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Abstract

Inter-pandemic or seasonal influenza exacts an enormous annual burden both in terms of human 

health and economic impact. Incidence prediction ahead of season remains a challenge largely 

because of the virus’ antigenic evolution. We propose here a forecasting approach that 

incorporates evolutionary change into a mechanistic epidemiological model. The proposed models 

are simple enough that their parameters can be estimated from retrospective surveillance data. 

These models link amino-acid sequences of hemagglutinin epitopes with a transmission model for 

seasonal H3N2 influenza, also informed by H1N1 levels. With a monthly time series of H3N2 

incidence in the United States over 10 years, we demonstrate the feasibility of prediction ahead of 

season and an accurate real-time forecast for the 2016/2017 influenza season.

INTRODUCTION

Inter-pandemic or seasonal influenza exacts an enormous public health burden around the 

globe, with an average of about 1 billion cases, including 3 to 5 million cases of severe 

illness and 250 000 to 500 000 deaths annually (1). Since its first occurrence in 1968, 

seasonal H3N2 influenza has continually circulated in the human population, and is 

currently the major cause of seasonal influenza morbidity and mortality (2). The sustained 

‘success’ of influenza viruses responsible for seasonal outbreaks stems from their ability to 

evolve and escape the immune system by modifying their surface proteins (3). Phylogenetic 

trees depicting evolutionary changes in (H3N2) influenza viruses illustrate rapid drift with 

successive and punctuated replacement of one antigenic type by another (4, 5). The last 

decade has seen significant conceptual advances in the understanding of these phylogenetic 

patterns, enabled by computational and statistical advances at the interface of transmission 

dynamics and virus evolution (5–12). There is now considerable interest in translating these 
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conceptual advances into actual prediction at the population level that would inform the 

update of vaccines and epidemic preparedness.

The challenge of influenza prediction has progressed largely along two separate tracks. On 

the one hand, there are computational methods based on phylogenies and mutation patterns 

in the surface protein hemagglutinin (HA), whose goal is to predict evolutionary change 

(13–17). The resulting predictions of successful lineages and their relative frequencies for 

the future season do not, however, provide precise information on absolute incidence. On the 

other hand, mathematical models describing the transmission dynamics of influenza viruses 

allow real-time incidence forecasts of influenza-like illness (ILI) (18, 19). With data 

assimilation methods (20), these models must be fitted within each season because of 

season-to-season viral evolution (21–25). In other words, with such models, the fact that one 

needs to wait until the outbreak starts limits the lead time of epidemiological prediction.

In this study, we bridge the gap between these two approaches and propose an 

epidemiological model specifically for seasonal H3N2 influenza that incorporates 

information on the evolutionary change of the virus. The resulting model is sufficiently 

parsimonious that parameter estimation based on retrospective surveillance records is 

possible. A novel feature is its use of an evolutionary index of virus innovation constructed 

using readily available sequence data. The goal is to generate H3N2 incidence forecasts 

before the season begins, significantly earlier than what is currently possible. We illustrate 

two model formulations for H3N2 in the United States (US) between 2002 and 2016, and 

produce a forecast for the upcoming 2016/2017 influenza season. We emphasize prediction 

of interannual disease risk rather than finer-scale outbreak timing during the season; in other 

words, we seek to forecast whether or not the upcoming season will be anomalously large or 

small. Timing itself has been the target of existing within-season prediction efforts, which 

are better suited for this purpose and could be applied in tandem with our approach.

RESULTS

The monthly incidence variability from 2002 to 2016 for the whole US is shown in Figure 

1A for reported cases of influenza type A, for subtypes H3N2 and H1N1 (including both 

seasonal H1N1 and pandemic H1N1), as well as type B. The time series are computed as the 

product of the ILI positive rate, the influenza positive rate, the subtype proportion, and the 

US population size. Thus, incidence data are extrapolated to the US population from 

outpatients in a network of healthcare providers, with un-typed influenza specimens 

assigned to H3N2, H1N1 and B respectively based on the proportions from the US 

surveillance system (see Materials and Methods for details). The temporal variability of 

H3N2 exhibits seasonal outbreaks whose size varies considerably from one year to the next. 

This interannual variability can result from epidemiological processes such as the loss of 

immunity to a specific variant of the virus (26), but also to a large degree, from the antigenic 

evolution of the virus (27) and the combined and complex interactions of the two (28, 29).

Before examining predictions of the ‘full’ model that considers both epidemiology and 

evolution, we evaluate the ability of different models, encapsulating different degrees of 

complexity, to retrospectively explain the temporal patterns in the data from 2002 to 2016. 
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To establish a baseline against which to evaluate the full model, we begin with a simpler 

formulation for the population dynamics of H3N2 that describes influenza epidemiology and 

the seasonality of transmission but does not yet include evolutionary change (Fig. 1B). This 

basic model follows the structure of the well-known compartmental susceptible-infected-

recovered-susceptible (SIRS) formulation which divides the population into classes for 

susceptible (non-immune), infected, and recovered (immune) individuals. For the purpose of 

model comparisons, we rely initially on the whole temporal extent of the data (2002–2016) 

to fit the models and infer parameter values. Figure 2A shows that simulations of the basic 

model reproduce the average seasonality of incidence but fail to capture its interannual 

variation.

Several variants of the epidemiological model were considered next, starting with the effect 

of temporal variation in the incidence of H1N1 (Fig. 1B). We find a significant negative 

correlation between annual incidence of H3N2 and H1N1 (r = −0.60, p value = 0.02), but no 

clear relationship between annual incidence of type B and H3N2 or H1N1 (r = 0.42 and, r = 

−0.33, p values = 0.13 and 0.25, respectively). Given these findings and the observation that 

disease burden due to type B in humans is typically lower than that due to H3N2 or H1N1 in 

the US (30, 31), we postulate an effect of H1N1, but not B, on the dynamics of H3N2, and 

do so as a covariate affecting the system as an external observed variable (in the ‘basic-H1’ 

model, Fig. S1A). We return to this simplification in the discussion. We also allow 

measurement error to differ between the summer (April 1st to September 30th) and winter 

