this end, an iterative expectation-maximization algorithm was used (implemented in

MATLAB’s fitgmdist function). As input to the algorithm, 500 equally spaced points were

sampled from the X-axis of the profile (which is related to particle size), with their representa-

tion in the input set (the number of times each point appears) proportional to their absorbance

value (the point of maximum absorbance arbitrarily set to appear 100 times in the input set).
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Model fitting was run multiple times using a varying number of components (4 to 8), using

random seeding of the algorithm, as well as seeding with components centered around peaks

in the profile (detected using MATLAB’s findpeaks), until reaching an optimal solution. The

quality of models was assessed based on the Bayesian information criterion and manual

inspection of candidate solutions with scores distanced at most 0.5% from the optimum.

Transcript sequences of Saccharomyces cerevisiae were obtained from Ensembl [49] (R64

release 87), and UTR lengths were based on previously reported major transcript isoforms

(mTIF, selecting the longest one available for each transcript, and using a default length of

500bp for missing UTRs) [50]. Adaptors (AGATCGGAAGAGCACACGTCT in our dataset)

were trimmed from reads using Cutadapt [51] (version 1.12). Bowtie [52] (version 1.2) was

employed to map them to the transcriptome. In the first phase, Ribo-seq reads that mapped to

rRNA and tRNA sequences were discarded using Bowtie parameters ‘-n 2—seedlen 21 -k 1—

norc’. In the second phase, the remaining Ribo-seq reads, as well as RNA-seq reads, were

mapped to the transcriptome with Bowtie parameters ‘-v 2 -a—strata—best—norc -m 200’.

When the 3’ adaptor contained polyA alignments were extended to their maximal length by

comparing the polyA with the aligned transcript until reaching the maximal allowed error (2

mismatches). Unique alignments were first assigned to the ribosome occupancy profiles. For

multiple alignments, the best alignments in terms of number of mismatches were kept. Then,

multiple aligned reads were distributed between locations according to the distribution of

unique ribosomal reads in the respective surrounding regions. To this end, a 100nt window

was used to compute the read count density RCDi of unique reads in vicinity of the M multiple

aligned positions in the transcriptome, and the fraction of a read assigned to each position was

RCDi=
PM

j¼1
RCDj. The location of the A-site (the site of the upstream ribosome in the case of

dRPFs) was estimated for each read length by performing meta-gene analysis of the distribu-

tion of 5’-end of reads upstream to the start codon of ORFs. If a global maximum was detected

in the range of 5-20bp upstream to the start codon (no larger peak observed down-/upstream

from this range), this distance was selected as the shift to the P-site for this read length, other-

wise these reads were discarded. For 2 datasets where peaks were hard to detect, a default shift

of 15bp was employed. Mapping statistics and accession numbers for all datasets used appear

in S3 Table and S5 Fig. An aggregated dataset of our experimental data and Guydosh et al.’s

was analyzed in Figs 2 and 3, and each dataset was analyzed independently in S2 Fig and S3

Fig. Protein abundance data for dividing genes into highly / lowly expressed sets was obtained

from PaxDB (GPM_2012_09) [53]. Ribo-seq reads were analyzed in Python 3.5 using custom

scripts and Biopython 1.6.8, SciPy 0.19.0, and NumPy 1.12.1.

Translation simulation

Translation was modelled stochastically using a totally asymmetric simple exclusion process

(TASEP) model, as performed in previous studies [54–56]. An mRNA with N codons is mod-

eled as a lattice of N sites. At any time t, each site can be occupied by a single ribosome. Each

ribosome translates a single site, as well as covers L sites in total, so that other ribosomes are

excluded from these sites (cannot occupy or translate them).

