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Abstract

Scaffolds with extracellular matrix-like fibrous morphology, suitable mechanical properties, 

biomineralization capability, and excellent cytocompatibility are desired for bone regeneration. In 

this work, fibrous and degradable poly(ester urethane)urea (PEUU) scaffolds reinforced with 

titanium dioxide nanoparticles (nTiO2) were fabricated to possess these properties. To increase the 

interfacial interaction between PEUU and nTiO2, poly(ester urethane) (PEU) was grafted onto the 

nTiO2. The scaffolds were fabricated by electrospinning and exhibited fiber diameter of <1 μm. 

SEM and EDX mapping results demonstrated that the PEU modified nTiO2 was homogeneously 

distributed in the fibers. In contrast, severe agglomeration was found in the scaffolds with 

unmodified nTiO2. PEU modified nTiO2 significantly increased Young’s modulus and tensile 

stress of the PEUU scaffolds while unmodified nTiO2 significantly decreased Young’s modulus 

and tensile stress. The greatest reinforcement effect was observed for the scaffold with 1:1 ratio of 

PEUU and PEU modified nTiO2. When incubating in the simulated body fluid over an 8-week 

period, biomineralization was occurred on the fibers. The scaffolds with PEU modified nTiO2 

showed the highest Ca and P deposition than pure PEUU scaffold and PEUU scaffold with 

unmodified nTiO2. To examine scaffold cytocompatibility, bone marrow-derived mesenchymal 

stem cells were cultured on the scaffold. The PEUU scaffold with PEU modified nTiO2 

demonstrated significantly higher cell proliferation compared to pure PEUU scaffold and PEUU 

scaffold with unmodified nTiO2. The above results demonstrates that the developed fibrous 

nanocomposite scaffolds have potential for bone tissue regeneration.
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1. Introduction

Self-regeneration of critical size bone defects caused by trauma, tumor removal, and 

infection remains challenging in clinical settings. [1–3] Scaffolds have been widely used to 

aid the regeneration. A typical scaffold should have appropriate porosity to allow cell 

ingrowth, be osteoconductive, and possess suitable mechanical properties. [1–3] Among 

different types of scaffolds, those mimicking the properties of bone tissue extracellular 

matrix (ECM) have been considered as promising candidates.[4–7] These scaffolds can 

accelerate the regeneration by preventing fibrous encapsulation, promoting osseointegration, 

and stimulating cell infiltration, proliferation and osteogenic differentiation. [4–8]

Bone is a hard tissue that also has high toughness and tensile strength. To fabricate scaffolds 

with suitable toughness, flexible polymers such as polyurethane and polycaprolactone can 

be used. [9–44] The resulting scaffolds generally have higher toughness than those based on 

stiffer polymers such as polylactide and polyglycolide. Biodegradable polyurethane is a 

class of polymer that has attracted great attention in the biomaterials community due to its 

excellent biocompatibility and robust mechanical properties. Porous thermoplastic and 

thermoset polyurethane scaffolds have been utilized for bone regeneration in animal and 

preclinical studies. [9–29] The scaffolds with tailored chemical and mechanical properties 

can promote osteogenic cells to populate and differentiate within the scaffolds, thus 

stimulating bone regeneration.[25–29] To further augment the regeneration, growth factors 

such as BMP-2 and PDGF have been loaded into polyurethane scaffolds.[28, 45–47] One of 

the limitations for biodegradable polyurethane scaffolds is that their modulus and tensile 

strength are much lower than those of the bone tissue. Increasing these properties is 

expected to make polyurethane scaffolds more suitable for bone regeneration. An effective 

approach is to use stiffer soft segment during the synthesis. For example, replacing 

polycaprolactone with polyhydroxybutyrate can largely increase polyurethane Young’s 

modulus and tensile strength.[48–52] However, this approach may simultaneously 

compromise toughness of the polymers.

