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Abstract

Standard treatment of primary and metastatic brain tumors includes high dose megavoltage 

radiation to the cranial vault. About half of patients survive >6 months, many attain long term 

control or cure, but 50-90% of survivors overall exhibit disabling cognitive dysfunction. The 

radiation cognitive syndrome is poorly understood and there is no effective prevention or long-

term treatment. Attention has primarily focused on mechanisms of disability appearing at six 

months to one year after radiotherapy. However, a range of studies have revealed that CNS 

alterations and dysfunction develop much earlier than 6 months following radiation exposure. This 

has prompted the recent hypothesis that relatively subtle early forms of radiation induced CNS 

damage may drive chronic pathophysiology leading to permanent cognitive decline. Within this 

perspective, the present review presents evidence of acute CNS irradiation triggered inflammation, 

and injury to neuronal lineages, accessory cells and their progenitors, and loss of supporting 

structure integrity. Moreover, injury related processes set in motion soon after intracranial 

irradiation may interact and synergize to alter the neuronal and supporting cell progenitor 

signaling environment in stem cell niches in the brain, and specifically in the hippocampus, a 

structure critical to memory and cognition. Changed niche conditions may cause a sustained 

decline in neurons and progressive deterioration of cognition. The concluding discussion 

addresses, (1) what further data is needed, and (2) potential treatment interventions, identified via 

recent findings on acute CNS radiation injury, that may reverse degenerative processes before they 

can cause permanent cognitive disability.

I. Introduction

Every year many hundreds of thousands of patients worldwide undergo radiotherapy for 

primary brain tumors and for brain metastases originating from extracranial tumors.1-5 

Radiation is an indispensable treatment mainstay for the majority of these brain tumors.6-9 
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Brain radiotherapy is subdivided into whole brain radiotherapy (WBRT) in which the entire 

brain and brainstem are irradiated, and partial brain radiotherapy (PBRT) which includes 

treatment of the tumor or tumor bed and surrounding margin, and some healthy brain tissue 

subject to incidental irradiation 4,10,11 Stereotactic radiosurgery (SRS) relies on precise 3D 

imaging and localization to deliver ablative doses of radiation to the tumor, and can 

significantly reduce exposure of healthy brain tissue.12 These modes of brain radiotherapy 

fulfill any of a range of clinical objectives including; (1) long term tumor control or cure as 

mono or combined therapy, (2) salvage treatment for slowing tumor growth or palliation, 

and (3) prophylaxis to kill metastatic cells that would otherwise become established in the 

brain.6,13-15

Presently about 100,000 brain tumor patients per year in the U.S. receiving brain irradiation 

survive >6 months, and 50-90% of these individuals exhibit cognitive dysfunction which is 

often progressive and disabling.3,16-18 Affected cognitive domains include learning, 

memory, processing speed, attention, and executive function.8,19 Patient quality of life 

(QOL) is now accorded great importance in clinical oncology, and radiotherapy-induced 

cognitive decline erodes patients' perception of QOL as revealed by a questionnaire from the 

cognitive section of the European Organization for Research and Treatment of Cancer 

(EORTC).20-2218,22 The World Health Organization (who) describes health as a “state of 

complete physical, mental, and social well-being and not merely the absence of disease or 

infirmity” (http://www.who.int/about/definition/en/print.html). The Response Assessment in 

Neuro-Oncology (RANO) working group recommended that neurocognitive outcome be 

considered as one of the primary endpoints in brain tumor clinical trials.23 Despite the 

importance and clear concern about radiation induced cognitive decline, the pathophysiology 

driving the progression of this syndrome remains poorly understood, and there are no 

effective preventative measures or long-term treatments.24

The genesis of radiation induced cognitive decline is complex with multiple interacting and 

synergistic mechanisms.25-27 Historically, the primary focus has been on markers of damage 

and cognitive decline appearing over 6 months to 1 year or more after irradiation.5 For 

example, white matter deterioration has been presumed to be a major factor underlying 

progressive cognitive decline that is generally apparent a year or so after brain irradiation.18 

Questions inevitably arose because of reports describing the absence of demonstrable white 

matter changes despite the presence of cognitive impairment.18,28,29 More sensitive imaging 

modalities such as diffusion tensor imaging (DTI) along with new lines of inquiry and 

enhanced experimental techniques in animal and cell based systems have been able to reveal 

subtle evidence of damage to white matter, the cortex, and a range of neuroanatomical 

domains at various levels of resolution much sooner than 6 months.5,18 In many studies CNS 

changes were observed within hours, days, or weeks of irradiation. For the present review 

the term early refers to acute events developing at 4 weeks (1 month) or less after radiation 

exposure.27,30,31

We and others postulate that previously undetected and comparatively subtle early 

manifestations of irradiation damage to the central nervous system (CNS) may synergize 

over time to form long-term macro and microstructural abnormalities, resulting in permanent 

cognitive disability.5,18,25 Early changes below the gross anatomical level, including a 
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decline in oligodendrocytes, microvascular damage, subtle loss of white matter integrity 

imaged with DTI, neuroinflammation, and disturbances of neuronal 

micromorphophysiology, may interact and progressively alter neuronal stem cell niches to 

