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Abstract

Purpose of review—The purpose of this review is to discuss recent observations of epigenetic 

changes related to the complex pathogenesis of systemic vasculitides and their contribution to the 

field.

Recent findings—There have been new observations of epigenetic changes in vasculitis and 

their potential role in disease pathogenesis in antineutrophil cytoplasmic antibody-associated 

vasculitis, giant-cell arteritis, Kawasaki disease, Behçet’s disease, and IgA vasculitis. Some of this 

recent work has focused on the efficacy of using DNA methylation and miRNA expression as 

clinical biomarkers for disease activity and how DNA methylation and histone modifications 

interact to regulate disease-related gene expression.

Summary—DNA methylation, histone modification, and miRNA expression changes are all 

fruitful ground for biomarker discovery and therapeutic targets in vasculitis. Current knowledge 

has provided targeted and suggested effects, but in many cases, has relied upon small cohorts, 

cosmopolitan cell populations, and limited knowledge of functional interactions. Expanding our 

knowledge of how these epigenetic mechanisms interact in a disease-specific and cell-specific 

manner will help to better understand the pathogenesis of systemic vasculitis.
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INTRODUCTION

Systemic vasculitides are a heterogeneous group of complex inflammatory diseases of 

unknown cause. They are characterized by histological evidence of leukocyte infiltration, 

inflammation, and necrosis of the vessel wall and vascular occlusion [1]. Numerous genetic 

loci have been associated with increased risk of vasculitis, with human leukocyte antigen 
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(HLA) genes encoding major histocompatibility complex (MHC) proteins being most robust 

and pointing toward the importance of the immune system in pathogenesis [2]. 

Environmental risk factors include exposure to silica dust, unknown viral or bacterial 

infections, drugs, farming occupations as well as complex factors like age [3–6]. The 

contribution of genetics alone to the pathogenesis of a systemic vasculitis varies with 

manifestations, but does not account for the entirety of the risk. Epigenetic mechanisms 

governing gene expression sit at the interface of genetic and environmental factors related to 

a variety of diseases [7]. Epigenetics is the study of hereditary, phenotypic traits that can 

alter the chromosome without changing the underlying genetic sequence [8]. DNA 

methylation, histone modifications, and noncoding RNA are epigenetic mechanisms that 

control gene expression and regulate cellular development, differentiation and activity 

(extensively reviewed in [9▪]).

DNA methylation is an epigenetic mechanism that consists of the addition of a methyl group 

to cytosines, primarily within CpG dinucleotides, catalyzed by DNA methyltransferases 

(DNMTs). De-novo DNA methylation is conducted primarily by DNMT3A and DNMT3B 

which are essential during the gestational development of mammals. Although DNMT1 is 

primarily responsible for maintaining established methylation patterns from cell to cell, the 

extent to which their functions overlap is still being explored [10]. DNMT function and 

targeting are regulated by complex systems including DNMT expression levels, RNA 

molecules, amino-acid residue modifications, genomic sequence and methylation status, 

histone tail signatures, transcription factor availability, and chromatin accessibility [10]. 

DNMT1 is also capable of recruiting histone deacetylase 1 (HDAC1) which promotes the 

formation of heterochromatin through the removal of acetyl groups from histone proteins, 

silencing gene expression and providing a link between DNA methylation and histone 

modification [11].

Histone modification is an epigenetic mechanism that regulates the dynamic chromatin 

structure and subsequently gene expression [12]. The functional opposition to HDACs, 

histone acetyl-transferases (HATs), promote the formation of euchromatin that is permissive 

to protein-DNA interactions [12]. Acetylation is only one of a multitude of histone 

modifications found in the genome which can include ubiquitylation, residue-specific 

methylation, and phosphorylation [13]. Identifying patterns of histone modifications and 

their relationship to gene expression has provided a way to understand how chromatin 

structure controls the regulation of cellular functions, and has led to the identification of 

‘bivalent chromatin’ that contains both permissive (e.g., H3K4me2) and repressive (e.g., 

H3K27me3) histone modifications poised for expression depending on cellular 

requirements, which is vital during cell development [9▪].

Noncoding RNAs are transcribed but not translated into proteins, and act as an epigenetic 

mechanism to regulate gene expression. The most studied are microRNAs (miRNAs), 

around 22 nucleotides in length that regulate posttranscriptional gene silencing through 

translational control of mRNA molecules. miRNAs target the 3′ untranslated region of their 

target mRNA molecule and control their stability and protein interactions [14]. miRNA 

expression is controlled by other epigenetic mechanisms and itself controls these 
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mechanisms as an ‘epigenetics-miRNA regulatory circuit’ that, when perturbed, can 

contribute to disease pathogenesis [15].

