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Abstract

Objective—People who suffer from hearing impairments can find it difficult to follow a 

conversation in a multi-speaker environment. Current hearing aids can suppress background noise; 

however, there is little that can be done to help a user attend to a single conversation amongst 

many without knowing which speaker the user is attending to. Cognitively controlled hearing aids 

that use auditory attention decoding (AAD) methods are the next step in offering help. Translating 

the successes in AAD research to real-world applications poses a number of challenges, including 

the lack of access to the clean sound sources in the environment with which to compare with the 

neural signals. We propose a novel framework that combines single-channel speech separation 

algorithms with AAD.

Approach—We present an end-to-end system that (1) receives a single audio channel containing 

a mixture of speakers that is heard by a listener along with the listener’s neural signals, (2) 

automatically separates the individual speakers in the mixture, (3) determines the attended speaker, 

and (4) amplifies the attended speaker’s voice to assist the listener.

Main results—Using invasive electrophysiology recordings, we identified the regions of the 

auditory cortex that contribute to AAD. Given appropriate electrode locations, our system is able 

to decode the attention of subjects and amplify the attended speaker using only the mixed audio. 

Our quality assessment of the modified audio demonstrates a significant improvement in both 

subjective and objective speech quality measures.
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Significance—Our novel framework for AAD bridges the gap between the most recent 

advancements in speech processing technologies and speech prosthesis research and moves us 

closer to the development of cognitively controlled hearable devices for the hearing impaired.

Keywords

ECoG; sEEG; hearing aid; DNN; LSTM; attention; stimulus-reconstruction

1. Introduction

In a natural auditory environment, people with normal hearing can easily attend to a single 

speaker amongst many, and can switch their attention from one speaker to another with ease 

[1]. However, this task is extremely challenging for people who suffer from hearing 

impairments, which has been attributed to an increase in listening effort and a reliance on 

higher-level compensatory cognitive processes [2–5]. Assistive hearing devices can suppress 

certain types of background noise [6], but they cannot help a user attend to a single 

conversation amongst many without knowing which speaker is being attending to.

Several studies have revealed a dynamic and selective representation of the acoustic features 

of an attended speaker in human auditory cortex [7–12]. These findings have led to the idea 

of auditory attention decoding (AAD): the ability to decode the identity of an attended 

speaker over short enough time-scales so as to be useful for an assistive hearing device. 

AAD has been successfully implemented using various neural signal acquisition methods 

including non-invasive magnetoencephalography (MEG; [8]), electroencephalography 

(EEG; [13, 14]), and invasive electrocorticography (ECoG; [15]). However, many challenges 

must be overcome before AAD can be practically implemented [16–28]: from determining 

the optimal positioning of electrodes on the scalp [22], around the ear [23], and in the ear 

canal [25, 28], to developing state-space models to improve accuracy and speed at decoding 

attention [27].

In a typical implementation of AAD, the neural responses recorded from the subject’s brain 

are compared with the acoustic properties of the individual speakers. The speaker who 

produces the maximum similarity with the neural data is determined to be the target. This 

technique assumes that there is access to the clean sound sources; a difficult requirement to 

satisfy for real-world implementations of this idea when only the mixed audio signal is 

available. One way to address the issue of the lack of access to the clean sources is 

beamforming [29, 30]. Specifically, the use of multichannel microphone recordings 

combined with non-negative independent component analysis [21] or multi-channel weiner 

filters (MWF) [31] has been proposed to create a neuro-steered spatial audio filter. While the 

quality of the separation in these methods is not as good as an actual clean source, AAD 

algorithms can tolerate moderate amounts of noise and cross-talk [19]. However, these 

methods are limited to scenarios where the target and interfering sources are separated in 

space with respect to the recording microphones: a condition that is not consistently 

guaranteed. In addition, the limited amplification factor achievable with beamforming may 

be insufficient when a greater suppression of the interfering speakers is desired to improve a 

user’s experience [32]. An approach that addresses these shortcomings is needed to 
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maximize the benefits of AAD and produce a cleaner, more robust amplification of a target 

speaker; a result that can be incorporated into assistive hearing devices.

We propose a novel framework that combines advances in single-channel speech separation 

methods with AAD to alleviate the requirement of a spatial separation between the target 

speaker and interfering speakers. This method can be used in place of, or in tandem with 

beamforming to create a more realistic solution to the AAD problem. Our method requires 

prior training on target speakers, meaning that its use is restricted to a known set of speakers 

with whom the user interacts. However, new speakers can be added to this set using a small 

amount of training data (~20 min).

Our system is based on deep neural network (DNN) audio source separation algorithms [33, 

34]. A schematic of our proposed system is shown in figure 1: a spectrogram of the mixture 

is fed to several DNNs, each trained to separate a specific speaker from a mixture (DNN 

Spk1 to DNN SpkN). Simultaneously, a user is attending to one of the speakers (in this case, 

Spk1; red), and a spectrogram of this speaker is reconstructed from the neural recordings of 

the user [12]. This reconstruction is then compared with the outputs of each of the DNNs 

using a correlation analysis in order to determine which spectrogram is most similar to the 

neural reconstruction. Once identified, the selected spectrogram is converted into an acoustic 

waveform and added to the mixture so as to amplify the attended speaker.

We tested the efficacy of our system using invasive ECoG recordings from neurological 

subjects undergoing epilepsy surgery [12]. We used ECoG recordings because it allows us to 

determine the varying contributions of different auditory cortical areas to AAD. Given 

electrodes in the correct areas, ECoG also allows us to examine the upper bound of decoding 

speed and accuracy. Our system, while tested using invasive neural recordings, can also be 

applied to non-invasive methodologies [13, 22]. This framework for AAD systems bridges 

the gap between the latest developments in speech separation algorithms and speech 

prostheses to help a user attend to a single speaker in a multi-speaker environment.