impede neuronal function, viability, and progenitor cell differentiation.5,18,30 This scenario 

may result in long-term dysfunction and depletion of neurons and contribute to cognitive 

decline.4,5,32,33

This review begins by delineating the rationale for CNS radiotherapy and identifying the 

impacted cognitive domains. This is followed by a description of the time course of 

cognitive deterioration, and the evidence acquired from preclinical models supporting the 

concept that early radiation induced subtle changes in the brain are precursors to long-term, 

permanent CNS dysfunction (Figure 1). Evidence gathered via the longitudinal imaging of 

brain injury in human radiotherapy patients is then addressed in the context of (1) early and 

long-term CNS deterioration and cognitive disability, and (2) major hypotheses of radiation 

induced cognitive decline. The concluding discussion transitions to future directions and to 

potentially relevant opportunities for early therapeutic interventions, based on early CNS 

damage that may be exploited to impede progressive cognitive deterioration.3-5,18,30,33,34

II. Intracranial Radiotherapy--- Effective but with Serious Risks to Cognition

The initial barrier to success in treating brain tumors is resistance and local treatment failure 

allowing tumor recurrence and expansion.35,36 Multiple biological processes contribute to 

treatment failure in both primary and metastatic brain tumors, but it is generally held that the 

key obstacle is the inability of drugs to attain effective intra-tumoral concentrations.36,37 In 

contrast radiation uniformly penetrates both the brain and tumor parenchyma, engages 

macroscopic and microscopic disease, overcomes resistant cells, and thus is an essential 

therapeutic modality.6,8

For example in adult medulloblastoma patient cohorts with nondisseminated disease, 

craniospinal irradiation and chemotherapy have achieved a 5 year survival of 70%.38

Despite its undisputed therapeutic importance radiation often unavoidably damages the brain 

and affects cognition.27 The neurocognitive domains thought to be most affected by 

radiation are verbal and non-verbal memory, executive function, sustained attention, and 

information processing speed.8,39 The hippocampus is instrumental in learning and memory, 

while the prefrontal cortex (PFC) plays a key role in executive functioning and data shows it 

is affected by radiation.27,40-42 The underlying brain networks involved in sustained 

attention and processing speed are thought to be more distributed in nature, with most 

evidence suggesting that they rely on a complex frontal-subcortical network that involves 

both cortical and white matter structures.43,44 Radiation injury may affect some or all of 

these pathways, is multifactorial and complex, and is characterized by vascular 

abnormalities, inflammation, gliosis, demyelination, and often at high doses, white matter 

necrosis.3,45
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III. The Time Course of Neurocognitive Dysfunctionin Radiotherapy Patients

Wu and colleagues have noted that attention has largely focused on potential mechanisms of 

cognitive deterioration appearing at six months to one year following brain irradiation, rather 

than early abnormalities and how they may evolve over time.5,46 The cognitive decline 

developing after 6 months is held to be progressive and irreversible and is thus of the 

greatest concern (Figure 2).18,6,27 In the adult patient population, which is the focus of the 

present review, radiation induced neurocognitive decline follows a biphasic pattern 

beginning with a transient cognitive decline at approximately 4 months posttreatment, 

followed by an improvement, and then a progressive, irreversible deterioration in cognitive 

functioning at 12 months or later after irradiation.6 However, it is important to note that 

tumor progression during this time period may adversely affect cognition, confounding 

imaging and the measurement of radiation-induced cognitive decline in many studies. 

Radiation necrosis occurs in a minority of patients and its probability is low at doses below 

50 Gy given in 2 Gy fractions.6,47 However, the incidence increases substantially with 

escalating radiation dose, fraction size, and the use of chemotherapy.47,48 The most frequent 

neurotoxic effect of cranial irradiation at any patient age is not focal necrosis but diffuse 

cerebral injury.49 Importantly, radiation-induced cognitive decline occurs at doses much 

lower than those that can cause radionecrosis.50

IV. Early Radiation Induced CNS Abnormalities in Preclinical Animal Models

Perhaps somewhat surprisingly, early CNS functional changes developing in animal models 

after irradiation were noted decades ago. Gangloff reported that altered hippocampal spike 

activity persisting for 7 days appeared in the cat and rabbit following 4 Gy of X-rays.51 

Bassant and Court found immediate alterations in the firing patterns of rabbit hippocampal 

neurons with 4 Gy of gamma radiation.52 Pellmar and Lepinski found evidence that 5 Gy to 

the Guinea pig resulted in a decrease of synaptic efficacy soon after irradiation, with 

apparent recovery by 5 days.53 These results suggest that the hippocampus expresses 

radiation induced damage early, and an important conceptual question that has not been 

addressed until quite recently is whether early changes are somehow related to later 

dysfunction, progressive deterioration, and permanent cognitive deficits.

