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Abstract

A limited number of studies have been conducted to analyze ribosomal RNA (rRNA, present in 

the ribosome) in bioaerosol samples to identify currently or potentially active airborne microbes, 

although its genomic counterpart, the rRNA gene (on the chromosome) has been frequently 

targeted for airborne microbial community analysis. A knowledge gap still exists regarding 

whether the bioaerosol rRNA abundances are affected by the bioaerosol collection process. We 

investigated the effect of air sampling stress on the measurement and characterization of 16S 

rRNA for bioaerosols in the laboratory and field experiments using quantitative polymerase chain 

reaction (qPCR) and high-throughput sequencing techniques. In a laboratory study, known 

quantities of freshly grown Escherichia coli cells were spiked onto the filter of a Button Aerosol 

Sampler and into liquids of BioSampler and SpinCon air samplers and then exposed to sampling 

stress when the samplers were operated for 2 hours. We found that the recovered cellular 16S 

rRNA abundance as determined by qPCR was dependent on sampler type. Further, two devices 

(Button Aerosol Sampler and BioSampler) that exhibited markedly different efficiency in 

preserving 16S rRNA were employed in an outdoor environment to collect bioaerosols 

simultaneously on eight days in two different seasons. The abundance of 16S rRNA in the outdoor 

air sample (1.3×106–4.9×107 copies/m3) was about two orders of magnitude higher than that of 

16S rRNA gene (6.9×103–1.5×105 copies/m3). The 16S rRNA sequences revealed a different 

bacterial community compared with 16S rRNA gene-based results across all samples, and this 

difference depended on the sampling device. In addition, a number of bacterial taxa exhibited 

higher abundance in the 16S rRNA gene sequences than in 16S rRNA sequences, which suggests 

the potential activities of certain microbes in airborne phase. Overall, this study highlights the 

importance of sampling device selection when analyzing RNA in bioaerosols.
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INTRODUCTION

The ribosomal RNA (rRNA) gene (on the microbial chromosome), particularly the 16S 

rRNA gene of Bacteria and/or Archaea, has been widely utilized in environmental 

microbiology studies because it is ubiquitous and has low mutation rates throughout Bacteria 
and Archaea evolution1, and it also encompasses hypervariable regions which can be used to 

distinguish between bacterial taxa2. However, microbial samples often contain 16S rRNA 

genes from dormant cells3, 4 or lysed cells5, 6, thus precluding the use of 16S rRNA gene 

when investigating only active microbial community members. In contrast, the rRNA (as 

part of the ribosome) encoded by this gene is directly linked to cell physiology, e.g. the 

synthesis of rRNA is growthrate dependent for a number of bacterial species7–9. Thus, 

analysis of 16S rRNA sequences rather than rRNA gene sequences (DNA) can help reveal 

those community members who are or have recently been active within a complex microbial 

community10, 11. This approach has been employed to analyze microbial samples from 

water, soil, sediments, and biofilms10–17. However, there has been a limited number of 

studies on rRNA measurements and rRNA-based community analysis in airborne 

microorganisms (a.k.a. bioaerosols)18, 19.

Since airborne biomass is relatively low in abundance compared to soil or water 

biomass20, 21, bioaerosol sampling devices often have to be operated for long time periods 

which could cause stress on the already collected microorganisms as sample collection 

continues22–24. Thus, one major concern when studying rRNA in bioaerosols is whether the 

rRNA abundance in the collected cells remains unchanged during sampling. Although rRNA 

is a relatively stable RNA type, it could also exhibit variation within a cell under certain 

changes in environmental conditions25. It has been reported that bacterial rRNA 

concentrations increase during early exponential growth of cells7 and rRNA degrades when 

cells experience depletion of nutrients and glucose starvation25. A recent study showed that 

the 16S rRNA abundance in Sphingomonas aerolata aerosols in a rotating bioreactor 

increased when the bacteria were supplied with gaseous growth substrates18. Certain 

bacteria, e.g. Lactococcus lactis in a non-growth state displayed changes in rRNA content in 

response to heat shock26. Since air sampling processes such as impaction, impingement, and 

desiccation can significantly alter the physiological status of collected bioaerosols, including 

the loss of viability and impaired cell membrane integrity22–24, 27, it is possible that air 

sampling also affects the abundance of rRNA in the samples and introduces bias to rRNA-

based sample analysis. Thus, if rRNA is to be used to analyze airborne microbial 

communities, it is important to determine how the sampling process, i.e., stress due to 

Zhen et al. Page 2

Sci Total Environ. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sampling, affects the rRNA of bioaerosol samples and whether the magnitude of the effect 

depends on a particular bioaerosol collection method or device.