2. Methods

2.1. Participants

A total of six subjects who were undergoing clinical treatment for epilepsy took part in this 

study. All subjects gave their written informed consent to participate in research; five 

subjects were situated at North Shore University Hospital (NSUH), and one subject was 

situated at the Columbia University Medical Center (CUMC). Subjects one and two were 

implanted with high-density subdural electrode arrays over the left (language dominant) 

temporal lobe with coverage over superior temporal gyrus (STG). The remaining four 

subjects partook in stereotactic EEG in which they were implanted bilaterally with depth 

electrodes. This resulted in varying amounts of coverage over the left and right auditory 

cortices for each subject (see figure 5).

2.2. Stimuli and experiments

Each subject participated in two experiments for this study: a single-speaker (S-S) and 

multi-speaker (M-S) experiment. The S-S experiment was used as a control. Each subject 
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listened to four stories read by a female and male speaker (hereafter referred to as Spk1f and 

Spk2m, respectively), for a total of eight stories (four stories twice). Both Spk1f and Spk2m 

were native American English speakers, and were recorded in-house. In order to ensure the 

attentional engagement of each subject, the stories were randomly paused and the subject 

was instructed to repeat the last sentence. For the M-S experiment, subjects were presented 

with a mixture of the same female and male speakers (Spk1f and Spk2m), with no spatial 

separation between them. The acoustic waveform of each speaker was matched to have the 

same root mean squared (RMS) intensity. Unlike some studies in this field, we did not 

remove pauses longer than 0.5 s in order to make the task as natural as possible. All stimuli 

were presented using a single Bose® SoundLink® Mini 2 speaker situated directly in front of 

the subject.

The M-S experiment was divided into four blocks. Before each block, the subject was 

instructed to focus their attention on one speaker and to ignore the other. All subjects began 

the experiment by attending to the male speaker, and switched their attention to the alternate 

speaker on each subsequent block. In order to ensure that the subjects were engaged in the 

task, the story was intermittently paused and the subjects were asked to repeat the last 

sentence of the attended speaker. The locations of the pauses were predetermined and were 

the same for all subjects, but the subjects were unaware of when the pauses would occur. In 

total, there were 11 min and 37 s of audio presented to each subject during the M-S 

experiment. The S-S experiment lasted twice as long as each subject was required to listen to 

each story read by each speaker independently.

2.3. Data preprocessing and hardware

The subjects at NSUH were recorded using Tucker Davis Technologies (TDT®) hardware 

and sampled at 2441 Hz. The subject at CUMC was recorded using Xltek® hardware and 

sampled at 500 Hz. All further processing steps were performed offline. All filters were 

designed using Matlab’s® Filter Design Toolbox, and were used in both a forwards and 

backwards direction to remove phase distortion. The TDT data were resampled to 500 Hz. A 

1st order Butterworth high-pass filter with a cut-off frequency at 1 Hz was used to remove 

DC drift. Data were subsequently re-referenced using a common average scheme, with the 

effect of noisy electrodes mitigated by using a trimmed mean approach (i.e. removing the 

top and bottom 10% of electrodes at each sample point). To clarify, these electrodes were 

not removed from further analyses; rather, they are excluded when obtaining the mean of the 

data at each sample point. Line noise at 60 Hz and its harmonics (up to 240 Hz) were 

removed using 2nd order IIR notch filters with a bandwidth of 1 Hz. A period of silence was 

recorded before each experiment, and the corresponding data were normalized by 

subtracting the mean and dividing by the standard deviation of this pre-stimulus period.

Data were then filtered into the high-gamma band (70–150 Hz), the power of which is 

known to be modulated by speech [11, 12]. In order to obtain the power of this broad band, 

the data were first filtered into eight frequency bands between 70 and 150 Hz, each with a 

bandwidth of 10 Hz, using Chebyshev Type 2 filters. The power (analytic amplitude) of each 

band was then obtained using a Hilbert transform. We took the average of all eight frequency 

bands as the total power. This method is commonly used in neuroscience research [35].
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2.4. Single-channel speaker separation

In order to automatically separate each speaker from the mixture, we employed a method of 

single-channel speech separation that utilizes a class of DNNs known as long short-term 

memory (LSTM) DNNs [34, 36]. Each DNN was trained to separate one specific speaker 

from two speaker mixtures. Figure 2 shows an example of speech separation using these 

DNNs. In our experiment, there were only two speakers (Spk1f and Spk2m) presented to 

each subject. However, we are proposing a system that could work in a real-world situation 

where a device would contain multiple DNNs, each trained to separate specific speakers, any 

of whom may or may not be present in the environment. Because of this, we trained four 

DNNs to separate four speakers (two female and two male), hereafter referred to as Spk1f, 

Spk2m, Spk3f, and Spk4m. All speakers were native American English speakers. As stated 

before, two of the speakers (Spk1f and Spk2m) were recorded in-house. However, Spk3f and 

Spk4m were taken from the wall street journal (WSJ) corpus [37].

The speech waveforms were converted into 100D Mel-frequency spectrograms. The goal 

was then to obtain an estimate Ŝ of a clean target spectrogram S from a mixture M. To do so, 

a soft mask Ŷ was learnt and applied to the mixture to mask the interfering speech. The 

squared Euclidian distance between the masked spectrogram and the clean target 

spectrogram was treated as the error in order to generate the gradient that was back 

propagated through the DNN to update the parameters. The objective function was therefore:

The inputs to the DNNs were log spectrograms, normalized so that each frequency band had 

zero mean and unit variance. Each DNN contained four layers with 300 nodes each, 

followed by a single layer containing 100 nodes with a logistic nonlinearity. An acoustic 

waveform was generated by inverting this spectrogram using the phase of the original 

mixture. See [34] for further information. Because our current method is proposed as a 

single output system (monaural), we did not attempt to address any binaural effects of this 

approach.