The focus of this review is to discuss our current knowledge of the role epigenetics in 

systemic vasculitis, and more specifically to highlight new developments in the field of 

interest to clinicians and researchers.

ANTINEUTROPHIL CYTOPLASMIC ANTIBODY-ASSOCIATED VASCULITIS

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic 

necrotizing vasculitis of small vessels characterized by the presence of autoantigens against 

neutrophil cytoplasmic proteins, specifically myeloperoxidase (MPO) and proteinase 3 

(PR3) [1,16]. The presence of antineutrophil cytoplasmic antibodies against MPO and PR3 

is used in the classification of AAV, though not all patients have ANCA. ANCAs have been 

implicated in vascular damage in AAV patients. Neutrophils in AAV patients are more 

sensitive to activation by ANCA, as demonstrated by the production of reactive oxygen 

species and neutrophil extracellular traps (NETs) [17,18]. In normal neutrophils, MPO and 

PR3 expression primarily occurs early in cell development, contributing to the formation of 

intracellular granules, but AAV cells continue to express MPO and PR3 into maturity which 

indicates a deviation from normal gene silencing [19,20].

Ciavatta et al., Yang et al., and Jones et al. [21,22▪▪,23▪▪] have provided excellent studies of 

how epigenetic mechanisms control PRTN3 and MPO gene expression and their 

dysregulation in AAV (Fig. 1). The initial study of AAV granulocytes revealed a depletion of 

repressive H3K27me3 marks and an increase in mRNA expression of PRTN3 and MPO 
[21]. In addition, a marked demethylation of a CpG island and the promoter region of MPO 
in AAV were observed, although PRTN3 promoter region was constitutively demethylated in 

patients and controls. The authors then explored the regulatory mechanisms governing 

H3K27me3 and found enhancer of zeste homolog 2 (EZH2) interacted with Runt-related 

transcription factor 3 (RUNX3) to recruit H3K27 methyltransferase to PRTN3 and MPO. 

The promoter region of the RUNX3 gene was also hypermethylated in AAV granulocytes. 

This suggests a regulatory model whereby hypermethylation of RUNX3 and the loss of 

EZH2 and H3K27 methyltransferase recruitment is coupled with overexpression of 

H3K27me3 demethylase jumonji C domain-containing protein 3 (JMJD3) in AAV 

neutrophils. JMJD3 removes the H3K27me3 marks from regulatory regions of MPO and 

PRTN3 and increases chromatin accessibility aided by DNA demethylation allowing access 

to transcriptional machinery. Genomic regions containing genetic risk variants in AAV were 

found to be enriched for H3K27me3 marks that indicate a closed or poised state for the 

chromatin in Th17 cells, supporting the role of Th17 cells in AAV pathogenesis [24▪,25].

Yang et al. [23▪▪] investigated expression changes in genes encoding histone modification 

proteins and found a suite of four genes: euchromatic histone-lysine N-methyltransferase 1 

and 2 (EHMT1, EHMT2) and male sex lethal 1 homolog and insulin growth factor (MSL1 
and ING4) with consistent expression changes in leukocytes and granulocytes from AAV 

patients compared with healthy controls. EHMT1 and EHMT2 are associated with 

H3K9me2, a mark of gene silencing, and were found to be underexpressed in AAV 
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leukocytes and granulocytes. MSL1 and ING4 are associated with H4K16ac, a mark of gene 

activation, MSL1 was found to be overexpressed in AAV leukocytes and granulocytes, 

although ING4 was underexpressed in leukocytes, but not significantly underexpressed in 

granulocytes. These expression changes were noted to be significantly different between 

leukocytes from active AAV patients with elevated MPO/PRNT3 expression and inactive 

patients with low-expression MPO/PRNT3, making them potential disease activity 

biomarkers. H4K16ac and H3K9me2 were, respectively, enriched and depleted at MPO and 

PRTN3 promoter regions in AAV granulocytes, especially in more active disease. MLL2, 

MLL3, and MLL4 (mixed-lineage leukemia) genes that regulate H3K4me2 were 

overexpressed in AAV patients compared with healthy controls. H3K4me2 is a well-

recognized mark of transcriptional activation and, along with H3K27me3, is part of a 

bivalent chromatin signature [9▪,26]. H3K4me2 was equally enriched in both patients and 

controls at the MPO and PRTN3 promoter region, suggesting that they remain in a poised 

state at these loci even in healthy cells. Taken together, MPO and PRTN3 seem to maintain 

areas of bivalent chromatin that contain both permissive and repressive marks that are poised 

for expression with the loss of repressive marks. This occurs in AAV patients and is 

enhanced during active disease leading to abnormal over-production of granule proteins and 

neutrophil-mediated vascular damage.