(October 1st to March 31st) seasons, reasoning that the reporting rate is more variable 

outside the winter (transmission) season (32). (Hereafter, we refer to the year/year+1 

influenza ‘season’ as the period from July 1st of the current calendar year to June 30th of the 

following calendar year, for example, the 2008/2009 influenza season). Additionally, we 

relax the assumption of a linear dependence of the force of infection on the number of 

current infected individuals, allowing a nonlinear functional form and the potential for sub-

exponential growth of the epidemic curve (in the ‘refined’ model, Fig. S1B). This functional 

form has been found effective in the modeling of a number of different infectious diseases, 

as a means of parameterizing processes operating at scales smaller than can be explicitly 

represented (33–35). Finally, we consider a version of the refined model in which the (non-

parametric) periodic function in the transmission rate is replaced by a function of specific 

humidity (the ‘humidity’ model, Fig. S1C) (21, 36, 37). Although all these model variants 

improve the fit of the data (Table 1), they still fail to properly capture the interannual 

variability in incidence (Fig. S1). Of these purely epidemiological models, we retain the 

best, viz. the refined model, which includes H1N1, season-dependent measurement error, 

and sub-exponential epidemic growth, and turn next to whether the inclusion of an index of 

evolutionary change can improve upon this foundation.

We measure antigenic innovation or evolutionary change of the virus at a given time (relative 

to a window of time in the past) using a novel evolutionary index readily computed from 

available sequences. The idea is to use amino-acid sequences to quantify change of the 

virus’ antigenic properties relative to those the human population has recently experienced. 

We therefore focus on sequences that encode epitopes known to be important for antibody 

binding and in which antigenic evolution is commonly observed (14, 38, 39). We define the 

index as a weighted average distance between the current virus to its predecessors in the 

Du et al. Page 3

Sci Transl Med. Author manuscript; available in PMC 2018 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



past. So that more recent sequences are weighted more heavily than older ones, the weights 

are taken to be a decaying function of the inter-sequence interval. Figure 1C illustrates the 

estimated index. Since evolutionary novelty increases the probability that a virus escapes 

existing protective immunity and thereby achieves more efficient transmission, we 

incorporated this index as an external driver of the SIRS model, by allowing it to modulate 

either the duration of immunity or the transmission rate, or both. The model that includes 

evolutionary change in duration of immunity was best able to explain the data (the 

‘continuous’ model) (Table 1). Simulations with the estimated parameters further 

demonstrate the improved performance of this formulation, with the median incidence 

reproducing the main trends in the interannual variation (Fig. 2B). As a general result (Table 

1), the models that incorporate evolutionary information are significantly better than those 

that do not. Among the former, the models incorporating evolutionary change just in the 

immunity loss, or in both this parameter and transmission (the ‘immunity loss/transmission’ 

model) are comparable to each other, but perform significantly better than that with an effect 

only in transmission (the ‘transmission’ model). A degree of similarity between the two best 

models is to be expected in view of the fact that these two epidemiological parameters 

determine the overall infection rate so that it is difficult to disentangle an effect on the 

number of susceptibles from one on the per-susceptible risk of infection. At any rate, our 

results here indicate that inclusion of the evolutionary driver as a modulator of the duration 

of immunity is sufficient.

Our best model so far included a smoothly changing measure of evolutionary change based 

purely on virus genotype. It is recognized, however, that the genotype-phenotype map for 

antigenic properties of the virus is discontinuous, such that virus strains cluster antigenically 

and switches between clusters affect the population dynamics and phylodynamics of H3N2 

in punctuated fashion (4, 10). In particular, recorded antigenic cluster transitions are 

consistently followed by larger outbreaks (Fig. 1A). We found that our estimated index of 

evolutionary change followed observed antigenic cluster transitions: higher index values 

usually preceded a winter season with an antigenic cluster transition (compare Fig. 1A and 

Fig. 1C). This observation and what is known about the genotype-phenotype map of the 

virus (4, 40, 41) led us to a second evolutionary change index based on cluster transitions. In 

this ‘cluster’ model, the effect of a cluster transition is punctuated and localized in time: the 

rate of immunity loss is varied only during the summer season that precedes the winter 

season with an antigenic cluster transition. Specifically, the rate of immunity loss only 

during that time becomes a function of the degree of evolutionary change; with this change 

now measured by comparing current virus sequences to those two years ago, a time scale 

characteristic of cluster transitions (4). The resulting model performs better than the best 

model with continuous evolutionary change (Table 1 and Fig. 2C), although the most 

significant difference is between purely epidemiological models and those that incorporate 

evolutionary information (Table 1).

With our best model, the cluster model, we now turn to the task of predicting H3N2 

incidence before the influenza season begins. For this purpose, we divide the data into a 

‘training’ section (2002–2011) used to fit the models and an ‘out-of-fit’ one (2011–2016) 

used to evaluate their prediction accuracy. The implementation of the model for forecasting 

purposes requires particular assumptions on the drivers in the system since these observed 
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quantities will by definition not yet be available over the time windows we wish to predict. 

For H1N1 incidence, we make the simplifying assumption that monthly averages for this 

quantity over the training set provide a sufficient approximation. Additionally, for the cluster 

model, an upcoming season dominated by a novel antigenic cluster needs to be anticipated 

in the summer before the transmission season. For this, we developed and tested a rule based 

on a published genotype-phenotype map for prediction of new antigenic variants. 

Specifically, when the proportion of antigenic variants accumulated during the summer 

season exceeded a given threshold, we took this to be predictive of a cluster transition in the 

following winter season (Fig. S2/S3; see Materials and Methods for details). Figure 3 shows 

the resulting retrospective predictions together with observations for each of the last five 

influenza seasons from 2011/2012 to 2015/2016. Two criteria were used to quantify 

prediction accuracy. The first compared the absolute monthly observed incidence to the 

medians of monthly predicted incidence from 1000 simulations. Predictions and 

observations are significantly correlated (r = 0.87 and r2 = 0.76 for the monthly data; r = 

0.95 and r2 = 0.91 for the seasonal data; see Fig S4 for the data that include the most recent 

2016/2017 season). Moreover, the observations mostly fell within the 97.5% confidence 

intervals (Fig. 3). Although the models tend to under-predict the absolute value of peak 

incidence, they do capture the overall interannual behavior of the trends reflected in both 

low and high seasons. The second criterion evaluates the model’s ability to predict an 

outbreak season by computing the probability of surpassing a selected incidence value 

deemed high by public health practitioners. We are interested here in evaluating the risk of 

an anomalous ‘high’ season relative to a typical season in the past and relative to a threshold 

level of cases of interest to public health. We consider first a threshold equal to the 50% 

quantile (median) of seasonal totals observed over the training dataset. A given flu season is 

forecasted as high or low risk level depending on the proportion of simulations that exceed 

the median, with the critical proportion that separates low and high levels chosen based on 

Receiver Operating Characteristic (ROC) curves (Fig. S5). Specifically, we predict a high 

risk level when more than 40% of the 1000 simulations surpass the median. All five seasons 

were predicted accurately based on this criterion (Table 2).