Early Radiation Injury to Brain Blood Vessels

Early vascular disruption in preclinical models such as the rabbit ear, evidenced by edema 

developing within hours of a single radiation dose, followed by vascular dysfunction months 

later, was first reported in the 1950s.54,55 Since then a considerable body of accumulated 

evidence has shown that radiation early destabilizes the plasma membrane of a range of cell 

types including the vascular endothelium.3,56 Cranial irradiation has reduced endothelial cell 

density in rat brains within a day of 5-200 Gy, and this dose-independent loss persisted for 

one month after exposure, followed by a slow dose-independent decrease in cell number for 

6 months, and thereafter the cell population remained depleted.31 Microvascular sequelae of 

endothelial degeneration seen in humans may occur months to years after the initial 

radiation induced damage, and include telangiectasias, microvascular dilatation, and 

thickening and hyalinization of the vessel wall.57 Such changes can trigger ischemic strokes, 
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brain microbleeds, and occlusion of small vessels, leading to local necrosis and extravasation 

with subsequent demyelinization.58 Intracerebral cavernous malformations which are 

susceptible to bleeding have been observed in human patients with a median latency of 3 to 

6 years following CNS irradiation.45,59,60 Disturbances of cerebral blood flow have been 

associated with cognitive debility, and the extent of hypoperfusion has correlated with the 

depth of cognitive deterioration.61,62 Vascular damage and associated sequelae leading to 

poor perfusion of brain tissue can secondarily cause local demyelination and focal necrosis 

which degrade cognition.47 Vascular endothelial and glial cell loss has been presumed to 

cause white matter damage and subsequent cognitive impairment.63 White matter networks 

play an essential role in supporting cortical function and cognitive dysfunction has been 

linked to damage within these networks (Figures 3 & 4).27,64 However, radiation induced 

vasculopathy alone may not entirely account for the progressive cognitive decline that 

occurs after WBRT. Greene-Schloesser et al note that in the rat, drugs such as the PPARγ 
agonist, pioglitazone, and the ACE inhibitor Ramipril do not effect improvement in the 

microvasculature after it has been damaged and depleted after irradiation, but both agents 

have been reported to prevent radiation induced cognitive decline.18,65,66

Astrocytes – Early Radiation Effects

Glial cells comprise a major proportion of the cellular population of the brain, they control a 

range of essential functions, and have long been implicated as a causative factor in radiation 

induced cognitive decline.67 How glial cells are affected by radiation and how they 

contribute to radiation induced cognitive decline remains unclear. Astrocytes are glial cells 

that have a major role in the mature CNS, supporting neurons, maintaining homeostasis, and 

modulating neurotransmitter dynamics.68 Following intracranial irradiation astrocytes 

proliferate and form scar tissue, referred to as reactive gliosis.69 Hwang et al reported that a 

single dose of 15 Gy radiation to the rat brain increased immunostaining of GFAP in 

astrocytes at 6 hours with increased staining at 24 hours, which the authors interpreted as the 

onset of gliosis.70,71 Identifying features of reactive gliosis are hypertrophy of astrocytic 

processes, upregulation of intermediate filaments, and increased glial fibrillary acidic protein 

(GFAP) expression.70,72 Their experiments suggested that PGE2 released from irradiated 

microglia is a trigger of radiation-induced gliosis.70 How astrocytic activation and 

dysfunction may affect white matter, may be affected by neuroinflammation, and in general 

contribute to cognitive decline requires further investigation. It has been reported that 

irradiation of microglia-astrocyte co-cultures and astrocyte monocultures results in the 

expression of inflammatory cytokines.73 Some evidence indicates that treatment with Ang 

1-7 peptide may prevent radiation-induced MAP kinase activation and inflammation, which 

could in theory reduce radiation-induced cognitive impairment.73

Oligodendrocytes – Early Radiation Effects

Oligodendrocytes are glial cells thought to be the most radiation sensitive cell type in the 

CNS, they produce and maintain myelin sheaths along neuronal axons. Early developing 

global reductions in their numbers has been observed in rodent brains within a few hours of 

intracranial irradiation.74,75 The majority of cycling cells in the adult brain (>75%) are 

oligodendroglial precursors and loss of these cells is presumed to diminish the replacement 

of oligodendrocytes.76 Following cranial radiation in animals manifestations of white matter 
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injury such as focal demyelinization and necrosis have been observed.77 Panagiotakis et al 

using rats head irradiated with 25 Gy of 250 Kv X-rays observed a reduction in 

oligodendroglial lineage cells and ultrastructural evidence of myelin fragmentation, but did 

not find evidence of vascular damage.76

The Role of Cranial Radiation Dosing Regimenin Glial Loss and White Matter Damage

Comparatively recent reports suggest that the nature of the brain irradiation dosing scheme 

appears to significantly influence specific pathologies in the human and animal brain (see 

Table 1).9,28,78 In rats following a high single intracranial dose (25 Gy) of 250 kV X-rays, 

Panagiotakis et al assessed oligodendrocyte lineage cell populations over 15 months.76 

Markers for mature (MBP) and developing (NG2, O4, PDGFRA) oligodendrocytes revealed 

that cell numbers at all differentiation stages showed an initial early drop followed by a 

variable pattern for several months, and finally an apparently permanent decline at about 12 

to15 months after irradiation.76 Moreover, at the 15 month time point a diffuse pattern of 

myelin loss was observed throughout the corpus callosum as well as the fimbriae, the 

external capsule and the deep white matter.76 In contrast, fractionated intracranial irradiation 

was investigated by Shi et al and delivered as 9 exposures to 5 Gy over 4.5 weeks for a total 

of 45 Gy in middle aged (12 month) Fischer 344× Brown Norway rats, a regimen that 

closely emulated human radiotherapy treatment schedules.29 At 12 months post-irradiation 

white matter gross morphology and structural integrity were normal (Table 1).29 

Importantly, despite normal appearing CNS anatomy in the Shi et al study, a fractionated 45 