Polyurethane composite scaffolds may retain toughness of the polyurethane while increasing 

modulus and tensile strength. Microspheres and nanoparticles can be incorporated into 

polyurethane scaffolds during the fabrication, such as hydroxyapatite,[14, 53, 54] carbon 

nanotubes,[55–57] and titanium dioxide (TiO2). [58, 59] These inorganic materials are much 

stronger and stiffer than polymers. Compared to microspheres, nanoparticles may better 

reinforce polyurethanes because of their higher surface area-to-volume ratio.[60] TiO2 

nanoparticles are attractive for polymer reinforcement especially in dental applications.[61–

63] These nanoparticles have good biocompatibility and antibacterial property.[61–63] In 

addition, they can suppress immune response which commonly occurs after scaffold 

implantation.[64] In this work, we took advantage of these properties to fabricate TiO2 

nanoparticles-reinforced polyurethane scaffolds. A major limitation of using unmodified 
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TiO2 nanoparticles to reinforce polymers is the uneven distribution, which compromises the 

reinforcement effect.[65] In addition, the nanoparticles may readily leach out from the 

scaffolds when their interactions with polymers are weak. [65] The released nanoparticles 

may be intaken by cells causing potential damage.[66] To address these limitations, 

approaches such as surface modification of TiO2 nanoparticles, [65] and increase of polymer 

polarity [67] have been developed to augment the physical interactions of the nanoparticles 

and polymers. In this work, we hypothesized that chemical conjugation of polymers to the 

TiO2 nanoparticles can better increase the interactions than simply modifying either the 

nanoparticles or polymers, thus efficiently increasing scaffold modulus and tensile strength, 

and decreasing nanoparticle release.

Bone tissue ECM is a nanocomposite consisting of collagen fibers and hydroxyapatite 

nanoparticles. Thus, scaffolds with fibrous morphology and biomineralization capability are 

desired for bone regeneration. To fabricate scaffolds with fibrous morphology, commonly 

used techniques include thermally induced phase separation,[68–71] and electrospinning.

[72–75] Thermally induced phase separation technique generates fibers with diameter 

ranging from few to 100 nm depending on the phase separation temperature and solution 

concentration. [68–71] Electrospinning of polymer solution is a more convenient approach 

to fabricate fibrous scaffolds. The resulting scaffolds typically have fiber diameters in the 

range of 10–1000 nm, within the range of fibrous ECM. [72–75] A major advantage of 

electrospinning is that reinforcement nanoparticles can be readily incorporated into the 

fibers during fabrication by mixing with polymer solutions.[76] In this work, we electrospun 

polyurethane scaffolds with TiO2 nanoparticles in the fibers. Previous study demonstrated 

that TiO2 surface with nanostructure has the ability to promote apatite formation.[8] It is 

hypothesized that the TiO2 nanoparticles impart the scaffolds with biomineralization 

capability. We investigated the capability of TiO2 nanoparticles in improving scaffold 

mechanical properties, promoting biomineralization, and supporting osteogenic cell 

proliferation.

2. Materials and methods

2.1. Materials

All chemicals were purchased from Sigma-Aldrich unless otherwise stated. Hexamethylene 

diisocyanate (HMDI) was purified by vacuum distillation. Polycaprolactone (PCL) diol with 

an average molecular weight of 2000 g/mol, and dimethylolpropionic acid (DMPA) were 

vacuum dried overnight at 60°C before use. TiO2 nanoparticles comprised of 50% anatase 

and 50% rutile crystal forms. The average particle size and purity were 21 nm and 99.9%, 

respectively. Anhydrous toluene, dimethylformamide (DMF), and isopropanol were used as 

received.

2.2. Functionalization of TiO2 nanoparticles with reactive hydroxyl groups

TiO2 nanoparticles were reacted with DMPA to introduce hydroxyl groups (Scheme 1) 

following a previous report.[65] DMPA was dissolved in 2-propanol. The nanoparticles were 

then dispersed in the DMPA solution. After ultrasonic agitation for 5 min, the mixture was 

reacted at 80°C for 12 h under constant stirring with the protection of nitrogen gas. The 
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molar ratio of DMPA to nTiO2 was controlled at 2.4. After reaction, the nanoparticles were 

collected by centrifugation at 10000 rpm, and then washed with methanol for 3 times to 

remove the unreacted DMPA.