To further evaluate prediction ability, we considered hindcast predictions, by removing one 

season at a time during the period from influenza season 2003/2004 to 2010/2011 and 

predicting its incidence, with the model parameters re-estimated each time based on the 

remaining data and exactly the same search strategy. Because there are multiannual 

correlations in the data, this test is less stringent and realistic than one based on multiple 

sequential out-of-fit seasons at the end of the time series. Nevertheless, it allows us to extend 

prediction evaluation and demonstrates high prediction accuracy (Fig. S6 and Table S1).

Encouraged by these results, we present a ‘real-time’ forecast prepared before the 2016/2017 

influenza season and based on the data available up to June 2016, by the end of the 

2015/2016 influenza season. Significant evolutionary change relative to previous viruses is 

indicated by our evolutionary index during the 2015–2016 influenza season (Fig. 1C), 

consistent with the observation that a number of antigenic variants were also accumulating 

over this period (Fig. S2). Concurrently, H1N1 dominated the 2015/2016 influenza season 

which would have resulted in an increased number of individuals susceptible to H3N2. The 

cluster model predicts that the risk level for seasonal H3N2 influenza should be high in the 
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2016/2017 influenza season for the US (Table 2), with a predicted annual incidence rate of 

0.11 ([0.07, 0.15] for 2.5%–97.5% quantiles) (Table S2), consistent with the available 

observations (Fig. 3 and Table 2).

Forecast results based on the continuous model also capture the interannual trend in the size 

of epidemics (Fig. S7), and correctly predict risk levels above the 50% epidemic thresholds 

for the period between 2011 and 2017 (Table S3). The quality of the forecasts is lower 

however than that obtained with our best model (the cluster model) (compare Fig. 3 and Fig. 

S7). We also note that the 2016/2017 season is correctly predicted as high risk but that its 

peak size is over-estimated and its timing is earlier than that observed (Fig. S7). Finally, to 

further test the general approach, we applied it to a chosen region of the US - Department of 

Health & Human Services (HHS) region 3 (see Materials and Methods for details). A robust 

result is that the models with evolutionary information are significantly better at capturing 

the dynamics of seasonal H3N2 influenza than those without it (Table S4), although which 

particular evolutionary index is best can differ. Forecasts based on the best cluster and 

continuous models capture both the interannual variation of the outbreaks and disease risk 

for this US region (Fig. S8 and Table S5).

DISCUSSION

Our results demonstrate the feasibility of improving epidemiological forecasts by 

incorporating information on evolutionary change into mechanistic models. Comparisons 

between models with and without this information show significant differences in their 

ability to capture the interannual variation in incidence data (Table 1), which underscores the 

importance of evolutionary change in the epidemiological dynamics of seasonal influenza. 

Our best models are able to capture the temporal behavior of observed incidence for H3N2 

in the recent past in the US, and they provide the means to lengthen the lead time of 

prediction so that effective forecasts can be based in the summer, before the transmission 

season begins. Thus, this approach complements within-season forecasting efforts (22–25) 

and further informs public health preparedness. Earlier forecasts of incidence dynamics can 

aid public health efforts by indicating when to expect a surge in demand for healthcare 

resources and infrastructure. They can also contribute to the development of control 

strategies that take risk levels into consideration.

The use of evolutionary drivers in epidemiological dynamics follows an earlier study by of 

Axelsen and colleagues on long-term ILI incidence prediction in Tel Aviv, Israel (42). Their 

model incorporated the timing of known discrete antigenic changes in seasonal influenza, 

and demonstrated the importance of considering these discrete antigenic jumps and their 

interaction with the waxing and waning of immunity levels in the population. Prediction of 

multiannual temporal patterns over multiple seasons was shown possible after the 

observation of such an event and as long as another one did not recur, which is an 

impediment to real-time forecasting. A number of more mechanistic models coupling 

evolution and transmission dynamics have also been developed to address theoretical 

questions on the phylodynamics of seasonal influenza (6, 7, 10, 12). Because these 

individual-based, stochastic formulations are high-dimensional and computationally 

expensive to work with, they are not well-suited for the repeated estimation of parameters 
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from time series data on reported cases or for epidemiological prediction. We have sought to 

construct much simpler epidemiological models suited for parameter inference based on 

surveillance, and for assimilating new data recurrently. Another approach to predict specific 

H3N2 incidence is based on its correlation with antigenic change as measured by the 

hemagglutination inhibition (HI) assay (43). Our approach exhibits a higher (Pearson) 

correlation between seasonal observations and predictions (0.83 for the whole US dataset 

from 2002 to 2016 and 0.90 for the testing dataset from 2011 to 2017, compared to 0.52 

between antigenic change and H3N2 incidence for the period between 1998 and 2009) (Fig. 

S4B and Fig. S9).

Here, we have shown that readily available sequences of the virus can be used to construct 

an evolutionary covariate in both continuous and discrete versions. In the continuous model, 

the time scale of virus antigenic evolution is relatively short, with an average effective time 

of about 16 months (Fig. S10). At the same time, the estimated duration of homotypic 

immunity is relatively long: 30 years or even longer (Fig. S11). The importance of 

incorporating the short-term changes emphasizes the critical role of timely virological 

surveillance for identifying new emerging variants. Another intriguing observation related to 

the continuous measure of evolutionary change applied in our model is that the H1N1 

pandemic of 2009 coincided with a valley in H3N2 fitness (Fig. 1C). This suggests that such 

times may provide a window of opportunity for the emergence of new types (including for 

cluster transitions of H3N2 itself). Thus, our evolutionary index, together with the proposed 

method for identifying and anticipating antigenic cluster transitions, could provide useful 

complements to the current surveillance system.