For training, we used ~5 h of speech from 103 interfering speakers from the WSJ corpus, 

and 20 min of speech from the target speakers. The target speaker was always mixed with 

one interfering speaker, and both were mixed into the same channel and with the same RMS 

intensity. Unseen utterances were used for testing (for both the target and interfering 

speakers). To ensure generalization, each of the DNNs never saw any of the other target 

speakers during training. E.g. the DNN trained to separate Spk1f never saw Spk2m, Spk3f, or 

Spk4m.

2.5. Objective measure of speech separation quality

In order to determine the efficacy of the speech-separation algorithm, we used a commonly 

used objective measure of speech quality (MOS) known as the perceptual evaluation of 

speech quality (PESQ) score [38]. The PESQ algorithm produces a score between 1.0 and 

4.5, where high values indicate better quality. This score is known to correlate well with 
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subjective listening tests and has proven to be a reliable objective measure for the 

assessment of speech quality [39], and to some degree speech intelligibility [40].

2.6. DNN output correlation analysis

In our experiment, only two speakers were present in the mixture (Spk1f and Spk2m). To 

ensure generalization, we trained two additional DNNs to separate two additional speakers, 

one male and one female (Spk3f and Spk4m). We wanted to test how each DNN behaved 

when given various mixtures. To do this, we created a data set consisting of 103 random 

speakers (taken from the WSJ corpus) mixed with target speakers Spk1f, Spk2m, Spk3f, and 

Spk4m. We created 200 mixtures for each target speaker, resulting in 800 mixtures in total. 

We fed every mixture through each of the four DNNs and tested how well each DNN 

separated the target speaker in each case by obtaining a correlation coefficient (Pearson’s r-
value) between the output of the DNN and the spectrogram of the clean target speaker. 

Reported r-values are averaged across frequency, i.e. we calculated a single correlation value 

for each frequency band, and then averaged these to obtain a single correlation value.

2.7. Stimulus-reconstruction

In order to determine the attended speaker, we employed a method known as stimulus-

reconstruction [8, 12, 13, 41]. This method applies a spatiotemporal filter (decoder) to neural 

recordings to reconstruct an estimate of the spectrogram of the attended speaker. The 100D 

Mel-frequency spectrograms were downsampled by a factor of ten, resulting in ten 

frequency bands. Each decoder was trained using the data from the single-speaker (S-S) 

experiment only. This was done to minimize any potential bias that may result from training 

the decoders on the M-S data, and to ensure generalization to new unseen speakers. 

Electrodes were chosen if they were significantly more responsive to speech than to silence. 

To perform statistical analyses, the neural data were segmented into 500 ms chunks and 

divided into two categories: speech and silence. Significance was determined using an 

unpaired t-test (false discovery rate (FDR) corrected, q< 0.05). This resulted in varying 

numbers of electrodes for each subject (see figure 5). Rejecting electrodes that were 

unresponsive to speech was done so as to reduce the number of parameters required to fit 

each decoder, as only electrodes that are responsive to speech could contribute to a linear 

reconstruction of an acoustic spectrogram. The decoders were trained using all electrodes 

simultaneously, and with time-lags from −400 to 0 ms. In addition, we also trained decoders 

using single-electrodes so as to determine the anatomical locations that contributed most to 

AAD. See [41] for further information on the stimulus-reconstruction algorithm.

2.8. Neural correlation analysis

As previously stated, we trained decoders using the data from the S-S experiment. These 

same decoders could then be used to reconstruct spectrograms from the M-S experiment 

[12]. Determining to whom the subject is attending requires a correlation analysis, 

commonly using Pearson’s r-value [12]. Typically, whichever spectrogram has the largest 

correlation with the reconstructed spectrogram is taken to be the attended speaker [13, 22]. 

However, because we are using four DNNs, each trained to separate a speaker that may or 

may not be present in the mixture, the analysis becomes slightly more complex. Crucially, 

because the DNNs that do not see their designated speakers in the mixture are likely to 
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output a signal very close to the mixture, we found that it was necessary to normalize the 

correlation values with respect to the mixture. This is because the correlation between the 

reconstructed spectrograms and the mixture can be very large (see Results; figure 4).

For clarity, we will first define some terminology: a spectrogram outputted from the kth 

DNN will be referred to as SDNNk, the spectrogram of the mixture as SMIX, and the 

reconstructed spectrogram (from the neural responses) as SRECON. In order to emphasize 

large correlations, we applied a Fisher transformation (inverse hyperbolic tangent) to each r-
value.

The normalization procedure involved five steps. First, we obtained the correlation between 

SRECON and each SDNNk, which we will refer to as ρ1k:

(1)

where r(x, y) is Pearson’s correlation between the variables x and y, and tanh−1 is the inverse 

hyperbolic tangent function.