2.3 Synthesis of poly(ester urethane) (PEU) grafted TiO2, and poly(ester urethane)urea 
(PEUU)

The PEU grafted TiO2 nanoparticles (PEU-g-nTiO2) were synthesized by a two-step 

approach (Scheme 2). In the first step, HMDI and PCL diol were dissolved in a mixture of 

DMF/toluene at 1:1 volume ratio. The molar ratio of HMDI and PCL diol was 2:1. Stannous 

octoate was then added. The reaction was conducted at 85°C for 2 h with the protection of 

nitrogen gas. In the second step, the DMPA functionalized nTiO2 was added to the above 

solution. The molar ratio of HMDI and the functionalized nTiO2 was 1:1. The reaction was 

conducted at 80°C for 4 h. The mixture was then centrifuged followed by washing with 

DMF/toluene for 3 times. The PEU-g-nTiO2 was finally vacuum dried at 40°C. To confirm 

the conjugation of PEU, the material was characterized by FT-IR.

PEUU was synthesized using PCL as soft segment, and HMDI and putrescine as hard 

segment following our established protocols.[75, 77] The molar ratio of PCL diol, HMDI 

and putrescine was controlled at 1/2/1. In brief, PCL diol was dissolved in DMSO to form a 

solution. HMDI was then added under the protection of nitrogen gas. After addition of 

stannous octoate, the reaction was conducted at 80°C in an oil bath for 3 h to form 

prepolymer. The solution was cooled down to room temperature. Putrescine solution in 

DMSO was then added dropwise to the prepolymer solution for chain extension. The 

mixture was stirred at room temperature overnight. The polymer solution was precipitated in 

cold NaCl solution. After immersing in the DI water for 24 h, the polymer was vacuum dried 

at 60°C.

2.4. Fabrication of fibrous PEUU scaffolds reinforced with PEU-g-nTiO2

The fibrous scaffolds were fabricated by electrospinning. PEUU was dissolved in 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to form a 6% solution. PEU-g-TiO2 was then 

added to the solution. The mixture was sonicated to allow particles to uniformly distribute in 

the solution. The ratio of PEUU and PEU-g-TiO2 was controlled at 1/1, 1/2, and 2/1 wt%, 

respectively. The mixture was charged at +15 kv. The flow rate was 1 ml/h. The fibers were 

collected on a rotating mandrel with rotation speed of 1000 rpm, and charged at -10 kv. The 

resulting scaffolds (abbreviated as PEU-g-TiO2/PEUU) had a thickness of ~100 μm. Pure 

PEUU scaffold, and PEUU scaffold with unmodified TiO2 nanoparticles (ratio of 1:1, 

abbreviated as nTiO2/PEUU) were also fabricated to serve as controls.

2.5 Characterization of PEUU scaffolds reinforced with PEU-g-nTiO2

Morphology of the scaffolds was characterized by a LEO 1530 scanning electron 

microscopy (SEM). The bulk composition was analyzed using energy-dispersive x-ray 

spectroscopy (EDX) attached to the SEM. FT-IR spectra were recorded on a Nicolet Magna-

IR 750 spectrometer. To measure mechanical properties, dog bone-shaped die with ~20 mm 

gauge length and ~2 mm gauge width were used to cut 4–5 specimens from each scaffold. 

The specimens were immersed in 37°C water for 24 h before test. The tensile testing was 
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performed on a TestResources 1000R load frame (model 1322) equipped with a 222.4 N 

load cell and a 37°C water bath. [75, 77] A cross-head speed of 10 mm/min was used.