The model dynamics consist of 3 possible events: (1) A free ribosome will attach to site i = 1

with rate λ, provided that the first L/2 codons on the mRNA are empty; (2) An attached ribo-

some located at site i will move to the next site i + 1 with rate λi, provided codon i + L/2 is not

covered by another ribosome (otherwise we refer to this ribosome as “queued” or “delayed”);

(3) In the case of i = N the ribosome movement is in fact a termination step. It is assumed that

the time between initiation attempts is distributed exponentially with rate λ. In addition, it is

assumed that the time between jump attempts from site i to i + 1 is exponentially distributed
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with translation rate λi, which is inversely proportional to the mean translation time ti of the

codon. It follows, that the time between any consecutive events is exponentially distributed

(the minimum of exponentially distributed random variables) with the rate μ, given by:

mðfnig
N
i¼1
Þ ¼ lþ

PN
i¼1

nili, where ni 2 {0,1} denotes the translation state of site i (equal to 1

while being translated, and 0 otherwise). The probability that a specific event was an initiation

attempt is given by λ/μ({ni}), while the probability that a specific event was a jump attempt (or

termination event) from site i to site i + 1 is given by niλi/μ({ni}).
In each simulation step, an event and the time that passed between events are sampled

according to the above distributions. Next, state variables are updated according to the rules

for each event. A pseudo-code of the simulation is given in S1 Text. In order to bring the sys-

tem to a steady state, the simulation was initiated with an mRNA empty of ribosomes, followed

by simulation steps until reaching 100 terminations. The system was then simulated for addi-

tional 10,000 terminations while keeping track of various properties of the system (details in

the Monitored features section below). For example, the steady state rate of protein production

was determined by dividing the number of termination events by the total time that has

passed. For this number of simulation steps, the difference between two simulation runs in the

translation rate for a gene was small, typically 0.6% (median, ranging from 0.1% in the 10th

percentile of differences between genes to 2% in the 90th percentile). The simulation was

implemented and analyzed in MATLAB R2016b.

Monitored features

During simulation, steady state distributions were generated for a number of variables related

to the translation process. The state variables {ni} were integrated over the simulation time,

and divided by total simulation time to get a vector of ribosomal densities for each site on the

transcript (the fraction of time a site was occupied by a ribosome). The sum of which is equal

to the mean number of ribosomes on the transcript in steady state. Similarly, density profiles

were generated for simulated footprints of any feasible size k (the number of ribosomes in the

footprint) by assigning, at each simulation step, every ribosome to a footprint set according to

its distance from neighboring ribosomes. If the distance between two ribosomes was smaller

than the maximal allowed spacing, the pair was assigned to the same footprint. After comple-

tion of assignments, state variables fmk
i g were set to 1 (translated) / 0 (otherwise) according to

the position of the upstream ribosome in each footprint of size k. The simulated footprint den-

sity profiles were obtained by integrating fmk
i g over time. Finally, queuing and delay of ribo-

somes were monitored during the simulation. First, a state variable was defined per site {di},
which was set to 1 once a ribosome in site i failed at a jump event due to the next codon being

covered by another ribosome, and was set back to 0 once the ribosome successfully jumped.

The density of queued ribosomes was obtained by integration similarly to above; the sum of

which gives the average number of queued ribosomes on the transcript (or the queued fraction

of ribosomes, QFR, when normalized by the number of ribosomes in the gene/region). Sec-

ond, the total time that each ribosome spent translating the RNA, as well as the total time

spent in queued state, were averaged over the simulated terminations to obtain the average

translation and delay times. Finally, a state variable q was defined for the transcript, which was

set to 1 as long as any ribosome was delayed across the transcript, and utilized it to obtain the

probability for a queue.

In order to keep track of the quantities of ribosomes / RPFs in the cell, the RNA copy num-

bers measured by Arava et al. [40] were employed, while taking into account the estimated

occupied (actively translated) RNA copies and the simulated ribosomal / RPF densities

described above. For the purpose of computing the correlation between the simulated profiles
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and Ribo-seq read count profiles (as reported in S5 Fig), reads were sampled from this simu-

lated RPF distribution until reaching an equal number of reads to those in the Ribo-seq

experiment.