Our models made several simplifying assumptions, which can be investigated further and 

used to improve the approach in the future. The compartmental model did not include age 

structure (44) or social structure (45), proper inclusion of which might help to correct the 

underestimation of incidence peaks in this study. The evolutionary indices mainly consider 

antigenic change based on mutations in HA; these measures could be improved by further 

knowledge of antigenic phenotype (46, 47), including other viral segments like protein 

neuraminidase (NA) (48). Also, other factors affecting the fitness of the virus could be 

considered (14, 49), including receptor binding ability related to cell entry and transmission 

(50). Vaccination information could also be incorporated in the population dynamics. We 

decoupled the two-way interaction between subtypes H1N1 and H3N2 by including the 

effect of the former as a driver on the population dynamics of the latter. Although we 

observed that the dynamics of H3N2 was most strongly determined by its own evolutionary 

change, a more realistic model incorporating interactions between H3N2 and H1N1, and 

perhaps type B, could be considered (51). Our model can also be applied at finer spatial 

resolution and to other regions, especially in Asia, where the likely source of evolutionary 

novelty for the seasonal influenza virus is to be found (5, 52). Preliminary investigation 

indicates that the general framework could be used in capturing and forecasting regional 

population dynamics of seasonal H3N2 influenza in US. Since immigration and emigration 

are also important processes in determining the local dynamics of seasonal influenza (53–

56), a further step would consist of coupling regional dynamics to represent the effect of 

movement and the dependencies between adjacent regions. Similarly, at a larger scale one 

could incorporate information on global influenza circulatory patterns into the model. 
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Finally, ways to better extrapolate the evolutionary covariate itself beyond the summer 

should be addressed. Overall, the fact that incorporation of pathogen evolution into 

epidemiological models increases forecasting skill should embolden future efforts to further 

improve on the model presented here.

The limits to lead times in influenza prediction are not set by chaotic dynamics as is the case 

for the weather system; they are determined instead by the stochastic nature of virus 

evolution. Formulating ways to take advantage in epidemiological prediction of the 

increased availability of genetic sequence data in surveillance efforts around the globe, is a 

promising area. One key limitation identified in our work is the low and variable number of 

sequences outside the transmission season, when this information would be most critical. 

Improvements to the general idea presented here will result from current efforts on purely 

evolutionary forecasting, which can provide better means to quantify antigenic change of the 

virus (13, 14, 17, 40, 46, 47), and to lengthen lead times further by concatenating 

evolutionary and evo-epidemiological prediction. Similarly, increased understanding of the 

virus’ genotype-phenotype map will also further inform this kind of effort. Ultimately, in the 

same way that routine weather forecasting provided the impetus for much better sampling of 

the climate system, incidence prediction is computationally feasible but will ultimately 

depend on the quality, depth and resolution of epidemiological and genetic surveillance.

MATERIALS AND METHODS

Data

HA Protein sequences of seasonal H3N2 influenza virus from US were downloaded from 

the Global Initiative on Sharing Avian Influenza Data (GISAID) (57). Sequences were then 

aligned with MUSCLE v3.7 using default settings (58). Undetermined amino acids were 

replaced by gaps, and only the HA1 domain was retained for further analysis. Outliers based 

on a reconstructed phylogenetic tree using FastTree 2 (59) with default settings, were 

manually removed.

Outpatient illness surveillance data and viral surveillance data were downloaded from 

FluView of the US Centers for Disease Control and Prevention (CDC) (60). Outpatient 

illness surveillance data includes information on patient visits to health care providers for 

ILI, which is collected through the US Outpatient Influenza-like Illness Surveillance 

Network (ILINet). The percent of patients presenting with ILI among all patient visits each 

week were used as indication of ILI in the US population. Viral surveillance data, including 

weekly influenza positive rate and subtype specific percentage data, were both from the US 

World Health Organization (WHO) Collaborating Laboratories and National Respiratory and 

Enteric Virus Surveillance System (NREVSS) laboratories. Seasonal and pandemic H1N1 

influenza were combined together as seasonal H1N1 influenza, and the two lineages of 

seasonal B influenza were combined as seasonal B influenza. Un-typed influenza-positive 

specimens were assigned to either H3N2, H1N1 or B according to their proportions from 

typed specimens. The final weekly subtype specific incidence was calculated as the product 

of ILI positive rate, influenza positive rate, subtype specific proportion, and population size. 

Weekly incidence data was then aggregated to monthly data. Only incidence data from 

October 2002 to June 2016 was used in this study to focus on a period long enough to 
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inform inference of model parameters, but to avoid earlier periods for which the sampling 

effort of genetic sequences was considerably lower and without surveillance data for the 

summer season. Monthly national level population estimates for the US were downloaded 

from the United States Census Bureau (61). Specific humidity data for the US were obtained 

from the National Land Data Assimilation System Phase 2 (NLDAS-2) products (62). These 

primary measurements are provided on a 0.125 degree grid. National data were averaged 

over all grids for the monthly data.

Epidemiological model

We used a compartmental SIRS model to follow the flow of the population in susceptible, 

infected (and infectious) and recovered classes for seasonal H3N2 influenza. The model is 

given by the following equations:

(1)

(2)

(3)

(4)

Where S, I and R denote the number of susceptible, infected and recovered individuals in the 

population, and N(t) is the population size at time t. The death rate μ was fixed to 0.015 per 

year (about 67 years lifespan). The total birth rate was quantified as  to 

reproduce the observed population increase over time. The exponent α is used to implement 

the nonlinear dependence of the force of infection on I, and the resulting sub-exponential 

growth of seasonal epidemics. τ is the external importation rate of H3N2 influenza cases 

which was fixed to 36.5 per year (1 import per 10 days) (24). The contact rate β(t) is given 

by:

(5)

which includes three components: (i) seasonality implemented through six b-splines si(t) 
with coefficients wi; (ii) evolutionary change E(t) (see below for details) with coefficient wβ; 
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(iii) and environmental noise simulated by a gamma distribution Γ (63). Under this model, 

the basic reproductive number is given by:

(6)

For the humidity-forced model, β(t) is given instead by the following expression based on 

(21, 23, 24):

(7)

where H(t) is the specific humidity at time t, and R0 max and R0 min denote the maximum 

and minimum basic reproductive numbers and the basic reproductive number is here given 

by (21, 23, 24):

(8)

ε(t) is the average latent period at time t, given by:

(9)

where ε0 is the basic latent period and wε is the scaling factor. γ is the average infectious 

period. An additional RH1 class was designed to track the reduction in susceptibles for 

H3N2 influenza due to cross-immunity, and therefore the protected population due to 

infection by seasonal H1N1 influenza. The rate of susceptible individuals temporarily 

moved to the RH1 class was measured by:

(10)

where CH1(t) is the observed incidence due to seasonal H1N1 influenza, φ is the reporting 

rate for H3N2, which is scaled here for H1N1 with the factor wH1. The average latent period 

for individuals in the RH1 class returning to the susceptible class is denoted by εH1.