2.6 Biomineralization of PEUU scaffolds reinforced with PEU-g-nTiO2

PEUU, nTiO2/PEUU, and PEU-g-nTiO2/PEUU scaffolds were used for the assessment of 

biomineralization property. The samples were weighted and then immersed in a simulated 

body fluid (SBF) at 37°C. SBF was prepared by dissolving 10.806 g NaCl, 0.852 g Na2CO3, 

1.008 g NaHCO3, 0.144 g Na2SO4, 0.450 g KCl, 0.351 g K2HPO4, 0.622 g MgCl2·6H2O, 

200 ml of 0.2 M NaOH solution, and 0.586 g CaCl2 and 34.784 g HEPES in 1 L of DI water.

[78] The inorganic ion concentrations in SBF were equal to those of human blood plasma.

[78] After 1, 2, 4, and 8 weeks of incubation, samples (n=5 for each scaffold type at each 

time point) were collected, freeze dried, and weighted. Weight change was then quantified. 

To confirm the biomineralization, EDX was used to characterize the scaffolds.

2.7. Mesenchymal stem cell growth on PEUU scaffolds reinforced with PEU-g-nTiO2

To evaluate the ability of PEUU scaffolds reinforced with PEU-g-nTiO2 to support cell 

growth, rat bone marrow-derived mesenchymal stem cells (MSCs) were seeded on the 

scaffolds. PEUU and nTiO2/PEUU scaffolds were used as controls. MSCs were cultured in a 

T-175 flask using Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 20% 

FBS, 2% l-glutamine and 1% penicillin/streptomycin as culture medium.[79, 80] The 

scaffolds were punched into 6 mm diameter disks. After sterilizing under UV irradiation for 

1 h in a laminar flow hood, the disks were placed in a 96-well tissue culture plate. MSCs 

were seeded onto each disk at a density of 2 × 105 cells/ml. After 1, 3, and 7 days of culture 

under normal conditions (21% O2, 5% CO2), double-stranded DNA (dsDNA) content of the 

live cells in each sample was measured using PicoGreen assay (Invitrogen).[79, 80]

2.8. Statistical analysis

One way ANOVA test was utilized for data analysis. Data were presented as mean ± 

standard deviation. Statistical significance was defined as p<0.05.

3. Results and discussion

3.1. Synthesis of PEU-g-nTiO2

TiO2 nanoparticle was first functionalized with DMPA to introduce hydroxyl groups onto 

the surface before grafting PEU. These hydroxyl groups can readily react with isocyanate 

groups. The reaction of DMPA and nTiO2 is occurred between carboxyl groups of DMPA 

and Ti of nTiO2 by forming bidentate chelating type coordination bonding. [81] To graft 

PEU onto the functionalized TiO2 nanoparticles, PEU prepolymer with isocyanate groups 

was first prepared by reacting PCL diol with HMDI at a molar ratio of 1:2. The use of PCL 

allows the PEU to be degradable. Successful synthesis of PEU-g-nTiO2 was confirmed by 

FTIR spectrum that exhibited characteristic peaks of PEU and TiO2 (Figure 3). The 

absorption at 643 cm−1 is from nTiO2. The carbonyl peak at 1725 cm−1 is from urethane 

group. All of the isocyanate groups in the prepolymer were reacted with hydroxyl groups 

introduced onto the nTiO2 surface since there is no isocyanate peak at 2265cm−1. Consistent 

with previous report, [65] the coordination bonding between DMPA and nTiO2 is not 
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obvious in the spectrum, possibly because the absorption level of Ti–O–C coordination is 

significantly small compared to that of the bonds in PEU.

3.2. Fibrous nanocomposite scaffold fabrication

Fibrous scaffolds based on PEUU and PEU-g-nTiO2 were fabricated by electrospinning. The 

PEUU was synthesized using the same soft segment and diisocyanate as PEU. Our previous 

study demonstrated that this polymer supported the growth of cardiosphere-derived cells.

[75] HFIP was used as a solvent for PEUU. The benefit of using this high polarity solvent is 

that it allowed PEU-g-nTiO2 to evenly and stably suspend in the PEUU solution, thus 

facilitating the fabrication of fibers with uniform distribution of nTiO2.