Simulation calibration

Codon translation times were obtained from [57], where they were fitted using a whole-cell

translation simulation model with finite cellular resources and Ribo-seq data (S4 Table). Initi-

ation rates were selected to optimize the fit of the number of ribosomes on each transcript in

steady state to the experimental data of Arava et al. [40]. In this study, the authors measured a

transcriptome-wide profile of ribosome association with mRNAs, including the number of

ribosomes per-transcript (a total of 51,819 ribosomes on 5,700 transcripts, S3 Table in the

original paper), their RNA copy numbers (a total of 12,534 molecules) and an estimation of

the fraction of actively translated RNA copies of each type. As estimations for the total number

of ribosomes (187,000 ± 56,000, of which 70–85% are engaged in active translation) and RNAs

(ranging from 12,500 to 60,000) in a yeast cell vary in the literature [40,58,59], we considered 3

major scenarios: (1) A “balanced” scenario, taking the number of RNAs to be in the mid-range

of the above estimates (26,000 [60]), as well as taking the number of ribosomes to be in the

mid-range (187,000, of which 85% actively translating); (2) A “dense” scenario, taking the

number of RNAs to be in the lower range (12,500) and the number of ribosomes to be in the

upper range (243,000, of which 85% actively translating); (3) A “sparse” scenario, taking the

number of RNAs to be in the upper range (60,000) and the number of ribosomes to be in the

lower range (131,000, of which 70% actively translating). In the first scenario, all but 194 genes

converged to feasible initiation rates (that successfully induced the number of ribosomes in

steady state as reported by Arava et al., after scaling), and the median initiation rate was identi-

cal to a previous study (0.09s-1 [41]). In the second and third scenarios 2,341 and 4 genes failed,

respectively; the median initiation rate was 0.13s-1 and 0.02s-1; and the fit of the model to

experimental data was generally less accurate (S5B Fig). The model was tested with varying

termination times ranging from 1-fold to 500-fold the typical translation time of the fastest

codon, and did not find significant improvement for longer termination times and therefore

set it to be as fast as the fastest codon (S5C Fig). Ribosome size was set to be 10 codons, based

on the typical footprint length of mRPFs. Results for various choices of ribosome size appear

in S5D Fig. It can be seen that results do not change considerably in the range of 9–15 codons,

with marginally better fitting with experimental data in the range of 10–12 codons. Finally, the

model was tested with different footprint spacing parameters (allowing up to 0–4 codons

between ribosomes on a single footprint), and found a slight increase (but no clear maximum)

in correlation with Ribo-seq double footprints (dRPFs) and single footprints (mRPFs) when

allowing a higher number of free codons between ribosomes within a footprint (S5E Fig).

Initiation rates were also fitted to Ribo-seq and RNA-seq data using the TASEP model, for

the purpose of analyzing their relation with missing mRPFs and the dRPF-to-mRPF ratio (Fig

3B). To this end, the number of ribosomes on each transcript was estimated using the ratio of

Ribo-seq (dRPF) to RNA-seq RPKM values; the number of copies of each transcript was esti-

mated using the RNA-seq RPKM values. Ribosome and RNA quantities were then scaled to

have the same total numbers as described in the first scenario above.

Randomization

We generated simulations for 100 genomes according to each of two models. In the first

model, we permuted the rates of codons globally, i.e. by changing the translation rate of all

positions of a codon in the transcriptome at once. The table with permuted codon rates was

Ribosome queuing in budding yeast

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005951 January 29, 2018 16 / 21

https://doi.org/10.1371/journal.pcbi.1005951


not constrained by codon synonymy, hence this model may serve as a validation for the cali-

bration of the simulation. In the second model, we kept the original codon rates, but shuffled

the order of synonymous codons across the sequence of a gene. Thus, this model controls for

codon order in each transcript. In both randomizations, we selected initiation rates resulting

in the same average number of ribosomes on the transcript as measured in real genes.

Functional enrichment

We utilized annotations of GO terms (accessed 04/09/15) obtained from SGD [61] and

mapped them to generic slim definitions of the biological process ontology [62]. In addition,

we obtained pathways from Wiki Pathways (accessed 29 April 2016) [63].