Next, we obtained the correlation between SRECON and the difference between SDNNk and 

SMIX, which we will refer to as ρ2k:

(2)

Intuitively, this value should be close to zero if a DNN is outputting the mixture, small if it is 

outputting the attended speaker (because subtracting the attended spectrogram from the 

mixture will only leave behind portions of the unattended spectrogram), and large if it 

outputs the unattended speaker (similarly, because only portions of the attended spectrogram 

will be left). Therefore, taking the difference of ρ1k and ρ2k, and dividing by their sum, 

should produce a score (αk) that can differentiate between each of these cases:

(3)

This was followed by a test-normalization (t-norm; [42]), in which the α score for each 

DNN was normalized relative to the distribution of α scores from all DNNs:

(4)

where μα and σα are the mean and standard deviation of the distribution of α scores from all 

DNNs. Finally, we subtracted the correlation between SDNNk and SMIX, and added the 

constant 1, resulting in the final normalized correlation value (Pk) for each DNN:
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(5)

This last normalization step will further penalize a DNN that is simply outputting the 

mixture rather than separating the speakers. This could occur if a DNN’s trained speaker 

was not in the mixture. The addition of the constant 1 is used to make the final result more 

intuitive, as otherwise the values would typically be less than zero.

Of the ten frequency bands in the downsampled spectrograms, the lowest two frequency 

bands (~50–200 Hz) were excluded to avoid bias towards the male speaker whose 

fundamental frequency occupied this region. All correlation values reported are the average 

of the r-values obtained across the remaining eight frequency bands.

2.9. Attention decoding index (ADI)

In order to obtain a measure of our ability to determine the attended speaker from neural 

recordings, we first segmented the reconstructed spectrogram from the M-S experiment into 

20 s bins, resulting in 34 segments (17 where the subjects attended to male speaker, and 17 

to the female speaker). As mentioned, we trained four DNNs to separate two female (Spk1f 

and Spk3f) and two male (Spk2m and Spk4m) speakers from random mixtures. Therefore, 

we obtained four normalized correlation values for each segment: P1f, mP2m, mP3f, and 

mP4m. Because Spk1f and Spk2m were the only speakers that were actually presented to the 

subject, we would expect that mP1f and mP2m would be the largest, depending on whom the 

subject was attending to.

If there were only two possible correlation values to choose from, a segment could be 

considered correctly decoded if the attended speaker produced the largest correlation with 

the reconstructed spectrogram. However, when there are multiple values to choose from, it is 

important to take into account any bias for a particular speaker. This is of particular 

importance when using intracranial data, because it is possible that some electrodes could be 

tuned to speaker-specific features, and respond to those features regardless of the attentional 

focus of the subject. To take into account any such potential bias, we define the ADI as the 

proportion of the number of correct hits minus the number of false positives, for both target 

speakers.

where CHSpkN and FPSpkN are the number of correct hits and false positives for speaker N, 

respectively, and n is the number of segments. While similar to the sensitivity index d′ [43], 

this approach is bounded between [−1,1].

Chance and significant ADI were determined by randomly shuffling the reconstructed 

spectrograms with respect to the DNN outputs 100 times for each subject. A null distribution 

of the ADI was then obtained using the same normalized correlation analysis described 

previously. The resulting mean ± SD performance was 0 ± 0.15. Significant performance 
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was therefore determined to be 0.45 (three times the standard deviation). For comparison, 

we also calculated the ADI that would be achieved using the clean (ideal) spectrograms of 

Spk1f and Spk2m. In this ideal situation, we assumed that the DNNs trained on Spk3f and 

Spk4m outputted the mixture.

2.10. Dynamic switching of attention

In order to simulate a dynamic scenario in which a subject was switching attention, we 

divided and concatenated the neural data into consecutive segments in which the subjects 

were attending to either speaker. Specifically, we divided the data into ten segments, each 

lasting 60 s. The subjects attended to the male speaker for the first segment. To assess our 

ability to track the attentional focus of each subject, we used a sliding window approach 

whereby we obtained correlation values every second over a specified window. We used 

window sizes ranging from 5 to 30 s (in 5 s increments for 6 window sizes in total). Larger 

windows should lead to more consistent (less noisy) correlation values and provide a better 

estimate of the attended speaker. However, they should also be slower at detecting a switch 

in attention.

2.11. Psychoacoustic experiment

Although the PESQ score is a reliable MOS [39], we still wanted to test whether users 

would actually prefer to use our proposed system in a multi-speaker scenario. To do so, we 

performed a psychoacoustic experiment on healthy controls. Twelve subjects (seven female), 

aged between 20 and 28 years (mean ± SD, 22 ± 2.5) took part. All subjects reported normal 

hearing and provided written informed consent. The stimuli used for this experiment were 

the same as those used for the neural experiment, i.e. subjects were always presented with a 

mixture of Spk1f and Spk2m. However, the way the stimuli were presented was altered to 

obtain as much information as possible about the subjects’ perception. The experiment was 

divided into four blocks, each containing 15 trials. Each trial consisted of a single sentence. 

Before each block, the subjects were instructed to pay attention to one of the speakers 

(starting with the male) and to switch attention on each successive block. In order to test the 

intelligibility of the speech, after each trial (sentence) the subjects were presented with a 

transcription of the sentence of the attended speaker with one word missing. Subjects were 

instructed to type the missing word (the intelligibility task). They were also asked to indicate 

the difficulty they had understanding the attended speaker on a scale from 1 to 5: very 

difficult (1), difficult, not difficult, easy, and very easy (5). From these responses, we 

calculated the mean opinion score (MOS; [44]). This allowed us to obtain both an objective 

measure of intelligibility and a subjective MOS. For half of the experiment, both speakers 

were presented at the same RMS power. For the other half, we attempted to amplify the 

attended speaker. Block order was counterbalanced across subjects. In total, the experiment 

lasted approximately 15 min, during which subjects were presented with 4 min and 11 s of 

audio.