The fabricated PEUU scaffold without nTiO2 or PEU-g-nTiO2 assumed smooth fibers with a 

diameter less than 1 μm (Figure 4a). The scaffolds based on unmodified nTiO2 and PEUU 

(nTiO2/PEUU) exhibited both fibers and beads (Figure 4b). EDX analysis was performed to 

determine the distribution of nTiO2. Figure 5 demonstrated that nanoparticles were not 

uniformly distributed in the scaffolds, and beads were nanoparticle aggregation. It is likely 

that unmodified nTiO2 aggregated during the fabrication due to poor interactions between 

nTiO2 and PEUU. The modification of nTiO2 with PEU (PEU-g-nTiO2) increased the 

interfacial interaction of the nanoparticles and PEUU. This allowed nanoparticles to stably 

suspend in the solution during scaffold fabrication. As a result, the scaffolds contained only 

fibers without beads (Figure 4d–e). EDX analysis confirmed that nanoparticles were evenly 

distributed in the scaffolds (Figure 5). Scaffold fiber morphology was dependent on the ratio 

of PEU-g-nTiO2 to PEUU. When the ratio was 1:2, the fibers were smooth. The increase of 

the ratio to 1:1 and 2:1 led to forming more rough fibers (Figure 4e).

3.3 Scaffold mechanical properties

One of the purposes in using nTiO2 is to reinforce the PEUU scaffolds thus increasing both 

Young’s modulus and tensile strength for improved performance during bone regeneration. 

The pure PEUU scaffold had Young’s modulus and tensile strength of 31.8±2.3 and 

34.3±0.9, respectively. Simply mixing unmodified nTiO2 and PEUU (nTiO2/PEUU scaffold) 

did not show reinforcement effect. Instead, both Young’s modulus and tensile strength were 

significantly decreased compared with PEUU scaffold (p<0.001). This is likely due to the 

low interfacial interaction between nTiO2 and PEUU. It led to the aggregation of nTiO2 in 

the solution during the scaffold fabrication process. The scaffolds therefore had nTiO2 

aggregates attached to the fibers (Figure 4b and Figure 5a), which cannot efficiently 

dissipate external force. For those nanoparticles that are in the fibers, even they can dispense 

uniformly, the weak interfacial interaction between PEUU cannot effectively reinforce the 

scaffold.

Modification of nTiO2 with PEU (PEU-g-nTiO2) can increase its interfacial interaction with 

PEUU because of the strong hydrogen bonding between urethane groups and urethane-urea 

groups in both polymers. This resulted in the reinforcement effect. Figure 6 demonstrated 

that adding PEU-g-nTiO2 into the PEUU scaffolds significantly increased Young’s modulus 

compared to the pure PEUU scaffold when the ratio of PEU-g-nTiO2 and PEUU was ranged 

from 1:2 to 2:1 (p<0.01). The highest Young’s modulus was for the scaffold with the ratio of 
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1:1 where it was 48.8±3.2 MPa, a 53.5% of increase over pure PEUU scaffold. For the 

tensile strength, the scaffolds with PEU-g-nTiO2/PEUU ratios of 1:2 and 1:1 were 

significantly higher than pure PEUU scaffold (p<0.05) while the scaffold with the ratio of 

2:1 showed similar value. The decrease of Young’s modulus and tensile strength when the 

PEU-g-nTiO2/PEUU ratio was increased from 1:1 to 2:1 is probably attributed to the 

decrease of interfacial interaction between PEUU and PEU when the content of PEU-g-

nTiO2 is higher than PEUU. It is also possible that PEU-g-nTiO2 cannot efficiently 

distribute in the PEUU fibers when its content is high. Similar trend was found for collagen 

scaffolds reinforced with carbon nanotubes.[82]

3.4 Scaffold biomineralization

Biomineralization is critical during bone regeneration. Scaffolds capable of stimulating 

biomineralization may be able to promote the regeneration. [8] The developed fibrous 

scaffolds have high surface-area-to-volume ratio, thus may facilitate the biomineralization. 