Supporting information

S1 Text. Simulation pseudo-code.

(PDF)

S1 Table. Simulated traffic properties. The table reports for each gene the initiation rate,

mean number of ribosomes on the transcript, translation rate, translation time, delay time, the

queued fraction of ribosomes (QFR), and a measure of ramp strength based on the ratio

between QFR in the first 100 codons and the middle of the gene (excluding first/last 100

codons).

(XLSX)

S2 Table. Gene sets with extreme traffic conditions. Top/bottom 5% of genes according to

their rank and z-scores (based on shuffling of synonymous codon order).

(XLSX)

S3 Table. Datasets and mapping statistics.

(XLSX)

S4 Table. Codon translation times. Obtained from: Zur H, Tuller T. Tracking the evolution

of mRNA translation via whole cell simulation. [57].

(XLSX)

S1 Fig. Sucrose gradient fractions. (A) Quantification of ribosome protected footprints

(RPFs) according to size. The plot shows the area under the curve (AUC) for mRPF and dRPF

fractions. The ratio of dRPFs to mRPFs is reported in the caption. Peaks were detected using

MATLAB’s findpeaks function, and their width was determined by the positions where the

curve decreases to half the height of the peak, or where the 2nd derivative turns positive. (B)

Same for Ingolia 2009 data, profile reproduced from [23]. (C) Same for Guydosh 2014 data,

profile reproduced from [33]. (D) Same for Shirokikh 2017 data, profile reproduced from [35]

(Figure 5 in the original paper). See also Fig 1.

(EPS)

S2 Fig. Fig 2 repeated for the Diament et al. dataset.

(EPS)

S3 Fig. Fig 2 repeated for the Guydosh et al. dataset.

(EPS)

S4 Fig. (A) Partial correlations between missing mRPFs and transcript features, as reported in

Fig 3B, for different detection thresholds. (B) A histogram of simulated RPFs, i.e. the number

of ribosomes in the transcriptome that are isolated or part of a pair, triplet etc. when no space
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is allowed between ribosomes on the same footprint. The simulated dRPF to mRPF ratio is

reported. (C) Same, where the space of ribosomes in a footprint does not exceed 1 codons. (D)

Same, where the space of ribosomes in a footprint does not exceed 2 codons. (E) Same, where

the space of ribosomes in a footprint does not exceed 3 codons. (F) Same, where the space of

ribosomes in a footprint does not exceed 4 codons.

(EPS)

S5 Fig. Methods. (A) Distributions of mapped double ribosome protected footprints (dRPFs)

in the datasets used in this study. (B) Calibration of simulation parameters according to 3 sce-

narios for the number of ribosomes and RNA molecules in a cell (details in the Materials and

Methods section). Simulated mRPFs and dRPFs were sampled to have the same number of

reads as in the respective Ribo-seq dataset (an aggregation of our experiment and Guydosh

et al.’s). Translational efficiency (TE) was defined as the ratio between RPKM values of Ribo-

seq and RNA-seq reads, and compared to simulated translation rates. Initiation rates were

inferred as described in the methods and compared to data from Ciandrini et al. (C) Calibra-

tion of the termination rate relative to the fastest codon. (D) Calibration of ribosome size. (E)

Results for the simulated RPFs for different allowed spacing within a ribosome footprint.

