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CH-8093, Switzerland
‡Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
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Colloidally synthesized nanocrystals (NCs) are presently
employed as artificial atoms for predictable design of

solid-state materials for a plethora of applications.1,2 Tuning the
electronic characteristics, foremost type, concentration and
mobility of charge carriers remains a formidable challenge for
bottom-up engineered nanostructures. As-synthesized NCs are
usually capped with long-chain organic ligands covalently
attached to surface NC atoms.3 These ligands hamper
electronic transport in NC-based materials, making the removal
of these electrically insulating shells absolutely necessary.
Organic ligands are often replaced by strongly or weakly
coordinating, shorter, organic or inorganic ligands such as
pyridine,4 hydrazine,5 ammonia,6 thiols,7 chalcogenidometa-
lates,8,9 thiocyanate,10,11 tetrafluoroborate salts,12 oxometa-
lates,13 halides,14 halometalates15 or chalcogenides,16−18 metal
ions,19,20 etc. The capping of NCs with such ligands enhances
electronic coupling between adjacent NCs and allows for the
modulation of nearly all practically relevant electronic
parameters.21,22

Similar to bulk semiconductors, intrinsic stoichiometry and
extrinsic impurities can be expected as primary players for
controlling n-, p- or intrinsic charge transport (Scheme 1). The
combined effect of the NC core composition and of the chosen
capping ligand can be rationalized considering charge-orbital

balance.25 In the case of NCs, charge and bond counting must
also include covalently attached ligands and/or surface charges.
In particular, colloidal NCs of lead chalcogenides (PbX, X = S,
Se, Te) contain a fully stoichiometric core covered with an
excess of Pb cations, acting as adatoms for coordinating with X-
type capping ligands such as carboxylates.26 The fate of this
additional quantity of Pb must be considered for controlling
and understanding the electronic properties of the final solid
material, as discussed later for various surface treatments.
Extrinsic dopants for substitutional doping can be introduced
via surface functionalization. Surface passivation with halide
ions (Cl−, Br− and I−) has been shown to result in NC solids
with n-type conductivity with adjustable charge carrier mobility
and concentration.23,27 This n-type doping effect from halide
ions can be rationalized based on the charge neutrality
requirement: substitution of one double-charged chalcogenide
anion with a single-charged halide ion and an electron, as
illustrated in Scheme 1.
Analogously, an efficient p-type doping strategy is to replace

a double-charged Pb or Sn ion with a single-charged cation,
such as potassium or sodium, and a hole (Scheme 1). For
accomplishing this with colloidal PbS NCs as starting building
blocks, a two-step strategy is detailed. First, an alkali metal
containing inorganic capping ligand (K2S, K2Te and Na2S) is
attached to the surface via a ligand-exchange reaction. Second,
substitutional doping is induced by thermal annealing. We then
thoroughly characterize the charge transport by electrical
conductivity (σ), Hall-effect and thermopower (Seebeck
coefficient, S) measurements. A variety of control experiments
with other ligands, for differentiating the effects of chalcogen
and alkali metals, is presented. Experimental results show that
tunable p-type conductivity can be accomplished with various
NC−ligand combinations, either chalcogen-matched (i.e., PbS-
K2S) or mismatched (i.e., PbS-K2Te). Furthermore, fine-tuning
of hole concentration has been demonstrated with a mixture of
ligands, wherein one contains alkali metal (e.g., A2X) and the
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Scheme 1. Atomic Depiction of Substitutional Electronic
Doping for Rendering PbS n-Type23 or p-Type (this work)
with High Carrier Densitya

aThe similarity in corresponding Shannon ionic radii24 of cations (133
pm for Pb2+ and 116 pm for Na+) and anions (184 pm for S2− and 181
pm for Cl−) favors high doping levels.
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other contains only the chalcogen (X dissolved in a dithiol/
diamine mixture; denoted as X-complexes).
In the following, the details of the surface functionalization

and resulting electronic properties are presented for ∼11 nm
cubic PbS NCs for seven ligands and their mixtures, to illustrate
the rational chemical engineering of p-type conductivity in
nanostructured Pb chalcogenides (Figure 1). All samples differ