To investigate the biomineralization capability of TiO2 nanoparticles reinforced PEUU 

scaffold, PEU-g-nTiO2/PEUU=1:1 was used since it had the highest Young’s modulus. The 

scaffold was incubated in SBF for 8 weeks. Controls were PEUU and nTiO2/PEUU 

scaffolds. All scaffolds showed slight weight loss after 1 week of incubation (p>0.05 for 

each scaffold). It is possible that PEUU degradation-induced weight loss is greater than 

biomineralization-induced weight gaining during this period. The PEUU scaffold exhibited 

continuous weight loss for 4 weeks. Significant net weight gaining was observed only after 8 

weeks (p<0.05, week 4 vs. week 8), indicating that biomineralization was dominated for 

PEUU after 4 weeks. The nTiO2/PEUU scaffold demonstrated net weight gaining after 4 

weeks, earlier than PEUU scaffold. After 8 weeks of incubation, the scaffold gained ~13% 

of weight, significantly greater than the original weight (p<0.05, week 0 vs. week 8). These 

results suggest that TiO2 nanoparticles in the scaffold accelerated the biomineralization. This 

is consistent with previous studies where TiO2 containing materials promoted the absorption 

of Ca2+ and PO4
3−. [83]

The PEU-g-nTiO2/PEUU scaffold showed net weight gaining only after 2 weeks of 

incubation, sooner than nTiO2/PEUU scaffold. After 8 weeks, the net weight gaining was 

10% (p<0.05 for weight of week 0 vs. weight of week 8). The Ca and P containing ions were 

deposited uniformly in the PEU-g-nTiO2/PEUU scaffold (Figure 8), attributing to the even 

distribution of TiO2 nanoparticles (Figure 5). Elemental content of Ca and P analyzed from 

EDX mapping is listed in Table 1. Consistent with weight change results in Figure 7, the 

PEU-g-nTiO2/PEUU scaffold had the highest Ca and P deposition. In addition, the nTiO2/

PEUU scaffold demonstrated greater Ca and P deposition than PEUU scaffold. The above 

results suggest that PEU modification stimulated nTiO2 biomineralization. The PEU grafted 

onto the nanoparticles is based on polycaprolactone and HMDI. The chain length of PEU 

should be shorter than that of PEUU as no chain extension reaction was performed for it. 

Therefore, PEU possibly degraded faster than PEUU. The hydrolysis of PCL chain may 

leave −COOH groups on the nTiO2 surface, which then attract cationic species like Ca2+ to 

deposit.
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3.5 Mesenchymal stem cell growth on scaffolds

Scaffolds for bone regeneration can be implanted alone to allow endogenous cells including 

osteoblasts and stem cells to induce regeneration. They can also be transplanted together 

with osteogenic cells to direct the regeneration. In both approaches, it is necessary for the 

scaffolds to support cell proliferation. To investigate the capability of PEU-g-nTiO2/PEUU 

scaffold to supporting cell growth, bone marrow-derived MSCs were seeded on the scaffold 

of PEU-g-nTiO2/PEUU=1:1 since it had the highest Young’s modulus. PEUU and nTiO2/

PEUU scaffolds were used as controls. Bone marrow-derived MSCs are known for their 

ability to promote bone regeneration. Cell dsDNA (for live cells) content was monitored 

during the culture. Figure 9 demonstrated that MSC dsDNA content was increased on all 3 

scaffolds during the 7-day culture period. The highest increase was found for PEU-g-nTiO2/

PEUU scaffold where dsDNA content was 2.5 and 9.9 folds of day 1 at days 3 and 7, 

respectively (p<0.01 for day 3 vs. day 1, and day 7 vs. day 3). The nTiO2/PEUU scaffold 

and PEUU scaffold exhibited similar levels of dsDNA increase at day 7 (p<0.05 for day 7 

vs. day 1 for both scaffolds). The above results demonstrate that incorporation of PEU 

modified TiO2 nanoparticles into PEUU scaffold improved MSC proliferation while 

incorporation of unmodified TiO2 nanoparticles did not. It is possible that PEU on the 

nanoparticle surface augmented its hydrophilicity, thus increasing its interaction with cells. 