In order to amplify the attended speaker, we decided not to perform a simulation; i.e. not to 

choose when to perform the amplification. Instead, we decided to use real neural data to 

demonstrate how the overall system could be implemented. We elected to use the neural data 

from subject two. To dynamically track the attentional focus of the subject, we implemented 
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a strategy similar to the artificial switching of attention discussed earlier; i.e. we used a 

sliding window approach, attempting to decode the attention of the subject every second. We 

also chose to use a window size of 20 s to be consistent with our decoding strategy discussed 

earlier. Whenever we could correctly classify the attended speaker from the neural data for 

that subject, we added the output from the correct DNN added to the mixture. However, if a 

mistake was made, and we misclassified the subject’s attentional focus, we would present 

the output from whichever DNN produced the largest normalized correlation. The DNN 

output was added at a level of +12 dB relative to the mixture.

In addition to obtaining measures of intelligibility and speech quality, we also wanted to 

determine the participant’s overall preference. Subjects were informed before the experiment 

that they would have to report which half of the experiment required less effort to understand 

the attended speaker, and they were reminded half way through. Finally, we wanted to know 

if users would prefer to use the system if they knew that it wasn’t perfect. To test this, we 

asked one final question at the end of the experiment (after they had reported their initial 

preference): ‘For the (1st/2nd) half of this experiment, a ‘system’ was turned on that tried to 

amplify the attended speaker. It is not perfect, and may have sometimes amplified the 

incorrect speaker. Which would you prefer: to have this system turned on or off?’

3. Results

3.1. DNN output correlation analysis

To examine the ability of the DNNs to separate their designated speakers from the mixtures, 

we measured the correlation between the output of each DNN and the clean target speaker 

spectrograms for that DNN (figure 3). We indicate the mean ± SD of all networks that were 

trained to separate a female (left) or male (right) speaker. The gray bars show performance 

when a network is presented with a mixture containing the speaker that it was trained to 

separate, and the red/blue bars show performance when a mixture contains an unknown 

female/male target speaker. As expected, the networks could not separate undesignated 

speakers from the mixture, but their outputs were slightly more similar to the target speaker 

when that speaker was the same gender as the network’s designated speaker. This result is 

likely because of the characteristic differences between male and female speakers (e.g. pitch, 

spectral envelope). The dotted line illustrates the average correlation between the raw 

mixtures and the clean target spectrograms.

3.2. Neural correlation analysis

To determine which speaker a subject was attending to, we performed a neural correlation 

analysis where we compared the reconstructed spectrograms (from the neural data) with the 

output of each DNN (figure 4). The left of the figure (raw r-values) shows the average 

correlations between the reconstructed spectrograms and the outputs of the DNNs for each 

subject (where each subject is represented by a colored dot). Because the subjects alternated 

their attention between two speakers, the r-values labeled as attended and unattended come 

from the DNNs trained on Spk1f and Spk2m. The r-values labeled as undesignated come 

from the DNNs trained on Spk3f and Spk4m.
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Although the attended r-values are typically higher than the unattended r-values, there is also 

a high correlation between the reconstructed spectrograms and the mixture. Because the 

DNNs that do not see their designated speaker usually output spectrograms similar to the 

mixture, the undesignated correlation values were also relatively high. Therefore, it was 

crucial to normalize the r-values with respect to the mixture. This is an important problem 

that arises when designing any algorithm that does not use the clean sources. Our solution to 

this problem involved three key steps: (i) incorporating the mixture into the correlation 

analysis (equations (2) and (3); see Methods), (ii) performing a test-normalization (t-norm) 

to equalize the outputs of each DNN with respect to each other (equation (4)), and (iii) 

subtracting the correlation between the DNN output and the mixture (equation (5)). The 

figure on the right (normalized r-values) shows the results of this analysis. After applying 

the normalization method, the attended correlation values were far higher than either the 

unattended or undesignated r-values, which enabled the decoding of the attended speaker.

3.3. Attention decoding index (ADI)

Given that the normalized correlation values differentiated between attended, unattended, 

and undesignated r-values, it was possible to decode the attentional focus of the subjects 

using the DNN outputs. After segmenting the data into 20 s chunks, a segment was labeled 

as a correct hit if the normalized correlation between the reconstructed spectrogram and the 

output of the DNN that was trained to separate the attended speaker was the highest of all 

four DNN outputs. A segment was considered to be a false positive if the correlation with 

the unattended speaker was higher than all others. We define the ADI as the proportion of 

segments correctly decoded minus the proportion of false positives. For comparison, we also 

calculated the ADI obtained using the ideal (clean) spectrograms of Spk1f and Spk2m (see 

Methods).

Figure 5(A) shows the results of this analysis. We considered the attentional focus of a 

subject to be successfully decoded if the ADI was greater than the 0.45 threshold calculated 

using a random shuffle of the data (gray line; see Methods). Of the six subjects who 

participated in this study, the attentional focus of subjects one, two and three could be 

decoded.

Because different regions in the auditory cortex are differentially modulated by attention 

[11], we sought to explain the variability in ADI across subjects by identifying the 

anatomical locations of each electrode. For each subject, the pie charts illustrate the 

proportion of electrodes that were responsive to speech from two anatomical regions: 

Heschl’s gyrus (HG; red) and superior temporal gyrus (STG; blue). Electrodes that were 

responsive to speech, but that were not in either of these locations, are collectively referred 

to as Other (green). These Other electrodes were located in various anatomical regions 

including the middle and inferior temporal gyri, and planum temporale. The single number 

displayed above each pie chart refers to the total number of electrodes that were responsive 

to speech for that subject. To determine which anatomical regions produced the highest ADI, 

we performed a single electrode analysis (figure 5(B)). Similar to figure 5(A), electrodes are 

colored according to anatomical location: Heschl’s gyrus (HG; red), superior temporal gyrus 

(STG; blue), and Other (Green). Electrodes in STG and Other produced ADIs significantly 
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greater than zero (Wilcoxon signed-rank test; p < 0.001), compared to the use of electrodes 

in HG (p = 0.02). These results show that electrodes placed in STG are important for 

successfully decoding attention.