(EPS)
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20. Supek F, Šmuc T. On Relevance of Codon Usage to Expression of Synthetic and Natural Genes in

Escherichia coli. Genetics. 2010; 185: 1129–1134. https://doi.org/10.1534/genetics.110.115477 PMID:

20421604

21. Ben-Yehezkel T, Atar S, Zur H, Diament A, Goz E, Marx T, et al. Rationally designed, heterologous S.

cerevisiae transcripts expose novel expression determinants. RNA Biology. 2015; 12: 972–984. https://

doi.org/10.1080/15476286.2015.1071762 PMID: 26176266

22. Gamble CE, Brule CE, Dean KM, Fields S, Grayhack EJ. Adjacent Codons Act in Concert to Modulate

Translation Efficiency in Yeast. Cell. 2016; 166: 679–690. https://doi.org/10.1016/j.cell.2016.05.070

PMID: 27374328

23. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-Wide Analysis in Vivo of Trans-

lation with Nucleotide Resolution Using Ribosome Profiling. Science. 2009; 324: 218–223. https://doi.

org/10.1126/science.1168978 PMID: 19213877

24. Artieri CG, Fraser HB. Accounting for biases in riboprofiling data indicates a major role for proline in

stalling translation. Genome Res. 2014; 24: 2011–2021. https://doi.org/10.1101/gr.175893.114 PMID:

25294246

25. Ingolia NT, Lareau LF, Weissman JS. Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the

Complexity and Dynamics of Mammalian Proteomes. Cell. 2011; 147: 789–802. https://doi.org/10.

1016/j.cell.2011.10.002 PMID: 22056041

Ribosome queuing in budding yeast

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005951 January 29, 2018 19 / 21

https://doi.org/10.1063/1.1734422
http://www.ncbi.nlm.nih.gov/pubmed/5878586
https://doi.org/10.1016/0022-5193(65)90106-2
http://www.ncbi.nlm.nih.gov/pubmed/5875315
https://doi.org/10.1002/bip.1968.360060102
http://www.ncbi.nlm.nih.gov/pubmed/5641411
https://doi.org/10.1002/bip.1969.360070508
https://doi.org/10.1016/0022-5193(69)90018-6
http://www.ncbi.nlm.nih.gov/pubmed/5803335
https://doi.org/10.1007/s10955-011-0183-1
https://doi.org/10.1007/s10955-011-0183-1
https://doi.org/10.1006/jtbi.1994.1196
http://www.ncbi.nlm.nih.gov/pubmed/7996861
https://doi.org/10.1016/j.jmb.2008.06.068
https://doi.org/10.1016/j.jmb.2008.06.068
http://www.ncbi.nlm.nih.gov/pubmed/18619977
https://doi.org/10.1088/1478-3975/10/5/056011
http://www.ncbi.nlm.nih.gov/pubmed/24104350
https://doi.org/10.1016/j.biosystems.2014.02.005
http://www.ncbi.nlm.nih.gov/pubmed/24631460
https://doi.org/10.1002/embj.201385651
https://doi.org/10.1002/embj.201385651
http://www.ncbi.nlm.nih.gov/pubmed/24357599
https://doi.org/10.1126/science.1170160
http://www.ncbi.nlm.nih.gov/pubmed/19359587
http://www.ncbi.nlm.nih.gov/pubmed/9841679
https://doi.org/10.1016/j.cell.2013.05.049
http://www.ncbi.nlm.nih.gov/pubmed/23791185
https://doi.org/10.1038/nrg2899
http://www.ncbi.nlm.nih.gov/pubmed/21102527
https://doi.org/10.1038/msb.2012.73
https://doi.org/10.1038/msb.2012.73
http://www.ncbi.nlm.nih.gov/pubmed/23340841
https://doi.org/10.1534/genetics.110.115477
http://www.ncbi.nlm.nih.gov/pubmed/20421604
https://doi.org/10.1080/15476286.2015.1071762
https://doi.org/10.1080/15476286.2015.1071762
http://www.ncbi.nlm.nih.gov/pubmed/26176266
https://doi.org/10.1016/j.cell.2016.05.070
http://www.ncbi.nlm.nih.gov/pubmed/27374328
https://doi.org/10.1126/science.1168978
https://doi.org/10.1126/science.1168978
http://www.ncbi.nlm.nih.gov/pubmed/19213877
https://doi.org/10.1101/gr.175893.114
http://www.ncbi.nlm.nih.gov/pubmed/25294246
https://doi.org/10.1016/j.cell.2011.10.002
https://doi.org/10.1016/j.cell.2011.10.002
http://www.ncbi.nlm.nih.gov/pubmed/22056041
https://doi.org/10.1371/journal.pcbi.1005951