Jones et al. [22▪▪] investigated DNA methylation changes in MPO and PRTN3 as potential 

disease biomarkers in AAV total leukocytes. They noted a decrease in DNMT1 expression 

but no significant reduction in global DNA methylation in AAV. However, they detected 

many differentially methylated genes in AAV patients, among these were MPO and PRTN3 
which were both hypomethylated in patients with active disease compared with healthy 

controls. Methylation levels in both genes were also significantly lower in AAV patients 

with active compared with inactive disease. In addition, DNA methylation of both MPO and 

PRTN3 was negatively correlated with gene expression. By comparing AAV subsets (PR3-

AAV versus MPO-AAV) using longitudinally collected samples from the same patients, they 

observed that MPO- and PR3-AAV patients experience a significant and near identical 

increase in the methylation level of PRTN3 promoter after disease remission. However, only 

patients with MPO-AAV, and not PR3-AAV, show evidence for a significant increase in the 

methylation level at MPO, suggesting that epigenetic changes at these two loci may provide 

a distinction between the two disease serotypes. At both PRTN3 and MOP, AAV patients 

who entered remission and displayed increased site-specific methylation had a significant 

reduction in mRNA expression of both genes, whereas those patients who experienced 

decreased DNA methylation upon remission displayed no change in gene expression. 

Perhaps the most valuable observation in this study was that demethylation of the PRTN3 
promoter region was highly predictive of disease relapse in AAV patients regardless of 

ANCA-serotype; patients with demethylation in PRTN3 were 4.55 times more likely to 

relapse. This effect was narrowed down to a single CpG site in the promoter region of 

PRTN3. These results are very promising, but a larger study will be needed to confirm the 

prognostic use of this CpG site as a biomarker for relapse in AAV patients.

One drawback to this study is the use of total leukocytes in which differences in cell 

population proportions can mask cell-specific methylation changes from being detected. One 

the other hand, total leukocytes represent an easily accessible source for clinical testing and 
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any effect that can be detected consistently in patients might have a potentially significant 

role in disease pathogenesis and will be valuable to develop into a disease biomarker.

GIANT-CELL ARTERITIS

Giant-cell arteritis (GCA) is an inflammatory disease of the large and medium arteries, 

occurring almost exclusively in people over 50 years of age, and characterized by 

granulomatous involvement which can lead to ischemia and necrosis or vision loss [27]. The 

arterial microenvironment at the site of inflammation in GCA is considerably complex with 

vessel-residing dendritic cells (DCs) acting as pathogen detectors and guiding T cell 

stimulation and the local inflammatory response, and Th1 and Th17 cells providing 

proinflammatory signals [28,29]. An exploration of DNA methylation changes occurring 

within the temporal artery of GCA patients revealed a strong T cell-specific signature 

consisting of hypomethylated loci in genes involved in TCR/CD28 signaling and calcineurin 

(Ca)/NFAT-regulatory pathways [30▪]. NFAT is a transcription factor regulating cytokine 

expression in T cells, including IFNG and TNF, and CD40LG expression, which were also 

demethylated in affected arterial tissue from GCA patients. NFAT1 was also found to be 

localized to the nucleus of cells (suggesting dephosphorylation and activation) in the vessel 

wall of GCA biopsies by immunohistochemistry. Hypomethylation of cytokine genes for 

Th1 (IFNG) and Th17 (IL6, IL21) cells, macrophages (TNF), and DCs (CCR7, CCL18) 

supported their presence in immune infiltration of the vessel wall. The Ca/NFAT pathway 

presents an intriguing therapeutic target. Dipyridamole, a highly specific calcineurin 

inhibitor, is suitable for targeting NFAT-regulated expression and has been shown to inhibit 

the production of interferon-gamma (IFNγ), IL-17, and IL-6 in T cells from MRL/lpr lupus 

mouse model [31]. Many proinflammatory genes regulated by NFAT were hypomethylated 

in GCA-affected arteries, and there is evidence that NFAT can interact with HDAC proteins 

to control histone modifications in specific contexts [32].