Our future work will explore how scaffold properties such as TiO2 content, fiber diameter, 

and single fiber modulus can be tuned to induce the differentiation of MSCs into osteogenic 

phenotype.

One of the concerns for using TiO2 nanoparticles is that the released nanoparticles may be 

toxic to bone cells. [66] For example, TiO2 nanoparticles with size of 15 nm have been 

shown to impair SOD1 and SOD2 secretion and promote ROS generation after intaking by 

osteoblasts.[84] TiO2 nanoparticles can also change the ultrastructure of cells. [84] In this 

work, the PEU modified TiO2 nanoparticles may not be readily released from the PEUU 

fibers due to increased interaction between the nanoparticles and PEUU. In addition, the 

PEU modified TiO2 nanoparticles may not be easily intaken by the cells even after PEU and 

PEUU are degraded. Biomineralization study demonstrated that the modified nanoparticles 

promoted mineral deposition, which can increase the size of the nanoparticles to an extent 

that cells cannot readily intake.

4. Conclusion

Fibrous PEUU scaffolds reinforced with TiO2 nanoparticles were fabricated for bone 

regeneration. Unmodified TiO2 nanoparticles cannot uniformly distribute in the fibers, and 

did not show reinforcement effect. The PEU modified nanoparticles can evenly distribute in 

the fibers, and significantly increased scaffold Young’s modulus and tensile strength. The 

scaffolds based on modified TiO2 nanoparticles and PEUU exhibited greater 

biomineralization capability than PEUU scaffold. In addition, these scaffolds better 

promoted MSC growth than pure PEUU scaffold and PEUU scaffold with unmodified TiO2 

nanoparticles. These scaffolds alone or combined with osteogenic cells have the potential for 

bone regeneration.
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Highlights

• Grafted degradable polyurethane into TiO2 nanoparticles;

• Modified TiO2 nanoparticles reinforced fibrous polyurethane scaffolds;

• Reinforced scaffolds promoted biomineralization and stem cell proliferation.
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Figure 1. 
Synthesis of DMPA functionalized TiO2 nanoparticles (DMPA-nTiO2).
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Figure 2. 
Synthesis of degradable polyurethane conjugated with TiO2 nanoparticles (PEU-g-nTiO2).
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Figure 3. 
FTIR spectrum of synthesized PEU-g-nTiO2.
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Figure 4. 
Morphology of the electrospun scaffolds. (A) PEUU; (B) nTiO2/PEUU; (C) PEU-g–nTiO2/

PEUU=1:2; (D) PEU-g–nTiO2/PEUU=1:1; and (E) PEU-g–nTiO2/PEUU=2:1.
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Figure 5. 
SEM images (A, C) and corresponding EDX analysis of Ti distribution in the scaffolds (B, 

D). (A, B) nTiO2/PEUU; (C, D) PEU-g–nTiO2/PEUU=2/1. Scale bar = 5 μm.
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Figure 6. 
Mechanical properties of electrospun scaffolds with and without reinforcement with PEU-

gnTiO2.
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Figure 7. 
Weight change of scaffolds incubated in the 37°C simulated body fluid for 8 weeks.
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Figure 8. 
EDX characterization of Ca and P deposition in the scaffold PEU-g-nTiO2/PEUU = 1:1.
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Figure 9. 
Mesenchymal stem cell growth on the scaffolds with and without reinforcement with PEU-

gnTiO2.
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Table 1

EDX analysis of Ca and P content in the scaffolds after 8 weeks of incubation in SBF.

Element (%) PEUU nTiO2/PEUU PEU-g-TiO2/PEUU

Ca 0.039 0.103 0.203

P 0.143 0.327 1.270
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