Gy intracranial radiation dose in this F344 rat model has caused hippocampal and non-

hippocampal dependent cognitive deficits, along with glutamate receptor abnormalities.79 

These results align with other studies in preclinical models and with human subjects which 

have both uncovered moderate cognitive deficits in the absence of evident structural changes 

on neuroimaging.57 Chen et al exposed rat pup subventricular zone progenitor cells in vitro 
to 8 Gy of γ-rays and concluded that neither the percentage of stem cells nor their 

proliferation was affected, although progression through the cell cycle was markedly 

delayed, and, interestingly, the proliferation of a glial-restricted precursor was increased.80

Early Post-Irradiation Neuroinflammation, Vascular Damage, and the Hippocampus

Adult neurogenesis mainly occurs in two brain regions, (1) the hippocampal dentate gyrus 

and subgranular zone (SGZ) and (2) the subventricular zone (SVZ).81,82 Radiation is now 

known to suppress the proliferation of hippocampal SGZ progenitor cells and their 

differentiation into neurons.83-86 Murine hippocampal cells undergo reduced neurogenesis 

after 5 Gy or 10 Gy of intracranial X-irradiation, and the mice exhibit reduced cognitive 

abilities in maze tests.87,88 Radiation induced hippocampal impairment is currently thought 

to derive from damage to differentiated neural cells, altered neurogenesis,89 and a resultant 

loss of hippocampal plasticity.83,84,90 In line with this theory, Acharya et al. reported that 

human neural stem cell transplantation attenuated radiation-induced cognitive dysfunction in 

head irradiated mice.91,92 The hippocampus, entorhinal cortex, perirhinal cortex, and 

parahippocampal cortex are particularly sensitive to vascular injury, and radiation has been 

hypothesized to cause vascular rarefaction in the hippocampus and cognitive dysfunction 

that is reversible with hypoxia.62,93
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Astrocytes and microglia respond to brain irradiation by secreting factors that induce 

widespread neuroinflammation that can impact cell function and differentiation in the CNS.
25,94 Proinflammatory cytokines such as interleukin-1β, tumor necrosis factor-α, 

interleukin-6 and interleukin-18 have been measured in specific regions of the brain 

following radiation exposure.95 Inflammatory markers such as GFAP, intercellular adhesion 

molecule-1 and NF-κb have also been identified in irradiated brain tissue.96 COX-2 

pathways have been implicated in neuroinflammation following intracranial irradiation and 

the expression of prostaglandin E2 has been suggested as a cause of radiation gliosis.70,97 

Monje et al examined neuropathological markers of neurogenesis and inflammation in the 

human hippocampus after intracranial radiation treatment for early myelogenous leukemia 

and MB and found evidence of inflammation with virtually complete inhibition of 

neurogenesis.98 Inflammation in the hippocampal microenvironment causes microvascular 

damage which also results in the release of signaling molecules, thereby changing the 

progenitor cell microenvironment which suppresses differentiation to the neuronal 

phenoptype.94,98-101 A trophic relationship exists between microvessels and neural 

progenitors, and the levels of VEGF in the hippocampus have been shown to affect 

hippocampal angiogenesis and neurogenesis, and to modulate hippocampal plasticity of 

mature neurons.102,103 The above findings suggest potential therapeutic strategies such as 

the use of anti-inflammatory agents and implantation of neural stem cells.98,94 Jenrow et al 

reported that pharmacologically based reduction of neuroinflammation during a 9 month 

period following a single intracranial 10 Gy dose of gamma radiation to adult male Fisher 

F344 rats resulted in a higher proportion of hippocampal progenitors adopting a neural 

instead of a glial fate compared to untreated controls.10 The authors suggested that this 

outcome was due to an improved neurogenic signaling microenvironment. Importantly, the 

comparatively long time span of this study points to the possibility that neuroinflammation 

may be chronic after irradiation, and exerts protracted effects on the neuronal population, 

glial cells, and white matter, thus driving progressive cognitive deterioration.10,27

V. Early Radiation Damage to the Neuronal Lineage and Progressive 

Cognitive Dysfunction

Classically the brain has been regarded as a radio resistant organ, and neurons as essentially 

inert to radiation.5,18,104 However, some writers drawing on both old and new observations 

posit that differentiated neurons are not inert to radiation as previously thought, and suggest 

that neuronal dysfunction and not neuronal loss is the driver of radiation induced cognitive 

debility.5,90 In accordance with this view, Lee and colleagues found reduced hippocampal 

neurogenesis following irradiation of young adult male rats despite pharmacologic blockade 

of Angiotensin II mediated inflammation, yet, importantly, these animals did not exhibit 

radiation induced cognitive impairment.66 Perhaps this was because the neuronal precursor 

population is small compared to the mature neuronal compartment and hence its disruption 

may be insufficient to cause identifiable hippocampal cognitive deficits.34

Shi and coworkers demonstrated cognitive impairment in rats after fractionated WBRT, yet 

quantitative analysis of hippocampal neuron number and myelin integrity in the same model 

indicated neither hippocampal neuron loss nor changes in myelin integrity.2,17,29,79 Why this 
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study differs from other reports is not clear, possibilities include the rodent model and 

radiation dosing scheme. Another possibility is that microanatomical and functional deficits 

at the neuronal level occur soon after irradiation, without an immediate loss of neuronal 

density, apparent white matter damage, or detectable loss of gray matter volume.