Croci et al. [33▪] identified miRNAs overex-pressed in GCA tissue by comparing active, 

non-active, and normal artery tissue. Of these miRNAs, miR-146a, miR-155, and miR-21 

were overexpressed in inflamed temporal artery tissue compared with noninflamed and 

normal tissue. These miRNAs play a role in the regulation of the inflammatory response in T 

cells, macrophages, and DCs. They are also overexpressed in abdominal aortic aneurysms 

and atherosclerotic plaques and might play a role in vascular remodeling [34,35]. Although 

none of the known protein targets of these miRNAs were differentially expressed, miR-21 

expression was found to be localized to cells in the medial-intimal layer of the artery in this 

study.

Age itself is a considerable risk factor for GCA and is likely due in part to changes in the 

immune function throughout the lifespan, which is known as immunosenescence [36,37]. 

Age-related DNA methylation changes in CD4+ T cells suggest a pro-inflammatory 

epigenetic architecture with age [38]. The miRNAs highlighted by Croci et al. [33▪,39] have 

also been implicated in immunesenescence and their increased expression in GCA tissue 

perhaps reflects an accelerated biological age that will need to be explored further.
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KAWASAKI DISEASE

Kawasaki disease (KD) is a medium-vessel vasculitis that primarily occurs in children 

between ages 8 months and 5 years. It is characterized by inflammation of the coronary 

arteries, and is the leading cause of acquired heart disease in children from developed 

regions [40].

DNA methylation studies of KD have revealed a relationship between FCGR2A methylation 

and response to intravenous immunoglobulin (IVIG) treatment. FCGR2A encodes the low-

affinity immunoglobulin gamma Fc region receptor II-a protein that is expressed on the 

surface of macrophages, neutrophils, monocytes, and DCs, and acts to increase phagocytosis 

and inflammatory mediator production and contains a genetic risk variant for KD [41]. CpG 

sites within the promotor region of FCGR2A were hypomethylated in whole blood cells 

from KD patients compared with controls, and especially in patients resistant to IVIG 

treatment [42]. Another small-scale study found genome-wide, site-specific 

hypomethylation changes enriched in genes associated with the inflammatory immune 

response including FCGR2A [43]. This study demonstrated significant changes in DNA 

methylation patterns following IVIG treatment in KD, including reversal of the disease-

associated hypomethylation in FCGR2A [43].

Toll-like receptors are a group of proteins that recognize molecular patterns, both exogenous 

and endogenous, and can interact with FCGR2A to induce a proinflammatory response 

[44,45]. A suite of TLR genes encoding TLR1, TLR2, TLR4, TLR6, TLR8, and TLR9 were 

found to be hypomethylated in KD patients compared with healthy and febrile controls [46]. 

The methylation levels of these genes were recovered within 3-week post-IVIG therapy, and 

mRNA expression levels maintained a negative correlation with DNA methylation.

Regulatory T cells (Tregs) play an important role in suppressing the proinflammatory 

activity and cytokine expression of Th17 cells through physical interactions or by releasing 

cytokines like IL-10 and TGF-beta. This regulatory balance seems to be skewed toward 

proinflammatory Th17 cells in acute KD patients where there is a reduction in FoxP3 

expression, a critical transcription factor in Treg activity [47]. miR-31 expression was 

increased in Tregs from acute KD patients and suppresses FoxP3 expression, although 

miR-155, which promotes FoxP3 expression, was found to be decreased in Tregs from 

patients [48]. IVIG treatment partially recovered the abnormal expression of miR-31 and 

miR-155. Furthermore, miR-145, which might be involved in modulating TGF-beta 

signaling, was increased in whole blood and detected in plasma exosomes isolated from 

acute KD patients [49]. Exosomes are extracellular vesicles released from cells that can be 

taken in by other cells and are capable of transporting miRNAs as a theorized form of cell-

to-cell communication [50,51]. Other proinflammatory microRNAs that also potentially 

target TGF-beta signaling and are involved in KD are miR-200c and miR-371-5p. miR-200c 

promotes endothelial cell apoptosis, inducing vascular smooth muscle cell inflammatory 

response and modulating TLR4 response [52]. Both miR-200c and -371-5p were shown to 

effectively distinguish between KD and healthy controls as well as IVIG-responsive and 

nonresponsive patients [53]. More recent research has identified new miRNAs with disease 

activity that potentially target vessel endothelial cell functions in KD patients [54–58]. Jia et 
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al. [55] performed a biomarker discovery screen on serum samples to detect exosome 

miRNAs in KD patients. After normalizing to internal control miRNA expression and 

recruiting an independent validation cohort, they identified two miRNA pairs (miR-1246/

miR-4436b-5p and miR-197-3p/miR-671-5p) that when combined differentiated KD 

patients from healthy and febrile disease controls. These miRNA discovery studies are 

promising but generally relied upon small phenotypically varied cohorts of patient and 

controls. More work is required to validate these findings in KD, and to understand their 

cell-specific function and evaluate their efficacy as biomarkers.