3.4. Dynamic switching of attention

In order to simulate a dynamic situation where subjects alternated their attention between the 

two speakers, we segmented and concatenated the data into 60 s bins, with a subject’s 

attention switching at the beginning of each section. Figure 6 shows the results of this 

analysis for an example subject (subject one) using a 20 s window size. Each solid black line 

marks a switch in attention. The blue bar at the top indicates segments when the subject was 

attending to Spk2m and the red bar indicates segments when the subject was attending to 

Spk1f. Normalized correlation values for each of the four DNNs are plotted at the bottom of 

the figure. Ideally, the blue (mP2m) and red (mP1f) lines would alternate being the largest, 

and the cyan (mP4m) and magenta (mP3f) lines would be close to zero.

From this analysis, we obtained a measure of decoding-accuracy, which we define as the 

percentage of samples in which the correct target speaker produced the highest normalized 

correlation value. Unlike the ADI method discussed earlier, this method does not formally 

take into account false-positives. This is because the sliding window approach inevitably 

produces false-positives around transitions in attention that are not due to a bias towards a 

particular speaker, but are instead an inherent property of the method. However, these false-

positives will still reduce the decoding-accuracy achievable because the correct target 

speaker will not produce the highest correlation values in these regions. We observed a 

decoding-accuracy of 75% for the data displayed in figure 6.

Figure 7(A) displays the same results as shown in figure 6, but averaged over all sections 

when the subject was attending to Spk2m (−60 s–0 s) and Spk1f (0 s–60 s). Shaded regions 

denote standard error. This analysis was used in order to determine a measure of the 

transition time (how long it takes to detect a switch in attention for a subject). Transition 

times were calculated as the time at which the blue (Spk2m) and red (Spk1f) lines intersected 

in the averaged data. This calculation was performed for each subject whose attentional 

focus we could decode and for all window-sizes (between 5 and 30 s; figure 7(B)). For all 

subjects, the transition-time increases monotonically with larger window-sizes. We also 

display the decoding-accuracy that was achieved for each window-size (figure 7(B); bottom 

panel). These results suggest that window-sizes between 15 and 20 s achieve the best trade-

off between speed and accuracy. Longer window-sizes produce a reduction in decoding-

accuracy because they also result in longer transition times, and therefore more false-

positives after a switch in attention.

3.5. Objective and subjective measures of speech separation quality

While the decoding-accuracy score presented in figure 7 is an important objective measure 

of performance, the goal of our study was to also enhance the quality of the audio by 

amplifying the attended speaker relative to the other sound sources. The quality of the output 

depends on a combination of factors including the accuracy of the DNN speech separation, 

the neural reconstruction, the attention decoding, and the amplification scheme. We tested 
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the improved quality of the final output audio using both subjective and objective tests. 

Demos of the final audio output as a subject switches attention are provided online [45].

The output of the system proposed in this study produced an objectively cleaner speech 

signal with a significant increase in the PESQ score (Wilcoxon signed-rank test, p < 0.001; 

figure 8(A)). To subjectively test the preference of users on the quality of the audio output of 

our system in a multi-speaker scenario, we performed a psychoacoustic experiment (see 

Methods). Because it is known that listening effort is increased for those with hearing 

impairments in multi-speaker scenarios [4, 5], we measured the subjective quality of the 

output of our system by asking listeners to rate (from 1 to 5) the difficulty of attending to the 

target speaker (Mean Opinion Score, MOS). All but one subject reported a larger MOS 

when the system was on, with a median MOS of 3.87 (25th percentile, 3.73; 75th percentile, 

4.12) versus a median MOS of 3.5 (25th percentile, 2.9; 75th percentile, 3.8) when the 

system was off (figure 8(B)), which was a significant increase in MOS (Wilcoxon signed-

rank test, p <0.001). The one subject with no increase in MOS had almost identical scores 

for both system on (3.7) and system off (3.8). The majority of subjects also reported a 

preference for the segments where the system was turned on (9 out of 12), and a majority 

reported a preference for using the system once they were informed of its nature (10 out of 

12). In the intelligibility task, there was no significant difference in the numbers of words 

that were correctly reported when the system was on versus off. This lack of improved 

intelligibility is a well-known phenomenon in speech enhancement research where noise 

suppression does not typically improve intelligibly scores, even though listening effort is 

reduced [46, 47]. However, it is difficult to conclude whether or not our system changes 

speech intelligibility, as it is possible that our task was unable to reveal any potential 

improvements.

4. Discussion

We have developed an end-to-end system that incorporates the latest single-channel 

automatic speech-separation algorithms into the auditory attention-decoding (AAD) 

platform. Our proposed system is an important step towards developing realistic cognitively 

controlled hearing aids that use only the mixed audio of multiple speakers. This approach 

alleviates the spatial separation requirements of multi-channel approaches, but can also be 

used in tandem with beamforming methods for optimal source separation [21, 31]. In 

addition to successfully identifying the attended speaker, our system also amplifies that 

speaker, resulting in a significant increase in the subjective quality of the listening 

experience. Combined with the latest developments in AAD research, this work will move 

the field toward realistic hearing aid devices that can automatically and dynamically track a 

user’s direction of attention, and amplify an attended speaker.