26. Ishimura R, Nagy G, Dotu I, Zhou H, Yang X-L, Schimmel P, et al. Ribosome stalling induced by muta-

tion of a CNS-specific tRNA causes neurodegeneration. Science. 2014; 345: 455–459. https://doi.org/

10.1126/science.1249749 PMID: 25061210

27. Li G-W, Oh E, Weissman JS. The anti-Shine-Dalgarno sequence drives translational pausing and

codon choice in bacteria. Nature. 2012; 484: 538–541. https://doi.org/10.1038/nature10965 PMID:

22456704

28. Martens AT, Taylor J, Hilser VJ. Ribosome A and P sites revealed by length analysis of ribosome profil-

ing data. Nucl Acids Res. 2015; 43: 3680–3687. https://doi.org/10.1093/nar/gkv200 PMID: 25805170

29. Mohammad F, Woolstenhulme CJ, Green R, Buskirk AR. Clarifying the Translational Pausing Land-

scape in Bacteria by Ribosome Profiling. Cell Reports. 2016; 14: 686–694. https://doi.org/10.1016/j.

celrep.2015.12.073 PMID: 26776510

30. Sabi R, Tuller T. A comparative genomics study on the effect of individual amino acids on ribosome

stalling. BMC Genomics. 2015; 16: S5. https://doi.org/10.1186/1471-2164-16-S10-S5 PMID: 26449596

31. Sabi R, Tuller T. Computational analysis of nascent peptides that induce ribosome stalling and their

proteomic distribution in Saccharomyces cerevisiae. RNA. 2017; 23: 983–994. https://doi.org/10.1261/

rna.059188.116 PMID: 28363900

32. Woolstenhulme CJ, Guydosh NR, Green R, Buskirk AR. High-Precision Analysis of Translational Paus-

ing by Ribosome Profiling in Bacteria Lacking EFP. Cell Reports. 2015; 11: 13–21. https://doi.org/10.

1016/j.celrep.2015.03.014 PMID: 25843707

33. Guydosh NR, Green R. Dom34 Rescues Ribosomes in 30 Untranslated Regions. Cell. 2014; 156: 950–

962. https://doi.org/10.1016/j.cell.2014.02.006 PMID: 24581494

34. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for mon-

itoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protocols.

2012; 7: 1534–1550. https://doi.org/10.1038/nprot.2012.086 PMID: 22836135

35. Shirokikh NE, Archer SK, Beilharz TH, Powell D, Preiss T. Translation complex profile sequencing to

study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and

termination. Nat Protocols. 2017; 12: 697–731. https://doi.org/10.1038/nprot.2016.189 PMID:

28253237

36. Diament A, Tuller T. Estimation of ribosome profiling performance and reproducibility at various levels

of resolution. Biology Direct. 2016; 11: 24. https://doi.org/10.1186/s13062-016-0127-4 PMID: 27160013

37. Tuller T, Zur H. Multiple roles of the coding sequence 50 end in gene expression regulation. Nucl Acids

Res. 2015; 43: 13–28. https://doi.org/10.1093/nar/gku1313 PMID: 25505165

38. Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, et al. An Evolutionarily Conserved

Mechanism for Controlling the Efficiency of Protein Translation. Cell. 2010; 141: 344–354. https://doi.

org/10.1016/j.cell.2010.03.031 PMID: 20403328

39. Reis M dos, Savva R, Wernisch L. Solving the riddle of codon usage preferences: a test for translational

selection. Nucleic Acids Res. 2004; 32: 5036–5044. https://doi.org/10.1093/nar/gkh834 PMID:

15448185

40. Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D. Genome-wide analysis of mRNA transla-

tion profiles in Saccharomyces cerevisiae. PNAS. 2003; 100: 3889–3894. https://doi.org/10.1073/pnas.