only in their surface treatment, whereas the temperatures and
procedures of thermal consolidation are maintained very
similarly (400−450 °C, see the Supporting Information (SI)
for further details on all synthesis procedures and character-
izations, including Figures S1−S16 and Tables S1−S3).
To understand the intrinsic nature of the PbS NC and its

relationship to the electronic properties of the corresponding
nanomaterial, taking into account the purely inorganic part and
the organic shell surrounding it, two reference samples were
prepared. In the first reference, both inorganic core and organic
shell were treated as a unit (OA-PbS). In a typical experiment,
several grams of PbS NCs were prepared according to reported
methods by reacting lead oleate with an oleylamine-based sulfur
precursor.23 Purified NCs were capped exclusively with long-
chain oleate ligands, as confirmed by NMR measurements.
Prior to the consolidation, such organic ligands were thermally
decomposed by annealing the as-synthesized NCs at 450 °C
under inert gas. The obtained powder was consolidated by hot-
pressing into ∼1 mm thick disk-shaped pellets, 10 mm in
diameter (40 MPa, 420−440 °C, 4 min). Pellets obtained from
oleate-capped PbS NCs (OA-PbS) exhibit low densities
(∼80%) attributed to decomposition and removal of the
capping ligands.28 Consequently, impurities of PbO and
carbon, both quantities scaling with NC size (surface-to-volume
ratio), are typically observed in such samples. These impurities
accumulate at the grain boundaries.29 For 11 nm PbS NCs, the
amount of Pb-adatoms that are converted into PbO is
estimated to be ca. 7.7 at. % of the stoichiometric core PbS
(Tables S1 and S2). This material exhibits rather low room
temperature (RT) electrical conductivities (0.07 S cm−1, Figure

1b). A positive sign on the Seebeck coefficient (Figure 1c)
indicates a p-type conductivity. Measurements of the Hall hole
concentration at RT showed a relatively low doping level (p =
1016 cm−3). As the temperature increased, thermally activated
electrons increasingly contributed to the conductivity, as
commonly observed for Pb chalcogenide solids,6,23,30 eventually
inverting the sign of the Seebeck coefficient to negative at ca.
450 K.
On the other hand, to evaluate the sole influence of the

inorganic part of NCs, we have studied the case of a ligand-free
surface design. Native organic ligands were removed using a 4
M solution of hydrazine in anhydrous ethanol. Ethanol is
known to desorb oleate from the NC surface through the
nucleophilic addition of ethoxide to the carboxylate group,
which activates the protonation of the oleate and consequently
its desorption.31 In the presence of hydrazine, the concen-
tration of ethoxide nucleophiles increases promoting oleate
removal and generating desorbed oleic acid and oleic
hydrazide.31 Additionally, hydrazine was selected due to its
strong reducing character, which allows for producing non-
oxidized, fully inorganic compositions, without introducing new
chemical elements into consideration.32,33 Solids produced
from N2H4-treated PbS NCs exhibited high electrical
conductivities and a negative Seebeck coefficient in the whole
temperature range. Hall electron concentrations, measured at
RT, were on the order of 2 × 1019 cm−3, much higher than that
of the OA-PbS-derived nanomaterial. This can be ascribed to
the conversion of divalent Pb-adatoms to Pb0, acting as n-type
dopants.34,35

Surface modification with K2S, K2Te and Na2S was carried
out via a phase-transfer reaction, in which the PbS NCs
migrated from the nonpolar phase (hexane) to the polar phase
(N-methylformamide; MFA) upon displacement of oleate
ligands with the alkali metal chalcogenides (Figure 2a, Figure
S16). MFA was chosen due to its high dielectric constant,
which facilitates the electrostatic dissociation of the alkali
counterions and the adsorption of anionic ligands onto the NC

Figure 1. (a) Summary of the used ligands for the surface
functionalization/treatment of 11 nm PbS NCs and resulting transport
properties at RT. (b) Temperature-dependent electrical conductivities,
σ. (c) Temperature dependence of the Seebeck coefficients, S.