4.1. Invasive and non-invasive methodologies

We used invasive ECoG recordings from neurological patients [12] because we wanted to 

determine the varying contributions of different auditory cortical areas to AAD. In addition, 

ECoG allowed us to determine the achievable decoding speed and accuracy using a neural 

signal that has a higher signal-to-noise ratio than non-invasive recordings. However, our use 
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of invasive recordings does not limit our approach to only this methodology, as previous 

work has established the feasibility of applying AAD techniques to non-invasive neural 

recordings [13, 22]. While non-invasive approaches would be preferable in future hearing 

aids, there are an increasing number of implantable devices being used to treat many 

neurological disorders such as vagus nerve stimulation ([48, 49]), responsive 

neurostimulation [50], cochlear implants [51], and deep brain stimulation [52]. Minimally 

invasive devices are also being developed that can enter the brain via a blood vessel, thus 

negating the need for open brain surgery [53]. Because invasive implantable devices can 

only provide a very limited sampling of brain areas, our finding that implicates STG in AAD 

is of significant interest.

4.2. System generalization

While the subjects in our study were only presented with mixtures of two speakers (Spk1f 

and Spk2m), our system can be extended to a more general case of multiple speakers because 

none of the DNNs were presented with mixtures containing the other target speaker during 

training (e.g. the DNN trained to separate Spk1f never saw Spk2m during training). Each 

DNN is therefore able to separate a trained target speaker from other unseen speakers.

4.3. Limitations

Our proposed system is limited to a closed set of speakers and helps a hearing-impaired user 

interact with those specific speakers in social settings. The device could switch to default 

operation when no target speaker is detected. Importantly, a new speaker can be easily added 

to the system, requiring only a small amount of clean speech from the new target speaker. 

For our experiments, we found that 20 min of clean speech was sufficient to achieve a 

satisfactory separation of the target speakers (mean Source-to-Distortion Ratio = 5.52). 

Because our reconstruction method from neural data is trained using single-speaker data, 

adding a new speaker does not involve recording new neural responses for that speaker.

A practical limitation for all algorithms intended for hearing aids is that hardware constraints 

could limit the number of DNNs that could be housed inside a portable device. However, 

modern hearing aids are able to perform off-board computing by interfacing with a cell 

phone [6], and specialized hardware is also becoming available for low-power neural 

network implementations [54–56]. Another consideration is the fact that DNNs rely heavily 

on the data used to train them. Therefore, additional training would be required to separate 

speakers under different environmental conditions [57]. Also, because people tend to 

involuntarily speak louder in noisy situations, which affects acoustic features such as pitch, 

rate and syllable duration (the Lombard effect [58]), this would also need to be taken into 

account during training of the DNNs.

4.4. Decoding-accuracy

We discovered that the reconstructed spectrograms in our data had a high correlation with 

the raw mixture. This is a problem that we needed to address, because a DNN is likely to 

output the mixture when its designated speaker is not present. The reason why the 

reconstructed spectrograms had such a high correlation with the mixture can be understood 

by looking at the single-electrode analysis (figure 5(B)). We found that many speech 
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responsive electrodes are not modulated by attention, and instead encode both the attended 

and unattended speakers. Therefore, training decoders using all speech-responsive electrodes 

will lead to reconstructions that are similar to the mixture. This analysis also revealed that 

the location of electrodes in the brain played an important role in decoding attention. This 

result is likely due to the variable degree of attentional modulation in various parts of the 

auditory system [11]. In particular, STG appears to be the cortical area that best encodes 

attended speech, whereas primary auditory cortex (HG) does not. As a result of this, we 

were unable to decode the attention of half of the subjects because they had insufficient 

coverage over STG (the correlation between ADI and the number of electrodes in STG is 

0.58). This insight could be useful when using source localization methods in EEG and 

MEG that can emphasize the neural signals coming from particular brain regions [59]. 

However, we focused our analysis on the high-gamma band of the neural data (70–150 Hz), 

which is difficult to measure using non-invasive methods, although not impossible [60–62]. 

Therefore, the contribution of brain areas to AAD in lower frequency bands of the neural 

signal needs to be further investigated.

4.5. Dynamic switching of attention

In a real-world situation, it is likely that users would want to dynamically switch their 

attention between multiple speakers as a conversation progresses. Although the subjects in 

our study alternated their attention between two speakers, they did not do so in a dynamic 

fashion; rather, there was a substantial break between each block of the experiment. When 

simulating switching of attention (figure 6), the window size used for estimation has an 

effect on both decoding- accuracy and transition-time (the time it takes to detect a switch in 

attention; figure 7). Our findings indicate that there is an optimal window-size for decoding-

accuracy: shorter window sizes produce r-values that are too noisy, and longer window sizes 

prohibit the rapid detection of switches in attention. This problem is particularly important 

when using neural signals with a lower signal to noise ratio (such as around the ear [23], or 

in ear EEG [28]). It is possible that more elaborate decoding algorithms can be used to speed 

up decoding and provide a better trade-off between decoding-accuracy and transition-time 

[27].

4.6. Psychoacoustics

One important requirement of speech enhancement techniques is to ensure that the resulting 

speech is not distorted or corrupted, as users tend to prefer no enhancement over an 

amplified but distorted signal [47]. In our experiments, the automatically separated target 

speaker was amplified by +12 dB relative to the mixture. This level has been shown to 

significantly increase the intelligibility of an attended speaker in a two-talker scenario (from 

≈88% to 98% [63]). Importantly, an unattended speaker should still be audible so that users 

can switch their attention should they choose to do so. It is still possible to understand 

speakers when they are attenuated by 12 dB, although intelligibility drops to ≈78% [63]. 