0635171100 PMID: 12660367

41. Ciandrini L, Stansfield I, Romano MC. Ribosome Traffic on mRNAs Maps to Gene Ontology: Genome-

wide Quantification of Translation Initiation Rates and Polysome Size Regulation. PLoS Comput Biol.

2013; 9: e1002866. https://doi.org/10.1371/journal.pcbi.1002866 PMID: 23382661

42. Brar GA, Yassour M, Friedman N, Regev A, Ingolia NT, Weissman JS. High-Resolution View of the

Yeast Meiotic Program Revealed by Ribosome Profiling. Science. 2012; 335: 552–557. https://doi.org/

10.1126/science.1215110 PMID: 22194413

43. Gloge F, Becker AH, Kramer G, Bukau B. Co-translational mechanisms of protein maturation. Current

Opinion in Structural Biology. 2014; 24: 24–33. https://doi.org/10.1016/j.sbi.2013.11.004 PMID:

24721450

44. Buttgereit F, Brand MD. A hierarchy of ATP-consuming processes in mammalian cells. Biochemical

Journal. 1995; 312: 163–167. https://doi.org/10.1042/bj3120163 PMID: 7492307

45. von der Haar T. MATHEMATICAL AND COMPUTATIONAL MODELLING OF RIBOSOMAL MOVE-

MENT AND PROTEIN SYNTHESIS: AN OVERVIEW. Computational and Structural Biotechnology

Journal. 2012; 1: e201204002. https://doi.org/10.5936/csbj.201204002 PMID: 24688632

46. Navon S, Pilpel Y. The role of codon selection in regulation of translation efficiency deduced from syn-

thetic libraries. Genome Biology. 2011; 12: R12. https://doi.org/10.1186/gb-2011-12-2-r12 PMID:

21284851

Ribosome queuing in budding yeast

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005951 January 29, 2018 20 / 21

https://doi.org/10.1126/science.1249749
https://doi.org/10.1126/science.1249749
http://www.ncbi.nlm.nih.gov/pubmed/25061210
https://doi.org/10.1038/nature10965
http://www.ncbi.nlm.nih.gov/pubmed/22456704
https://doi.org/10.1093/nar/gkv200
http://www.ncbi.nlm.nih.gov/pubmed/25805170
https://doi.org/10.1016/j.celrep.2015.12.073
https://doi.org/10.1016/j.celrep.2015.12.073
http://www.ncbi.nlm.nih.gov/pubmed/26776510
https://doi.org/10.1186/1471-2164-16-S10-S5
http://www.ncbi.nlm.nih.gov/pubmed/26449596
https://doi.org/10.1261/rna.059188.116
https://doi.org/10.1261/rna.059188.116
http://www.ncbi.nlm.nih.gov/pubmed/28363900
https://doi.org/10.1016/j.celrep.2015.03.014
https://doi.org/10.1016/j.celrep.2015.03.014
http://www.ncbi.nlm.nih.gov/pubmed/25843707
https://doi.org/10.1016/j.cell.2014.02.006
http://www.ncbi.nlm.nih.gov/pubmed/24581494
https://doi.org/10.1038/nprot.2012.086
http://www.ncbi.nlm.nih.gov/pubmed/22836135
https://doi.org/10.1038/nprot.2016.189
http://www.ncbi.nlm.nih.gov/pubmed/28253237
https://doi.org/10.1186/s13062-016-0127-4
http://www.ncbi.nlm.nih.gov/pubmed/27160013
https://doi.org/10.1093/nar/gku1313
http://www.ncbi.nlm.nih.gov/pubmed/25505165
https://doi.org/10.1016/j.cell.2010.03.031
https://doi.org/10.1016/j.cell.2010.03.031
http://www.ncbi.nlm.nih.gov/pubmed/20403328
https://doi.org/10.1093/nar/gkh834
http://www.ncbi.nlm.nih.gov/pubmed/15448185
https://doi.org/10.1073/pnas.0635171100
https://doi.org/10.1073/pnas.0635171100
http://www.ncbi.nlm.nih.gov/pubmed/12660367
https://doi.org/10.1371/journal.pcbi.1002866
http://www.ncbi.nlm.nih.gov/pubmed/23382661
https://doi.org/10.1126/science.1215110
https://doi.org/10.1126/science.1215110
http://www.ncbi.nlm.nih.gov/pubmed/22194413
https://doi.org/10.1016/j.sbi.2013.11.004
http://www.ncbi.nlm.nih.gov/pubmed/24721450
https://doi.org/10.1042/bj3120163
http://www.ncbi.nlm.nih.gov/pubmed/7492307
https://doi.org/10.5936/csbj.201204002
http://www.ncbi.nlm.nih.gov/pubmed/24688632
https://doi.org/10.1186/gb-2011-12-2-r12
http://www.ncbi.nlm.nih.gov/pubmed/21284851
https://doi.org/10.1371/journal.pcbi.1005951