Figure 2. (a) Schematic of the ligand-exchange reaction at the surface
of PbS NCs: oleate ions are replaced with Te2−; partial S2−-to-Te2−

anion exchange also occurs. K-ions occupy Pb sites in the final solid.
(b) HRTEM images after the surface treatment with K2Te for 17 h,
displaying Moire ́ fringers and crystallographic maps showing the core−
shell PbS@PbTe structure. (c) Lower resolution TEM images after
treatment with K2Te (top) and Te-complexes (bottom) for 17 h.
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surface. Consequently, the steric stabilization of NC colloids is
switched to electrostatic stabilization (Figure S4). A byproduct
of alkali metal oleate was fully removed by several cycles of
precipitation and redispersion of NCs in MFA, using acetone as
a nonsolvent to cause precipitation. An analogous phase-
transfer approach was utilized in order to treat PbS NCs with
molecular chalcogen complexes (X-complexes). The latter were
prepared by dissolving ∼4 wt % of elemental chalcogens in
ethanedithiol−ethylenediamine (1:4) mixtures.36 In the sub-
sequent ligand-exchange process, the polar phase was
composed of an MFA:ethylenediamine (1:1) mixture, and
acetone was replaced with acetonitrile as a nonsolvent. For a
controlled introduction of varying quantities of alkali metals
onto the NC surface, A2X ligands and X-complexes can be
mixed in desired ratios.
The functionalization of initially Pb-rich PbS NCs with S-

complexes, followed by thermal consolidation is assumed to
yield PbS nanomaterial with a stoichiometry closer to 1:1,
similar to the reported effect of the ammonium thiocyanate
ligand.23 The oxidation state of the Pb-adatoms should rather
follow the N2H4-scenario (n-type), but the quantity of the
formed Pb0 should be much lower, if any. In accordance with
these considerations, this nanomaterial indeed shows a negative
Seebeck coefficient in the whole temperature range, with carrier
concentrations (n = 8 × 1017 cm−3) 25 times lower than in the
case of N2H4-treatment, but much higher than for OA-PbS.
Similarly, bulk PbS had been shown to acquire n-type
conductivity due to a slight Pb surplus, caused by the S loss
upon prolonged annealing.37

In striking contrast to a previous example, solids derived
from A2S-treated (A = K, Na) PbS NCs (Figure 1) exhibited
clear p-type behavior, apparent from the positive sign of the
Seebeck coefficients in the whole temperature range. The Hall
hole concentrations in Na2S−PbS and K2S−PbS nanomaterials,
measured at RT, were p = 9 × 1017 cm−3 and p = 2 × 1016

cm−3, respectively. This is consistent with the doping scenario
depicted in Scheme 1: Pb surplus at the surface is neutralized
by additional chalcogenide anions from the ligand, and some Pb
ions are substituted with shallow electron acceptors (A+)
incorporated into the cation sublattice. In other words, Pb2+ is
substituted by a localized K+ (or Na+) and a mobile hole (h+).
The highest achievable hole concentrations were ca. 9 × 1017

cm−3 (at RT). The difficulty of reaching even higher hole
concentrations in this bottom-up approach is attributed to the
deficiency of S, counteracting the p-doping from alkali metals.
To overcome the doping limitation inherent to S-based

nanomaterial we investigated Te-based ligands. The amount of
chalcogen-based ligand used in the ligand-exchange reaction is
always much higher than that required for binding each Pb-
adatom at the NC surface. Hence, the observation of core−
shell PbS@PbTe NCs (Figure 2) is unsurprising, caused by the
anion-exchange occurring when PbS NCs were subjected to
Te-based ligands. High-resolution transmission electron mi-
croscopy (HRTEM) micrographs of the produced PbS@PbTe
NCs revealed the presence of Moire ́ fringes characteristic of the
superposition of different crystal phases. The doublet points
marked by red and green in the power spectrum allowed for
differentiation between the core and the shell lattice. Both core
and shell have identical cubic rock-salt crystal structure (S.G.:
Fm3m) and differ only in the lattice constant (6.46 and 5.94 Å
for PbTe and PbS, respectively). Low-magnification images
revealed that the formation of PbTe during ligand removal
induced NC sintering through the PbTe shell (Figure 2c). Both

the duration of the ligand exchange in solution (up to 500 h)
and thermal treatment (10 min, 210 °C) contribute to the
degree of the anion-exchange and crystallinity of the produced
PbTe shells. The resulting powder X-ray diffraction (XRD)
pattern indicates that the anion-exchange occurs rapidly in
solution within seconds (Figure 3, S8). Longer reaction times