These parameters need to be further optimized when our type of system is tested in hearing 

impaired listeners and in closed-loop setups, where the decoding algorithm and the subject’s 

brain can co-adapt to converge to a suitable solution [64]. We observed a significant increase 

in the MOS when using our system, and almost all subjects reported that they would prefer 
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to have the system turned on; a finding that supports our systems potential as a useful and 

effective way to identify and amplify an attended speaker.
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Figure 1. 
A schematic of our proposed system. Two speakers, Spk1 (red) and Spk2 (blue), are mixed 

together into a single acoustic channel. In order to separate the speakers, a spectrogram of 

the mixture is first obtained (the two speakers have been marked red and blue for 

visualization purposes only). The spectrogram is then input to each of several DNNs, each 

trained to separate a specific speaker from a mixture. Simultaneously, a user is attending to 

one of the speakers (in this case, Spk1; red). A spectrogram of this speaker is reconstructed 

from the neural recordings of the user. This reconstruction is then compared with the outputs 

of each of the DNNs using a correlation analysis in order to select the appropriate 

spectrogram, which is then converted into an acoustic waveform and added to the mixture so 

as to amplify the attended speaker.
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Figure 2. 
An example of single-channel speech separation using DNNs. The top two panels display 

the spectrogram of a mixture of two speakers: Spk1f (female) and Spk2m (male). Both 

panels are the same. The left middle panel displays the output of a DNN that was trained to 

separate Spk1f from arbitrary mixtures, and the right middle panel displays the output of a 

DNN that was trained to separate Spk2m. The bottom two panels display the ideal clean 

spectrograms of each speaker, thus representing ideal separation. It is important to note that 

the DNNs never saw the interfering speakers during training or the utterance of either 

speaker during testing.
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Figure 3. 
DNN Output Correlation Analysis. To test the performance of the DNNs at single-channel 

speaker-separation, we created multiple mixtures of random speakers with four target 

speakers (two male and two female) and passed every mixture through four DNNs, each pre-

trained to separate one of the target speakers. Performance was measured by obtaining the 

correlation (r-value) between the output of each DNN and the spectrogram of the clean 

target speaker. The results from the four networks are split into two by averaging the r-
values obtained from the networks that were trained to separate a female (left of figure) or 

male (right of figure) speaker. The gray bars show the results when a DNN was presented 

with a mixture containing its designated pre-trained speaker (trained target), and the red and 

blue bars when the mixture contained an undesignated speaker (untrained target) that was 

female (red) or male (blue). The dotted line shows the average correlation between the raw 

mixture and the clean target speaker.
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Figure 4. 
Reconstruction accuracy. The correlations between the reconstructed spectrograms (from the 

neural data) and the outputs of the DNNs. Left panels show the raw r-values, and right 

panels show normalized r-values (see methods). Each subject is represented by a colored 

dot. Because the subjects alternated their attention between two speakers, the r-values 

labeled as attended and unattended come from the DNNs trained on Spk1f and Spk2m, 

whereas the r-values labeled as undesignated come from the DNNs that were trained on 

Spk3f and Spk4m. Therefore, undesignated in this sense means that these DNNs were not 

trained to separate either of the speakers in the mixture that the subjects actually listened to.
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Figure 5. 
Attention decoding index (ADI). (A) The proportion of segments (20 s) in which the 

attentional focus of each subject could be correctly decoded. The gray line (0.45) indicates 

an ADI significantly above chance (see methods). The pie charts illustrate the proportion of 

electrodes from two anatomical regions: Heschl’s gyrus (HG; red) and superior temporal 

gyrus (STG; blue). Electrodes that were responsive to speech, but that were not in either of 

these locations, are collectively referred to as Other (green). These electrodes were located 

in various anatomical regions including the middle and inferior temporal gyri, and planum 

temporale. The number that is displayed above each pie chart refers to the total number of 

electrodes that were responsive to speech for that subject. (B) The ADI for individual 

electrodes, displayed as a histogram. Bars are colored according to anatomical location. (C) 

Visualization of the anatomical locations HG (red), STG (blue) and Other (green), from an 

example subject (subject four). All brain regions above the lateral sulcus in the right 

hemisphere have been removed in order to expose HG.
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Figure 6. 
Dynamic switching of attention. Data were segmented into 60 s chunks and concatenated 

into consecutive blocks that alternated with regards to the speaker being attending to. The 

results shown here are for an example subject (subject one). Black lines indicate a switch in 

attention and the colored bar on top indicates the speaker being attended to (red: Spk1f. 

Blue: Spk2m). We used a sliding window (20 s width) to obtain normalized r-values every 

second for each of the four DNNs. Ideally, P2m (blue) and P1f (red) would alternate in being 

the largest (corresponding to the speaker being attended), and P3f (magenta) and P4m (cyan) 

would be smallest.
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Figure 7. 
(A) Average over segments. Here we show the same data as in figure 6, but with the average 

of all segments aligned to the time of attentional switch (black line) from the male speaker to 

the female speaker. Data displayed is from the same example subject as in figure 5 (subject 

one). (B) Effect of window size. The decoding-accuracies and transition-times obtained 

using a range of window-sizes, and for each subject whose attention could be decoded 

(subjects one, two and three).
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Figure 8. 
Speaker separation quality. The left panel displays the PESQ score for the raw mixtures 

(system off) and the outputs of the DNNs (system on). The PESQ score is an objective 

measure of speech quality, and ranges between 1 and 4.5 with higher numbers representing 

better quality. The right panel displays the MOS when the system was off (left) and on 

(right). The MOS ranges between 1 and 5 with higher numbers representing better quality. 

There was a significant improvement in both the PESQ and MOS scores when the system 

was on (right tailed wilcoxon signed-rank test, p < 0.001). On each box, the central mark is 

the median, the edges of the box are the 25th and 75th percentiles, and the whiskers extend 

to the extrema.
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