Early Neuronal Microanatomical Abnormalities After Irradiation

Robbins et al (2011) performed a head radiation study using healthy adult male rhesus 

monkeys, without chemotherapy or surgery.105 These authors reported that 40 Gy in 5 Gy 

fractions were associated with impaired Delayed-Match-to-Sample (DMS) cognitive 

performance and reduced prefrontal cortical glucose uptake.105 The temporal pattern of 

cognitive decline in the monkeys over the course of 11 months closely mirrored the apparent 

cognitive course of human intracranial radiotherapy patients.105 In the context of the present 

review, a key question is whether the cognitive decline observed for rhesus monkeys was 

preceded by early CNS damage. Possible microanatomical correlates of early radiation 

induced neuronal dysfunction include changes in neuronal dendritic spine density and 

morphology. Dendritic spines are sites of synaptic contact and their morphophysiology is 

thought to provide the basis of specific components of cognition such as long-term 

potentiation (LTP) and plasticity.106-108

Dendritic spines are actin-rich protrusions of neuronal dendrites and are the site of excitatory 

synaptic transmission.109 They are highly dynamic structures populated by NMDA-type 

glutamate receptors which are activated by strong synaptic input. 109 Activation triggers 

calcium flux into the spines and cytoskeletal rearrangement that generates larger spines with 

stronger synapses. Such changes in synaptic strength are held to comprise the primary basis 

of learning and memory.109 Frankfurt and Luine related histology and behavioral tests in rats 

and identified a clear relationship between dendritic spine density in the hippocampus and 

memory.107 In the PFC early stress in humans and animals and mental illness in human 

patients can cause atrophy of dendrites and spines, and this is associated with working 

memory impairment.110 Dendritic spines in the pyramidal neurons of the PFC and the 

hippocampus, brain structures which orchestrate executive function and memory, 

respectively, change with aging and this correlates with behavioral decline.111 Brizee 

reported changes in dendritic morphology following prenatal irradiation of squirrel monkeys 

with 2 Gy of X-rays.112 Parihar and Limoli and Parihar found changes in dendritic 

morphology and plasticity in hippocampal slices from mice following doses of 0.1 and 1 Gy 

of protons or 1 and 10 Gy of X-rays at early time points, 10 and 30 days post-irradiation.
30,34 Significant reductions in the number of dendritic branches, branch points, and dendritic 

length were observed at 30 days indicating a reduction in dendritic complexity.30,34

Early Alterations in the Neuronal Signaling and the Hippocampal Progenitor Cell 
Microenvironment After Intracranial Irradiation

The hippocampus depends on the differentiation of thousands of neurons each day to 

subserve cognition and memory.113 These neurons are generated from progenitors in the 

subgranular zone of the dentate gyrus (DG) which secrete VEGF.114,115 Immature neurons 

are mainly post-mitotic and migrate into the DG granule cell layer (GCL) where they 

differentiate into mature neurons.116 Mature glutamatergic neurons in the GCL of the DG 
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form spines in the molecular layer of the hippocampus where they receive input from the 

entorhinal cortex (EC).116 Ambient GABA (γ-aminobutyric acid) is instrumental to the 

proper maturation of neurons117 This process of neurogenesis is supported by an exquisite 

niche comprised of glial cells, neurons, astrocytes which secrete Wnt, oligodendrocytes, 

extracellular matrix and remodeling microvasculature.32,114,118 Damage to any component 

of this niche may be expected to dysregulate neurogenesis. Implantation of neuronal 

precursors has been found to mitigate radiation induced cognitive decline, although Monje 

and colleagues (2002) found that transplants of non-irradiated neural precursor cells did not 

differentiate into neurons in the irradiated hippocampus.89,91,119 The authors suggested the 

failure to differentiate was caused by, (1) an altered microenvironment due to disruption of 

the microvascular angiogenesis associated with adult neurogenesis, and (2) a marked 

increase in the number of activated microglia causing inflammation within the neurogenic 

zone.89,93 In a recent study however, Bostrom reported that a high single dose of 8 Gy to the 

brain of young male C57BL/6 mice caused over one year, progressive depletion of 

neurogenesis without disruption of the neurovascular niche.120

Several authors have speculated that early dysfunction of surviving neuronal cells alters the 

signaling microenvironment thus influencing progenitor cell differentiation and cognitive 

capacity over the long-term.5,121,122 For example Wu et al reported that the ex vivo 
irradiated rat hippocampal dentate gyrus exhibited early decreases in tyrosine 

phosphorylation and loss of excitatory N-methyl-D-aspartate receptors (NMDARs) from the 

cell surface.5 At the same time the surface expression of gamma-aminobutyric acid receptors 