A measurement model is implemented that transforms the incidence in the transmission 

model to the actual observations by the reporting system. Specifically, reported cases were 

sampled from a normal distribution such that

(11)
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where φ denotes the reporting rate and defines the mean of observed cases, and the factor ρ 
defines the standard deviation as proportional to the size of the infected population. In 

addition, we impose the condition:

(12)

We note that the parameters of the measurement error model are fitted as part of the 

inference process. This is important since the value of the reporting rate can often be 

confounded with the degree of population immunity. As a result, we constrained its value to 

remain under 1, but also obtained a profile likelihood for this key parameter (Fig. S12).

Evolutionary index

Two quantities were formulated to incorporate information on virus evolution into the 

epidemiological model. The first one, which varies continuously in time, is described here; 

the second, which varies discontinuously to reflect the punctuated antigenic change of the 

virus, is described below under ‘Antigenic cluster transitions and discrete evolutionary 

index’.

An evolutionary index, E(t), was used to measure the degree of evolutionary change of the 

virus at current time t (in months) compared to historical strains in the past. This index is 

therefore formulated as an weighted sum of normalized distance between current viruses and 

those in the past for amino-acid sequences encoding epitopes of the hemagglutinin protein 

on the surface of the virus (that is, parts of these protein recognized by the immune system 

in its antibody response). To begin, we can write the general expression:

(13)

where  denotes a normalized distance between sequences at month t and those in 

previous season s back in time for epitope regions of HA1, and n is the total number of 

previous seasons including the current one for which we set s = 0. Thus, here, n =19 and t = 

1, … l (where l is the length of the incidence time series in months starting from October 

2002). For the US, we defined the influenza season s as starting on July 1st of one calendar 

year and ending on June 30th of the following calendar year. Also, we refer to the summer 

season for the period between April 1st and September 30th, and to the winter or 

‘transmission’ season for that between October 1st and March 31st. In the formula for E(t), 
changes relative to more recent viruses circulating in the population have a stronger weight 

than those relative to earlier viruses, and this weight decays exponentially back in time 

(scaled by θ in equation 13). Only a total of twenty years were considered to make sure 

there were no data missing for calculating E(t) of each month starting from October 2002. 

Distances  for a given month t were calculated relative to previous seasons (and not 

individual months) in the past because fewer viruses are typically sequenced during the 
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summer season due to lower levels of incidence and associated weaker surveillance efforts. 

Also, early previous years exhibit multiple months without any reported sequence due to 

weaker sampling and sequencing efforts. Months and previous years were assigned based on 

date information that is at least monthly for sequences after 1992. For the earlier period 

between 1982 and 1992, although there are enough sequences for our calculations (described 

below), most of them lack detailed monthly information. As a result, approximate previous 

season assignments were made based on the reported calendar year (with calendar year 1990 

assigned to season 1989/1990 and so on). Finally, in the formula for E(t) we sum these 

distances over time after weighting them back in time with an exponential decaying factor 

whose time scale is defined by the parameter θ.

The biology behind E(t) relates to the immune memory or protection existing at a given time 

in the human population for a new virus: the more similar this variant is to viruses in the 

past, the less likely it will be to infect people, since a higher probability exists that antibodies 

induced by viruses from previous infections will bind to it and stop the infection. Thus, the 

idea of a sum of weighted distance in sequence space is that of a quantity reflecting the 

movement of the virus away from variants the human population has been exposed to in the 

past. We include a decay function (controlled by a parameter θ that needs to be estimated) so 

that distances to more recent viruses have a higher weight when computing this average, 

given a time decay of antibody-mediated immunity. In other words, movement away from 

more recently observed antigenic variants would result in a higher evolutionary index and 

reflect a virus that is more novel from the perspective of the immunity landscape in the 

current human population.

We recognize that the weights can implicitly reflect additional processes that are not 

explicitly represented in the model, including the complex interaction of the age structure of 

the infected population (and contacts) and the effects on immune memory of age of 

exposure. The proposed quantity is intended to measure with a simple expression how much 

the virus has moved away from its recent predecessors in the sequence space that to the best 

of our knowledge reflects changes in the phenotype of interest. We note that since the rate of 

the decay backwards in time is one of the parameters inferred as part of fitting the overall 

model to the incidence time series, a possible outcome is for the decay to be negligible. In 

that sense, the inference process (and not an a priori assumption) determines the relevant 

time extent over which to evaluate the change in the virus. Although the idea is simple, the 

actual computation requires a series of steps because of geographic and temporal biases in 

numbers of sampled sequences, and the consideration of months and seasons in computing 

distances as we explain below.

First, an average distance D(s,t) was calculated based on 1000 distances (dm,st) among 1000 

random pairs of sequences sampled from month t and previous season s. The actual value of 

dm,st is calculated as the number of amino acid differences for epitope regions of HA1 (38). 

For distances to the current season (s = 0), distances were calculated based only on 

comparisons to sequences from earlier months. To avoid geographical and temporal 

sampling biases, we followed the practice of subsampling each random pair of sequences 

from sequences in both month t and previous season s, respectively, with equal probability 

from different states and from different months (or different previous seasons for earlier 
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period before 1992) (13, 14). This subsampling process was repeated 1000 times to get a 

mean value:

(14)

We note that D(s,t) is a matrix whose rows are previous seasons (from s = 0 in row 1, to s = 

19 in the last row) and whose columns correspond to the months of interest in the time series 

of incidence to be analyzed (starting with October 2002 in column 1). We now proceed to 

normalize the entries of this matrix for each row, to correct for the effect of the passing of 

time within each season, which introduces an artificial trend in the unnormalized metric. 