BEHÇET’S DISEASE

Behçet’s disease (BD) is a systemic, variable-vessel vasculitis of unknown cause 

characterized by recurrent acute inflammatory episodes with oral and genital ulcers, eye 

involvement, and skin involvement [59,60]. Although its pathogenesis is still currently under 

investigation, evidence points toward a combination of genetic and environmental triggers as 

contributing factors to the development of BD [59]. Genetic susceptibility for BD shows a 

very strong association with the HLA-B/MICA region, though non-MHC risk factors have 

been identified as well that support the involvement of Th1 and Th17 cells (IL10, IL12A, 

STAT4, and IL23R-IL12RB2 locus) in pathogenesis [2,61–63]. This is supported by 

research showing that Th17, Th1, and Treg cell populations and cytokine production change 

with the disease state and can be found at inflammatory sites of BD patients [64–66].

DNA methylation of CD4+ T cells and monocytes extracted from the peripheral blood of 

BD patients are hypomethylated at genes associated with cytoskeletal remodeling processes 

such as actin and microtubule processing and cell adhesion [67]. Interestingly, some of the 

methylation deficiencies observed were returned to near those of healthy control levels at 

specific genes after treatment and disease remission. This recovery was more pronounced in 

monocytes than in T cells, but genes involved in microtubule formation and organization 

(KIFA2 and TPPP) were affected in both cell types making them intriguing targets for 

clinical biomarkers and therapeutics.

Research into changes in miRNA expression in BD has revealed a variety of potential targets 

and biomarkers. Regulation of Th17 cell activity has shown up as a theme in miRNA 

research in BD. miR-23b was underexpressed in CD4+ T cells from active BD patients [68]. 

When transfected into CD4+ T cells in vitro, miR-23b reduced the expression of Notch 

pathway genes and production of IFNγ and IL-17 [68]. As an example of genetic–epigenetic 

interaction, genetic variants also play a role in miRNA functions including expression and 

protein targeting [69]. Two such variants have been identified in BD patients: rs2910164 

(MIR146A; miR-146a) and rs11614913 (MIR196A2; miR-196a2) [70,71]. Carriers of the 

rs2910164 CC genotype displayed a reduction in mature miR-146a transcripts and IL-17, 

TNF-alpha, and IL-1 beta at the protein level in PBMCs as compared with the GG genotype 

which was more frequent in BD patients [70]. Carriers of the rs11614913 TT allele had 

reduced expression of miR-196a2 in PBMCs and the T allele was significantly more 

frequent among BD patients compared with healthy and disease (Vogt–Koyanagi–Harada 

syndrome and acute anterior uveitis associated with ankylosing spondylitis) controls and 

more frequent among BD patients with arthritis compared with other subgroups [71]. 
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Reduced expression of miR-196a2 coincided with a reduction in the target protein Bach1 

and an increase in proinflammatory IL-1 beta and MCP-1 cytokines [71].

IGA VASCULITIS (HENOCH–SCHÖNLEIN PURPURA)

IgA vasculitis (IgAV) primarily targets small vessels and is characterized by the deposition 

of IgA immune complexes in the vessel wall, and disease onset is often associated with an 

infection of the upper airway or gastrointestinal tract [60]. IgAV is considered a 

geographically and ethnically ubiquitous disease predominantly of infants and children 

between 3 and 12 years of age [72]. Ascertaining genetic risk is difficult because of case 

studies of insufficient size, but a meta-analysis confirmed the risk associated with HLA-
DRB1*01 and HLA-DRB1*07 variants [2].