(GABARs) was increased.5 Moore and coworkers (2015) observed subtle changes related to 

both hippocampal and cortical signaling (2014), discovering that the Homer1a receptor 

binding protein in young adult male Fischer 344 × Brown Norway rats at 48 h after 40 Gy of 

fractionated WBRT was elevated in the hippocampus and decreased in the cortex.4 Homer1a 

engages only family 1 metabotropic glutamate receptors (mGluR) and inhibits their binding 

to the synapse.123 At 2 months following irradiation homer1a expression was reduced in 

both the cortex and hippocampus, and correlated with downregulation of hippocampal 

glutamate receptor 1 and protein kinase Cγ, and cortical up-regulation of glutamate receptor 

1 and protein kinase Cγ.4 Overexpression of Homer1a in the hippocampus is known to 

abolish maintenance of CA3-CA1 long-term potentiation (LTP), synaptic plasticity and to 

impair working memory.124-126 These are functional hippocampal effects that are duplicated 

by radiation exposure.46,127 Over the long term, months to years, dysregulated signaling 

may cause hippocampal precursor cells to differentiate into glia rather than neurons, 

resulting in a loss of neurons and the plasticity required for learning, memory, and other 

aspects of cognition.102,128-130 Importantly, other radiation induced effects such as 

inflammation may interact with signaling changes within the neurogenic SGZ niche to 

worsen dysregulation of progenitor cells in the hippocampus and elsewhere in the brain.
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VI. Neuroimaging Evidence for Radiation Induced CNS Changes in the 

Context of Time Course and Prevalent Biological Hypotheses of Potential 

Mechanisms

Structural Changes in White and Gray Matter Brain Territories

Presently imaging is the only way by which to chronicle CNS damage in a radiotherapy 

patient over time. White matter plays a key role in linking cortical territories in cognition 

while gray matter (cortex) especially in the frontal, temporal and hippocampal regions plays 

a vital role in memory and cognition. Detection and interpretation of white matter damage is 

challenging with standard MR imaging approaches. The extent of detectable white matter 

damage may depend on age (Table 1, Figure 5).18,77,105,113 One study of glioblastoma 

patients found that standard chemoradiation led to progressive volume loss of the non-tumor 

bearing brain hemisphere, with DTI changes in the subventricular (progenitor cell) zone.131 

Karunamuni et al used cortical volumetry of high resolution MRI and showed dose-

dependent cortical atrophy in high grade glioma patients one year after PBRT (Figure 6).132 

This study also showed a greater degree of dose-dependent cortical atrophy in the limbic and 

temporal lobes. These authors went on to study the selective vulnerability of cerebral cortex, 

showing that regions critical for higher-order cognition (entorhinal cortex and inferior 

parietal cortex) are the most sensitive to radiation-related atrophy.133 The same authors in 

another study modeled radiation-induced cortical atrophy, showing feasibility of sparing 

eloquent cortex with advanced planning techniques.134

Imaging Changes in the Hippocampus

Neuroimaging evidence of radiation-induced hippocampal changes are mixed. A study in 

head and neck cancer patients with low-dose incidental RT to the hippocampus found no 

volume changes, and the study cited above in glioblastoma patients found no hippocampal 

volume changes 6 months after start of chemoradiation.131,135 However one recent study 

found progressive hippocampal volume loss after chemo-radiation in malignant glioma 

patients.136 Seibert and colleagues analyzed hippocampal volume changes after PBRT in 

patients with primary brain tumors, and found significant radiation dose-dependent atrophy 

with a 6% volume loss in high-dose regions after one year, Figure 7.137 Studies correlating 

imaging biomarkers with neurocognitive effects in brain tumor patients are underway. A 

pilot functional imaging study using FDG PET showed that decreases in CNS metabolism 

after radiotherapy correlated with neurocognitive decline for problem solving and cognitive 

flexibility.61 No early changes seem have been reported in neuroimaging studies, but 

changes in neuronal structure and function may occur early along with vascular damage and 

inflammation, eventually leading to volume changes that are detectable on imaging.

Early Neuronal Abnormalities Detected by MR Spectroscopy

Neuronal damage in patients may be signaled early after irradiation by changes in brain 

chemical constituents.138 N-acetylaspartate (NAA) is a neuronal marker, and Walecki et al 

reported a decline in the Cr/NAA ratio in brain tumor patients one month after WBRT with 

60 Gy given in fractions of 1.8-2 Gy.138 The authors attributed this effect to neuronal 

dysfunction rather than neuronal loss.138 Sundgren et al also found early NAA decreases 
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that persisted, being evident at 3 weeks, 1 month and 6 months after 50.4-59.4 Gy of 

fractionated PBRT.139 These radiotherapy patients had low grade glioma (LGG)or benign 

brain tumors, and, importantly, NAA changes developed in brain regions that appeared 

normal on MRI imaging.139 Movsas et al in a small study examined NAA levels in lung 

cancer patients receiving either palliative or prophylactic fractionated 30-37.5 Gy WBRT, 

and found a statistically valid decrease in NAA, with no significant difference between 

prophylactic and palliative groups.140 The timeframes generally described by these studies 

align with the timeframe for radiation induced changes in neuronal architecture reported by 