Specifically, we normalize each term of the matrix by a mean value as follow:

(15)

where the numerator sum is over all entries of the given row s that fall in the same month (as 

specified by the condition using the modulo operation mod), and the denominator sum 

simply counts the number of corresponding months. We then normalize the distances to 

obtain d(s,t):

(16)

Finally, d(s,t) was interpolated (for months without sequences after October 2002, including 

March/May/July in 2004, May/July/September in 2005, May/June/July in 2006, December 

in 2009, February in 2010 and June in 2011) and smoothed by a cubic smoothing spline at a 

monthly scale (using the smooth.spline function in R package stats which uses a leave-one-

out test to determine the smoothing parameter) to calculate  in equation 13.

Antigenic cluster transitions and discrete evolutionary index

Antigenic cluster transitions were identified based on influenza season summary reports for 

seasons between 2003 and 2013 (64), and Morbidity and Mortality Weekly Reports 

(MMWR) for seasons between 2013 and 2016 (65–68), from US CDC. An influenza season 

summary report is produced after a season based on all available data for that season. In the 

report, CDC antigenically characterizes influenza viruses received in the past season, and 

assigns them to different groups based on antigenic similarity to the previous vaccine strain 

and also to a new vaccine strain. Here, different vaccine strains represent different antigenic 

clusters. We defined here an antigenic cluster transition as a season when more than half of 

the viruses were antigenically similar to the new vaccine strain. We note that the influenza 

‘season’ used by US CDC is not necessarily the same as the one used in this study, but is 

instead variable often covering the transmission season. But because the vast majority of the 

data are from the transmission season, we can still apply an antigenic cluster transition to its 
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corresponding influenza season, as defined in this study. Based on this criterion, antigenic 

cluster transition seasons are 2003/2004, 2004/2005, 2007/2008, 2009/2010, 2012/2013 and 

2014/2015. For the 2006/2007 influenza season, although there was a change in vaccine 

strain, most of the circulating strains were not antigenically similar to the new vaccine strain 

(64). As a result, we considered that there was no antigenic cluster transition for the 

2006/2007 influenza season. For the 2013/2014 influenza season, although there was a 

change in vaccine strain from A/Victoria/361/2011 to A/Texas/50/2012, the vaccine strains 

were antigenically similar (68). Thus, here too, we do not consider this vaccine strain change 

as an indication of an antigenic cluster transition.

For the model that incorporates evolutionary change through cluster transitions, we need to 

identify cluster transitions based on sequences, and when one such transition is identified, to 

quantify the degree of the change, which will influence model parameters (rate of immunity 

loss here) in the form of a step-function. That is, in the cluster model, an effect of 

evolutionary change in the virus is only applied to the epidemiological parameters when a 

cluster transition is identified (or predicted), and at this time, a measure of the magnitude of 

the change in the virus relative to the recent past is used as a covariate. In practice when 

implementing the model for actual prediction, we need to first predict that a new cluster will 

emerge and become establish to affect the transmission dynamics during the transmission 

season. This first step is implemented with a cluster transition rule based on a genotype-

phenotype map for H3N2 previously published by one of us for both identifying and 

predicting antigenic cluster transitions purely based on sequence data without having to rely 

on antigenic assay data (40). (The latter concerns only a subsample of the virus circulating 

in the human population at a given time, and is typically available with a delay relative to 

sequence data). Although the genotype-phenotype map relies on sequences, it uses a number 

of properties of the hemagluttinin protein derived from the sequences including biophysical 

properties, and not just amino-acid distances at epitope sites. A brief description of this map 

and how it is used here for prediction purposes is included below in the section on Forecasts. 

Here, we note that this first step allows us to implement prediction of an antigenic cluster 

transition ahead of the transmission season, during the summer. Having identified (for 

retrospective data) or predicted (for ‘out-of-fit’ data/forecasting purposes) the emergence of 

a new antigenic cluster, we proceed in a second step to quantify how much the new viruses 

differ from those in the recent past.

We specifically define the following quantity to measure evolutionary change (at the 

monthly scale) for the month of September:

(17)

where d2,Sept. was calculated as a normalized distance based on epitope regions of HA1 

between sequences for September of the current season and sequences of the previous 
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second season (for example, d2,Sept in 2000 was calculated based on sequences from 

September of current 2000/2001 influenza season and 1998/1999 influenza season, that is s 
=2 in the notation introduced above). We chose September because a new antigenic cluster 

would need to be established before the winter season to effectively influence the dynamics 

of that transmission season. We chose a comparison between September and the previous 

second season (our ‘reference’ season) for two reasons: first, the average effective period 

back in time estimated with parameter θ for the evolutionary index is about two years (Fig. 

S10), and second, this period is close to the average time of cluster replacements (4).

Because there are typically a limited number of sequences for the summer season, distances 

calculated based on those sequences can vary considerably depending on sampling effort. 

Therefore, to obtain a final value of d2,Sept., we used a similar procedure than that used for 

calculating  above. First, with the same subsampling procedure to address 

geographical and temporal sampling biases, we calculated an average hamming distance for 

strains in each month (from October of the previous year to September of the current year) 

and those from the corresponding reference season (s = 2). Then we normalized these values 

to calculate d(s,t) here d(s = 2, t) Finally, in order to lower the impact of stochasticity in the 

data, especially for data from summer seasons, d2,Sept. was computed as the fitted value (or 

extrapolated if missing) for September, based on a linear regression of distances d(s = 2, t) 
for months between October of the previous year and September of the current year.

For the purpose of fitting the time series data, the resulting ED(t) was introduced in the 

model as described in equation 9. When the goal is instead that of specifically forecasting 

ahead of the transmission season, we need to anticipate cluster transitions and the value of 

ED(t) accordingly. We describe the approach we take for this purpose in the section below on 

Forecasts.

Parameter estimation

The resulting SIRS model was fitted to the data using Likelihood Maximization by Iterated 

particle Filtering (MIF) in the R package pomp (69, 70). Both parameters and initial 

conditions (for S, I, R and RH1) were estimated based on the likelihood function:

(18)

with C(t) > 0. If C(t) = 0, L(t) was set to a very small value equal to −10000 (log scale) as a 

penalty. The search of parameters and initial conditions was started with a grid of 10,000 

random combinations sampled using the Latin Hypercube sampling (71) from wide ranges. 

This step was followed with additional phases of increasingly localized searches. 