lead to crystallization of PbTe already at RT. PbTe content
increases only slightly from 23% after 0.5 h to 30% after 500 h
(as determined from Rietveld refinement).
Such Te-ion-exchanged PbS NCs, using K2Te or Te-

complexes, were thermally consolidated by hot-pressing into
solids of the approximate composition K0.01Pb0.99S0.7Te0.3
(denoted as K2Te-PbS) and PbS0.7Te0.3 (i.e., Te-PbS). K2Te-
PbS nanocomposites exhibited strong p-type behavior, with
high electrical conductivities over the whole studied temper-
ature range, Hall hole concentrations of approximately 3 × 1019

cm−3 at RT, and a positive sign and value of 222 μV K−1 for the
Seebeck coefficient (Figure 4). In contrast, in the case of Te−
PbS nanocomposites, much lower electrical conductivities and
low carrier concentrations were obtained (p = 1016 cm−3),
indicating a quasi-intrinsic behavior (very low doping levels).
Seebeck coefficients were also much smaller (103 μV K−1) with
a sign inversion at approximately 470 K; a behavior associated
with bipolar effects. At RT, electronic transport was somewhat
dominated by holes, and as the temperature increased, the
electrons become the major carrier type. Carrier concentration
could be further tuned in the range of 1016−1019 cm−3 by
combining K2Te- and Te-treated NCs in various ratios (Figure
4).
The approach presented herein, which combines surface

functionalization and thermally induced substitutional doping,
can be extended to other semiconductor NCs. As an example,
in a fully lead-free system, derived in an analogous manner from
colloidal SnSe NCs and K2Se as capping ligands, a p-type
electrical transport with Seebeck coefficients of 320 μV K−1 and
high hole concentrations of 6 × 1017 cm−3 were obtained at RT
(Figure 5).

Figure 3. XRD patterns of PbS NCs after the exchange of oleate with
K2Te recorded for different ligand-exchange reaction times before (a)
and after (b) annealing at 210 °C. Color code for atoms is same as in
Figure 2.
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In summary, a bottom-up strategy to produce fully inorganic,
nanostructured Pb chalcogenide solids with tunable p-type
transport using colloidal PbS NCs as initial building blocks has
been presented. In particular, surface functionalization was used
as a platform to modulate NC stoichiometry as well as to
introduce controlled amounts of dopants. Substitutional doping
with K+ and Na+ ions, with hole concentrations adjustable up to
3 × 1019 cm−3, was accomplished via ligand exchange of the
native organic surface molecules with alkali metal chalcoge-
nides, followed by thermal consolidation into densely packed
solids. We envision this strategy to be highly instrumental for
both thin-film and bulk-like solids, with possible applications in
thermoelectrics and electronics.
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(23) Ibañ́ez, M.; Korkosz, R. J.; Luo, Z.; Riba, P.; Cadavid, D.;
Ortega, S.; Cabot, A.; Kanatzidis, M. G. Electron Doping in Bottom-
Up Engineered Thermoelectric Nanomaterials through HCl-Mediated
Ligand Displacement. J. Am. Chem. Soc. 2015, 137, 4046−4049.
(24) Shannon, R. Revised Effective Ionic Radii and Systematic
Studies of Interatomic Distances in Halides and Chalcogenides. Acta
Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32,
751−767.
(25) Voznyy, O.; Zhitomirsky, D.; Stadler, P.; Ning, Z.; Hoogland, S.;
Sargent, E. H. A Charge-Orbital Balance Picture of Doping in
Colloidal Quantum Dot Solids. ACS Nano 2012, 6, 8448−8455.
(26) Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. Surface
Chemistry of Colloidal PbSe Nanocrystals. J. Am. Chem. Soc. 2008,
130, 15081−15086.
(27) Zhitomirsky, D.; Furukawa, M.; Tang, J.; Stadler, P.; Hoogland,
S.; Voznyy, O.; Liu, H.; Sargent, E. H. N-Type Colloidal-Quantum-
Dot Solids for Photovoltaics. Adv. Mater. 2012, 24, 6181−6185.
(28) Marks, B. M.; Howard, H. C. The Catalytic Decomposition of
Oleic Acid. J. Phys. Chem. 1927, 32, 1040−1048.
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