Parihar et al.30,34

Early White Matter Changes After Irradiation Revealed by Diffusion Imaging (DI)

Novel, high resolution imaging techniques can be used to study radiation-induced brain 

injury with precision and high spatial resolution. Diffusion-weighted imaging (DWI) is more 

a sensitive MR based technique by which microstructural changes in white matter integrity 

may be detectable141,142. DWI measures and models the diffusion of water at the cellular 

level143 and diffusion-tensor imaging (DTI) models the motion of water as an ellipse, with 

derived metrics allowing the study of white matter integrity.144 Several studies have used 

DTI to study the effects of radiation on normal appearing brain white matter, specifically as 

biomarkers of demyelination and axonal dysfunction shown in preclinical models.
27,131,142,145,146 While one study suggested that DTI was only sensitive to radiation changes 

above a threshold dose of 45-50 Gy,147 others have shown changes in DTI metrics with 

doses as low as 5-15 Gy and dose dependent DTI changes.27,146,148 Importantly, Connor et 

al found CNS white matter changes on DTI appearing as early as one month after irradiation 

of glioma patients.27

Diffusion Imaging and Synergism Between Different Forms of CNS Radiation Damage

Connor and colleagues utilized advanced diffusion imaging with different diffusion 

weightings, showing dose and time dependent white matter changes which favor a primarily 

extra-axonal component of white matter injury.27 This suggests early changes in the white 

matter microenvironment like neuroinflammation may contribute to white matter/axonal 

injury. Another recent study found that diffusion changes in individual white matter bundles 

were associated with maximum dose to those tracts, implying serial radiation injury.149 

There also appears to be regional susceptibility of white matter damage. A study of 

medulloblastoma survivors found greater diffusion changes in the frontal versus parietal 

lobes.150 Another study found prominent diffusion changes in the fornix and cingula after 

WBRT.151 Several DTI studies have correlated white matter diffusion metrics with 

neurocognitive changes, for example Chapman and colleagues found that diffusion changes 

in the parahippocampal cingulum were associated with late decline in verbal recall after 

radiotherapy.152 Khong correlated changes in diffusion parameters after WBRT in childhood 

cancer survivors with intelligence quotient scores.153

VII. Conclusions

Given the fact that the CNS contains many structures potentially sensitive to radiation, it is 

probable that the irreversible cognitive deterioration that so often follows intracranial 
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radiotherapy is multifactorial in its origins.27 The present review posits the concept that 

early brain tissue abnormalities, which have in fact recently been identified, may lead to 

chronic interactive pathologies that progress to permanent cognitive deterioration. For 

example early inflammation affects the hippocampal microenvironment and may exacerbate 

dysregulated neurogenesis because of neuronal damage and altered signaling in the 

progenitor cell microenvironment. Widespread inflammation may affect white matter 

integrity and oligodendrocyte progenitors elsewhere in the brain.154 In addition white matter 

comprises part of progenitor cell niches in the brain and thus may adversely affect 

progenitors and repair mechanisms.155 A key need at the present juncture is a framework of 

how differential brain compartment susceptibilities are distributed across patient populations 

and in distinct preclinical models. This needs to be accompanied by an experimentally 

validated definition of the nature and extent of early CNS damage according to specific 

radiation dose ranges and fractionation schedules, and how such early damage evolves and 

synergizes over the long term to create permanent cognitive disability.26

The lack of an overview and mechanistic understanding of radiation induced cognitive 

decline has forced clinical investigators to base the selection of candidate therapeutics on 

extrapolations from other CNS disorders, with the unsurprising result that patient responses 

have been mixed and short term in nature. Methylphenidate, which in the past has yielded 

some beneficial results, and memantine, which is in clinical testing, are both well tolerated 

and may be helpful in select radiotherapy patients.156,157-159 A current clinical trial (NRG 

CC-001) is examining memantine and WBRT with and without hippocampal sparing. 

Acetylcholinesterase inhibitors, e.g., donepezil, are being pursued as they have produced 

some positive results in Alzheimers and other dementias.18,160,161 On the other hand anti-

VEGF agents in brain tumor patients have elicited serious concerns since in clinical testing 

the small molecule VEGF-A inhibitor bevacizumab appears to have worsened cognitive 

decline by possibly further inhibiting hippocampal plasticity.162

New strategies may evolve from recent demonstrations that neuronal architecture may be 

damaged by radiation. Protein Kinase C (PKC) over expression reduces neuronal dendritic 

spine density in the hippocampus and PFC.163,164 Hence PKC inhibitors such as 

chelerythrine, and staurosporine analogs such as midostaurin which has been approved for 

use in patients, may help protect against deleterious changes in dendritic architecture.164,165 