Luo et al. [73,74] observed a genome-wide increase in H3 acetylation and H3K4 

methylation, which are both marks of open and transcriptionally accessible chromatin, in 

PBMCs isolated from IgAV patients. These marks were positively correlated with disease 

activity and were significantly enriched in IgAV patients with renal involvement compared 

with IgAV patients without renal involvement and healthy controls [73]. Coinciding with this 

was an increase in HATs and histone methyltransferases in IgAV patients and a decrease in 

the opposing histone deacetylases and histone demethylases, indicating a shift in the 

transcriptional profile to support an abnormal transcriptionally active state [73]. IgAV 

patients with renal involvement had a marked increase in IL-4, IL-6, and IL-13 at the mRNA 

and protein levels [73]. The authors found an enrichment of H3 acetylation and H3K4me3 at 

promoter and enhancer regions of IL4, a Th2 cytokine, in CD4+ T cells from IgAV patients 

compared with controls and an increased expression of TIM-1, a suggested regulator of the 

Th2 response [73]. By comparison, IFNG, encoding IFNγ cytokine of Th1 cells, displayed 

no enrichment for these histone marks or elevated expression [73]. An IgAV-specific global 

increase in open chromatin marks coupled with the open chromatin state and overexpression 

of Th2-related genes points toward Th2 cells as being potential effectors in the pathogenesis 

of IgAV. Future studies would benefit from next-generation sequencing to gain a more 

holistic view in which these chromatin changes are occurring in both circulating immune 

cells as well as those residing in the kidney, which may have different disease-specific 

epigenetic profiles.

CONCLUSION

Epigenetic mechanisms provide a means to understand the pathogenesis of vasculitis, 

improve diagnosis, monitor disease progression, and the potential identification of novel 

therapeutic targets (Table 1). The highly interconnected nature of these mechanisms places 

the emphasis of future epigenetics research in systemic vasculitis on integrating data from 

disease-specific and cell-specific DNA methylation states, histone modifications, and 

miRNA activity.
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KEY POINTS

• Epigenetic characterization in vasculitis can provide insights into disease 

pathogenesis and identify novel potential therapeutic targets.

• The autoantigen gene loci in ANCA-associated vasculitis PRTN3 and MPO 
undergo epigenetic changes that correlate with disease activity and with PR3 

and MPO expression.

• Epigenetic changes and microRNA expression profiles can be developed into 

disease biomarkers in vasculitis, but larger cohorts and validation studies are 

needed.

• Cell-type specific epigenetic signatures can be used to map causal variants in 

genetic risk loci and identify genetic-epigenetic interactions in vasculitis.
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FIGURE 1. 
A cartoon model of epigenetic control of MPO and PRTN3 in ANCA-associated vasculitis. 

Ciavatta et al. and Yang et al. suggest that histone modifications surrounding the promoter 

and enhancer regions of MPO and PRTN3 in AAV are in a bivalent state (presence of both 

repressive and permissive marks), maintaining gene silencing in mature neutrophils that is 

disrupted in AAV patients. In neutrophils from healthy controls and inactive patients with 

low MPO and PR3 expression, JMJD3 demethylates H3K27, although PRC2 remethylates it 

in kind to maintain a condensed silent state. EHMT1 and EHMT2 assist by maintaining 

H3K9me2 in the same region. Permissive H3K4me2 marks suggest an epigenetic poising 

and are present in both patients and controls, though the MLL2, MLL3, and MLL4 genes 

that regulate this mark were overexpressed in patients compared with controls. DNA 

methylation of the gene promoter and enhancer regions provides a second method of 

epigenetic control, preventing the access of transcriptional machinery, and CpG islands can 

be targeted by PRC2 as well for H3K27me3. In patients with active disease, some disruptive 

process interrupts the gene silencing and a decrease in RUNX3 expression prevents the 

reestablishment of H3K27me3. Decreased expression of EHMT1 and EHMT2 correlates 

with depletion of H3K9me2 and an increase in MSL1 expression correlates with enriched 

H4K16ac, a mark of gene activation. Jones et al. found that leukocytes from active AAV 

patients have decreased DNMT1 expression and a site-specific decrease in DNA 

methylation, suggesting a process that targets specific loci including MPO and PRTN3 and 

allows for gene expression. When AAV is inactive, methylation at these loci is returned to 

levels near that of healthy controls and expression is reduced. This suggests that MPO and 

PRTN3 DNA methylation is a disease-specific process supported by the identification of a 

CpG site in the PRTN3 promoter (CpG #13) that is demethylated in patients with a higher 
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risk of relapse. AAV, ANCA-associated vasculitis; ANCA, antineutrophil cytoplasmic 

antibody; MPO, myeloperoxidase; proteinase 3; PR3, proteinase 3.
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