Confidence intervals were estimated separately for each parameter with the target parameter 

fixed at different values while allowing estimation of all other parameters also using MIF 

(69, 70). The Akaike information criterion (AIC) was used to measure goodness of a model 

(72). The AIC score takes into account model complexity and penalizes the likelihood based 

on the number of parameters. The likelihood ratio test was used for model selection for 

nested models (73).
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US regional models

For a test of robustness of our general framework, we applied it to data from one US region, 

the US Department of Health & Human Services (HHS) region 3, which includes Delaware, 

District of Columbia, Maryland, Pennsylvania, Virginia and West Virginia. The 

epidemiological, virological and population data were downloaded from the same websites 

as for the national data. We note that the regional data (ILI positive rate, influenza positive 

rate and type/subtype specific proportion) is sparser with frequent data missing during the 

low season. Because the regional data are therefore noisier, we need to smooth it for further 

use. We did so by smoothing the incidence data from peak (time point with highest 

incidence during a winter season) to peak by local linear regression using a 4-weeks 

window. We also slightly revised our model to make its fitting less sensible to the data 

during the low seasons, which are mostly interpolated. We did this by adding a constant 

(200) to the reporting error through ρ in equations 11 and 18 so that likelihoods calculated 

based on the low seasons vary less and contribute less in differentiating model performance. 

We also increased the importation rate from 0.1/day to 10/day to allows for the more 

frequent movement of people between regions within US (53, 55). Additionally, we used the 

national sequence data for the evolutionary covariate, under the assumption that from the 

perspective of evolutionary change the whole country would be largely synchronized (5, 53). 

The choice of spatial scale could be examined further in the future, although more limited 

sequences are available for the regional level.

Forecasts

Forecasts of incidence dynamics were obtained for a given season through three steps. First, 

the cluster model was trained based on the dataset before the target season using exactly the 

same procedure described above. Second, the model with the best likelihood was chosen and 

used to estimate the initial conditions for the forecasts. These initial conditions require 

estimates of the ‘hidden’ (un-measured) variables in the model, S, I, R and RH1 in June of 

the year for which the predictions will be made. MIF allows one to estimate these variables 

as the filtered states of the system at that time given the observations of the cases. Third, 

forecasts were obtained through forward simulations for the target season with the selected 

model and starting from these initial conditions.

Because the system of equations in our models is non-autonomous, including external 

variables or drivers whose values must be specified independently from the dynamics, real 

forecasts (vs retrospective ones) require specifying assumptions for these drivers whose 

observation in the future is by definition unavailable. Specifically, we require information on 

both CH1(t) in ΛH1(t) and d2,Sept. in ED(t) for the simulations. First, for CH1(t), the average 

monthly value from the training dataset was used. This is a simplification and a rough 

approximation but a reasonable choice in the absence of modelling the coupled dynamics of 

H1N1 and H3N2. This approximation is most likely to be sufficient, when predictability of 

our models is evaluated, if the population dynamics of H3N2 is most strongly driven by its 

own evolutionary change rather than by the precise levels of H1N1 (our results suggest that 

this is indeed the case). Second, the evolutionary change between new and old clusters is 

also needed, and this quantity can be extrapolated linearly as the value for September using 
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the same procedure for calculating d2,Sept. above, but based on sequences only from October 

of the previous year to June of the current year.

In addition and importantly, the weekly reports used to identify antigenic cluster transitions 

will not yet be available at the time of forecasting. Previously, a naive Bayes model was 

developed as a genotype-phenotype to translate sequence changes in HA to antigenic 

changes, and specifically calculate an odd ratio measuring antigenic similarity between a 

pair of strains given their sequences (40). Instead of only relying on the number of amino 

acid changes in epitopes of HA, this method employs several additional features that are 

related to intrinsically physiochemical mechanisms of antigenic change to predict the 

antigenic stasis of a strain variant (40). Based on this method, quarterly measures of the 

proportion of antigenic variants (PAV) were calculated here. This quantity provides the 

proportion of pairs that are antigenically different (odd ratio < 1) among all pairs between 

sequences of a specific quarter and those in the previous year. Again, the same subsampling 

process was applied, but based on time points for quarters not months.

To predict a cluster transition, we examined rules that combine a local increase in PAV with 

this quantity exceeding a threshold. This cutoff value was selected based on Receiver ROC 

curves (lower bound of best accuracy, see Fig. S3). Again, because a new antigenic cluster 

would need to be established before the winter season, we chose to evaluate PAV in the third 

quarter (July 1st to September 30th) right before the coming winter season: PAV for the third 

quarter was linearly extrapolated based on data in the previous three quarters (first and 

second quarter of the current year and the fourth quarter in the previous year; that is from 

October 1st to June 30th. The rule we constructed on the basis of PAV was meant to combine 

a requirement that there is sufficient novel viruses accumulating, at a time in which novelty 

is rising. Specifically, based on data from the current season, if PAV increases from the first 

quarter to the second quarter and crosses the selected cutoff of 0.11 for the third quarter 

(whose value was extrapolated as explained above), an antigenic cluster transition was 

identified for the upcoming season. If PAV decreases from the first quarter to the second 

quarter, but is still higher than the cutoff value of 0.11 for the third quarter (again, 

extrapolated), a cluster transition will also be assigned for the upcoming season, with the 

additional requirement that an antigenic cluster transition was not already assigned for the 

current season. Otherwise, no cluster transition will be anticipated for the upcoming season. 

With this rule and for data between 2002 and 2012, we would have correctly anticipated all 

antigenic cluster transitions (true positive rate equal to 1 and false positive rate equal to 0) 

with a cutoff value of PAV ranging from 0.11 to 0.2. The lower bound of 0.11 was chosen as 

the cutoff in this study.

For the continuous model, we also need to know CH1(t) and E(t). For CH1(t), the average 

monthly values of H1N1 incidence were used. E(t)was linearly extrapolated up to September 

using the data available until June of the current season, then kept constant.

When predicting the risk level (high or low) of a target season, we first define an epidemic 

relative to a reference threshold, defined initially as the median (50% quantile) of the 

seasonal total incidence in the training dataset. We then calculated the percentage of 

simulations above this threshold among 1000 simulations for the given target season. This 
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percentage provides a probability of exceeding the given epidemic level. We can again use 

ROC curves and the training data set to establish which probability should be exceeded to 

predict a high risk. If the percentage is above a cutoff (upper bound of best accuracy), the 

target season is predicted with high risk; otherwise, it is a low risk season (see Fig. S5 for 

the US national data based on the cluster model, Fig. S13 for the US national data based on 

the continuous model, and Fig. S14 for the HHS region 3 data). Although a natural choice 

might be 50% of the simulations, ROC curves can indicate that lower percentages should 

indicate risk given the tendency of the model to under-predict the size of the peaks.