47. Quax TEF, Claassens NJ, Söll D, van der Oost J. Codon Bias as a Means to Fine-Tune Gene Expres-

sion. Molecular Cell. 2015; 59: 149–161. https://doi.org/10.1016/j.molcel.2015.05.035 PMID: 26186290

48. Latif H, Szubin R, Tan J, Brunk E, Lechner A, Zengler K, et al. A streamlined ribosome profiling protocol

for the characterization of microorganisms. BioTechniques. 58. Available: http://www.academia.edu/

23544215/A_streamlined_ribosome_profiling_protocol_for_the_characterization_of_microorganisms

49. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, et al. Ensembl 2016. Nucl Acids

Res. 2016; 44: D710–D716. https://doi.org/10.1093/nar/gkv1157 PMID: 26687719

50. Pelechano V, Wei W, Steinmetz LM. Extensive transcriptional heterogeneity revealed by isoform profil-

ing. Nature. 2013; 497: 127–131. https://doi.org/10.1038/nature12121 PMID: 23615609

51. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.jour-

nal. 2011; 17: 10–12. https://doi.org/10.14806/ej.17.1.200

52. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biology. 2009; 10: R25. https://doi.org/10.1186/gb-2009-

10-3-r25 PMID: 19261174

53. Wang M, Weiss M, Simonovic M, Haertinger G, Schrimpf SP, Hengartner MO, et al. PaxDb, a database

of protein abundance averages across all three domains of life. Mol Cell Proteomics. 2012; 11: 492–

500. https://doi.org/10.1074/mcp.O111.014704 PMID: 22535208

54. Dana A, Tuller T. Determinants of Translation Elongation Speed and Ribosomal Profiling Biases in

Mouse Embryonic Stem Cells. PLoS Comput Biol. 2012; 8: e1002755. https://doi.org/10.1371/journal.

pcbi.1002755 PMID: 23133360

55. Dana A, Tuller T. The effect of tRNA levels on decoding times of mRNA codons. Nucl Acids Res. 2014;

42: 9171–9181. https://doi.org/10.1093/nar/gku646 PMID: 25056313

56. Tuller T, Veksler-Lublinsky I, Gazit N, Kupiec M, Ruppin E, Ziv-Ukelson M. Composite effects of gene

determinants on the translation speed and density of ribosomes. Genome Biology. 2011; 12: R110.

https://doi.org/10.1186/gb-2011-12-11-r110 PMID: 22050731

57. Zur H, Tuller T. Tracking the Evolution of mRNA Translation via Whole Cell Simulation. submitted.

2017;

58. von der Haar T. A quantitative estimation of the global translational activity in logarithmically growing

yeast cells. BMC Systems Biology. 2008; 2: 87. https://doi.org/10.1186/1752-0509-2-87 PMID:

18925958

59. Zenklusen D, Larson DR, Singer RH. Single-RNA counting reveals alternative modes of gene expres-

sion in yeast. Nat Struct Mol Biol. 2008; 15: 1263–1271. https://doi.org/10.1038/nsmb.1514 PMID:

19011635
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