Benzothiazole amphiphiles promote the formation of dendritic spines in primary 

hippocampal neurons and may help overcome the effects of radiation.166 In addition recent 

data suggests that stem and progenitor cells are likely key targets in radiation brain injury 

and cognitive decline, stem cell niches may be compromised by inflammation, vascular 

damage, and extracellular matrix destruction. Stem cell niches are distributed throughout the 

brain, so one approach may be to ‘re-engineer’ CNS stem cell niches soon after irradiation.
167 Aggressive and early use of anti-inflammatory agents may prove beneficial, along with 

direct injection or targeted administration of nanoparticles bearing biomimetic extracellular 

scaffolds which have shown benefits in animal models of inflammatory CNS injury, gels, 

bioactive signaling molecules for stem and microvessel endothelial cells, and stem or 

progenitor cells.168 Moreover, small molecules such as fluoxetine, which is a selective 

serotonin reuptake inhibitor, have promoted the maturation of neurons and enhanced 

neurogenesis in animal models.169
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Future studies may offer translational promise by focusing on newly emerging data showing 

early post-irradiation changes that have the potential to impact neuronal support elements 

and the signaling environment in neuronal progenitor cell niches within the brain. In this 

regard progress may be expected based on, (1) the careful consideration of radiation dosing 

regimens, (2) more sensitive brain imaging methods for longitudinal biomarker18 and 

anatomically oriented studies, especially in the context of CNS changes developing before 6 

months after irradiation, and not all patients may be equally vulnerable (3) subtle 

morphologic and functional changes on the neuronal level,18 (4) the role of inflammation, 

and (5) the long-term signaling microenvironment in terms of neuronal progenitor cell 

differentiation. In aggregate these elements may facilitate a deeper appreciation of evolving 

radiation induced brain abnormalities at multiple levels. This would certainly establish a 

more concrete foundation for rationally based studies aimed towards the identification of 

early preventative measures and therapies to impede degenerative processes before cognitive 

decline can become permanent.
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Key Points

• Intracranial radiotherapy leads to permanent and significant cognitive 

disability in 50-90% of patients.

• The pathophysiology remains poorly understood and there are no effective 

preventative measures or long-term treatments.

• Historically, the primary focus has been on markers of damage and cognitive 

decline appearing 6 months to 1 year or more after irradiation.

• More sensitive imaging and new lines of inquiry have revealed subtle 

evidence of central nervous system (CNS) damage much sooner than 6 

months after radiation.

• These early forms of CNS damage may persist and synergize over time to 

form long-term and irreversible deficits in neuronal and supporting cell 

lineages vital to cognition.

• Consideration of early forms of radiation induced CNS damage may help 

identify early treatments to reverse degenerative processes before they can 

cause permanent disability
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Review Criteria

The database searched was primarily PUBMED together with extensive google inquiries 

based on search terms including; cognitive decline/deterioration and radiation, intra/

cranial radiation/ radiotherapy, progenitor cells, glioma, medulloblastoma, radiotherapy 

brain tumors, radiation vascular, glial cells and radiation, hippocampus physiology and 

anatomy, hippocampus and radiation, inflammation and radiation, neurons and radiation, 

among others too numerous to list. Primarily peer reviewed research papers and recent 

reviews were examined. Publications listed in review articles were acquired and 

considered, and frequently their bibliographies were also pursued. Publications older than 

1990 were generally not included, the majority of papers are 2-3 years old, and the 

emphasis was on publications less than 10 years old. However, some older papers 

showing early radiation effects in the brain and vasculature were included, as these had 

been ignored for many years, but are now important landmarks and relevant to recent 

thinking that acute effects do occur and that these may evolve and conspire to cause 

permanent cognitive disability after radiotherapy.
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Figure 1. Evidence for early radiation injury to the CNS
A proposed time course and scheme by which early damage becomes chronic and the 

interactions leading to permanent cognitive disability.
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Figure 2. 
Manifestations and time course of radiation induced CNS injury and cognitive decline.
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Figure 3. Primary radiation induced CNS abnormalities
Detailed scheme shows major proposed mechanisms contributing to radiation induced 

cognitive decline.
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Figure 4. The presumed origins of white matter damage
White matter provides essential connectivity for cortical function. Oligodendrocytes 

establish and maintain myelin around white matter axons (left panel) and their destruction 

(right panel) results in a loss of myelin integrity. Damage to feeding microvessels (right 

panel) also compromises white matter but also has adverse effects on the perfusion of other 

key CNS elements such as astrocytes which provide metabolic and functional support to 

neurons.

Makale et al. Page 28

Nat Rev Neurol. Author manuscript; available in PMC 2018 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. The severity of radiation induced white matter damage increases with age
Graph of the average degree of supratentorial white matter changes versus age. Therapeutic 

and controls groups are included, the curves were fitted and correlation calculated using 

second-order polynomial regression. Taken from Tsuruda et al (AJR 149:165-171, 1987)77. 

Used with permission.
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Figure 6. Cortical thinning according to dose at one year post-irradiation
Cortical surface representation of (A) radiation dose in Gy and (B) cortical thinning at 1 year 

observed in an example patient. Regions receiving a higher dose show a greater degree of 

cortical thinning at 1 year post radiation therapy.132
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Figure 7. Radiation dose-dependent hippocampal atrophy
Coronal projection of brain MRI from a glioma patient pre-radiotherapy (pre-RT) on left, 

and one year post-radiotherapy (post-RT) on right. Color overlay shows automated 

segmentation of hippocampus in yellow. Greater percent decrease in hippocampal volume 

was seen in the hippocampus with higher mean dose of 41 Gy. 137
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