Cross-validation (hindcast)

In order to test predicting ability further, and specifically for different patterns of alternating 

dominant subtypes in adjacent seasons, we conducted a cross-validation analysis for the 

training dataset itself covering the period from 2002 to 2011. For each influenza season from 

from 2003/2004 to 2010/2011, one at a time, the cluster model was fitted de novo by 

removing the target year and using the same search strategy than for the full data set before. 

With the resulting specific parameters, a prediction was generated using the same strategy 

described above and calculating mean H1N1 incidence with all years except the target one. 

In practice, the fitting of the model is implemented in MIF with parameters prevented from 

performing a random walk during the window of time that contains the target year (so that 

the corresponding data is not used in the filtering process), and with the likelihood evaluated 

by setting L(t) = 0 (in the log scale) in equation 18.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SUMMARY

Skillful forecasting of seasonal (H3N2) influenza incidence ahead of the season is shown 

to be possible by means of a transmission model that explicitly tracks evolutionary 

change in the virus, integrating information from both epidemiological surveillance and 

readily available genetic sequences.
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Figure 1. 
Data and model. (A) Monthly influenza incidence data for the US between October 2002 

and June 2016. Red, blue and green curves are for subtype H3N2, subtype H1N1 and type B 

respectively. Seasons with an antigenic cluster transition were marked with asterisks. (B) 
Diagram for the epidemiological model. A classical susceptible-infected-recovered-

susceptible (SIRS) epidemic model was used to represent the population dynamics of H3N2 

incidence. The SIRS model is a compartmental formulation that follows the number of 

individuals into three classes, for susceptible (S), infected (I) and recovered (R) individuals 

respectively. People die at a constant rate μ. N(t) is the population size and the birth of 

individuals was specified as  to capture the observed increase of the population. 

Susceptible individuals in S move to the I class after contact with an infective and 

transmission of the disease at rate β(t). This transmission rate includes a seasonal 

component, a dependency on the antigenic change of the virus, and environmental noise. 

Infected individuals eventually recover with an average infectious period of γ and move to 

the R class where they are protected by acquired immunity. Specific immunity is temporary 

and will be lost after an average latent period ε(t), with individuals in R returning to the S 
class. Parameter τ is the rate of external importation of H3N2 cases. An additional RH1 class 

was designed to track the protected population due to infection by H1N1. The rate of 

transition to the RH1 class is given by ΛH1(t), which depends on the observed incidence of 

H1N1 scaled to take into account the estimated reporting error. Individuals in the RH1 return 

back to the R class after an average latent period of εH1. (C) Monthly evolutionary change 

E(t). The transmission rate β(t) in our first model incorporating evolutionary change depends 

on this evolutionary index. E(t)was calculated based on epitope sites of HA, as a weighted 

sum of normalized amino acid distances (hamming distances) between strains in month t and 

previous strains. Those distances were weighted by a decaying function back in time whose 

time scale was estimated as part of the model fitting. Details are described in the 

Evolutionary Index section of the Materials and Methods.
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Figure 2. 
Illustration of the best model fits for the (A) basic, (B) continuous and (C) cluster models. 

See Table 1 for the specification and statistical comparison of the different models 

considered. Here, monthly simulations of the respective models with the MLE (Maximum 

Likelihood Estimates) parameters are shown for the median (in red) and 2.5–97.5% 

quantiles (shaded red) of 1000 simulations starting from estimated initial conditions in 

October 2002. For comparison, the observed monthly H3N2 incidence data for the US are 

shown in black. The basic model which incorporates only a fixed seasonality and no 

information on H1N1 in (A) fails to capture the temporal variability in the size of seasonal 

outbreaks; whereas the two models that include a dependence on the levels of H1N1 and on 

the evolutionary change of the virus (in a continuous fashion in B, and a discrete one in C) 

do represent this interannual variation.
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Figure 3. 
H3N2 incidence forecasts based on the cluster model for the US. Both retrospective 

forecasts (for each influenza season from 2011/2012 to 2015/2016) and a real forecast for 

the coming 2016/2017 influenza season are represented. These forecasts are simulated on a 

seasonal basis from estimated initial conditions starting in June and based on parameters 

estimated with all the data up to that point in time. The average monthly H1N1 incidence 

from this training dataset was used for forecasting purposes as the observation of this driver 

quantity would not be available. Similarly, the quantities specifying the evolutionary change 

of the virus was extrapolated as the sequences required for their computation would not be 

available. The black curve is the monthly observed H3N2 incidence; the red curve is the 

predicted monthly median incidence with shaded 2.5–97.5% quantiles from 1000 random 

simulations with the best models. The cluster model captures the occurrence of low and high 

seasons and forecasts high H3N2 incidence risk level for the 2016/2017 influenza season. 

The observed incidence data for the 2016/2017 influenza season, which were not yet 

available when this study was conducted, are shown with the dotted line (and based on data 

from the weekly US influenza surveillance report until week 14 ending on April 8, 2017).
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Table 2

H3N2 risk level forecasts for the US based on the cluster model. Seasonal risk level for H3N2 influenza virus 

is defined as high or low for each season from the out-of-fit period (2011–2017) compared to a reference level 

defined as the 50% quantile of the seasonal total H3N2 incidence cases in the corresponding training dataset. 

We defined an observed season as H3N2 high risk, when the observed total H3N2 incidence surpasses the 

reference level; and a H3N2 low risk season otherwise. For the forecasts, the percentage of 1000 simulations 

that exhibit a H3N2 high risk was obtained. When this percentage exceeded 40% (chosen based on Fig. S5), 

we forecasted a H3N2 high risk season. Otherwise, a H3N2 low risk season was predicted.

Seasons Observed % High(1000 simulations) Forecasts (>40%: high)

2011/2012 Low 8.2 Low

2012/2013 High 99.6 High

2013/2014 Low 3.6 Low

2014/2015 High 99.9 High

2015/2016 Low 7.0 Low

2016/2017 High* 100.0 High

*
Based on the updated data from the weekly US influenza surveillance report until week 14 ending on April 8, 2017
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