Historically, the growth or metabolic activity of particular bacterial taxa has been 

investigated by measuring the change in 16S rRNA:16S rRNA gene ratio7–9, 28. 

Subsequently, 16S rRNA sequence analysis has been used to identify potentially active 

members within microbial populations from complex microbial samples11–16. However, if 

the sampling process itself, e.g. sampling stress, leads to the increase or decrease in rRNA 

content of specific bacterial taxa, then their relative abundance within a complex bacterial 

community could be either overestimated or underestimated. Because the different particle 

capturing mechanisms of various sampler designs may cause differing effects on cellular 

rRNA, this potential effect on the sequence abundance of active microbial community 

members may be air sampling device-dependent.

The objectives of this study were: 1) to study whether the rRNA content of bioaerosol 

samples changes due to the air sampling process itself, i.e., sampling stress; 2) to assess 

whether this effect of sampling stress on bioaerosol rRNA is device-dependent; 3) to 

investigate how this effect impacts the analysis of 16S rRNA sequences from bioaerosols 

collected in an outdoor environment. First, we investigated the change in 16S rRNA:16S 

rRNA gene ratio of Escherichia coli in response to two-hour aerosol sampling using three 

different bioaerosol samplers in a laboratory. In the second part of the study, we analyzed 

microbial communities simultaneously collected from the outdoor air by the same three 

devices on eight different days in summer and late winter/early spring. The microbial 

communities represented in the 16S rRNA gene and 16S rRNA were analyzed by 

pyrosequencing. To the best of our knowledge, this is the first study to investigate the 

potential effect (bias) of sampling stress on the quantification and characterization of 16S 

rRNA from bioaerosol samples.

MATERIALS AND METHODS

Bacterial Culture in Laboratory Experiments

A Gram-negative bacterium E. coli (ATCC 15597, Manassas, VA) was selected as a test 

microorganism. This organism has been used as a model microorganism in many bioaerosol 

studies23, 27, 29. The procedures for preparation of E. coli suspension were described 

elsewhere30 and details are provided in Supplementary Information. Briefly, E. coli was 

precultured in Tryptic Soy broth, harvested by centrifugation, and resuspended in 

1×phosphate-buffered saline (PBS) solution prior to experiments.

Bioaerosol Samplers

A Button Aerosol Sampler (SKC Inc., Eighty Four, PA), later referred to as Button sampler, 

a BioSampler (SKC Inc.), and a SpinCon wet cyclone (PAS 450-10A, InnovaPrep LLC., 

Drexel, MO) were used in this study to collect bioaerosols. The Button sampler is a filter-

based sampler, and it was used with a 0.8-µm-pore-size polyethersulfone (PES) membrane 

filter (SUPOR, Pall Life Sciences, Port Washington, NY). Its nominal flow rate is 4 

liters/min31, but here the sampler was operated at a flow rate of 18 liters/min to exacerbate a 
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potential effect of filtration stress on bacterial cells. The two other devices are liquid-based 

bioaerosol samplers and collect airborne particles by a combination of liquid impingement 

and cyclonic action. 1×PBS solution was used as collection fluid for these two devices. The 

SKC BioSampler with a 5-ml collection cup was operated at its design flow rate of 12.5 

liters/min. The BioSampler cup was refilled with Milli-Q water approximately every 15 

minutes to replenish the fluid evaporated during its operation. The SpinCon air sampler was 

operated at a flow rate of 450 L/min and the total sample volume of approximately 10 ml; 

the device automatically maintains liquid level during its operation from a reservoir of sterile 

water.

Experimental Procedure

In order to simulate an environment where bacterial cells were continuously exposed to 

sampling stresses after their initial collection, each device was spiked with a known amount 

of bacteria and then operated for 2 hours at a room temperature by aspirating particle-free air 

inside a disinfected class II biosafety cabinet (NuAire Inc., Plymouth, MN). The air 

temperature and relative humidity (RH) for tested conditions were 25 °C and between 25–

30%, respectively. The following amounts of freshly grown E. coli cells in 1×PBS were 

spiked prior to sampling: ~5×105 cells were loaded onto the filter, ~3×108 cells were spiked 

into the collection fluid inside the BioSampler cup, and ~1×109 cells were added to the 

SpinCon collection chamber. A separate aliquot of the same E. coli cells was saved at −80°C 

to serve as a reference sample.

After the samplers had been operated for 2 hours, the filter was removed from the Button 

sampler with sterile tweezers, immediately placed into a sterile 1.5 ml microcentrifuge tube 

and stored at −80°C. The whole filter was subjected to subsequent nucleic acid extraction 

within the microcentrifuge tube. One ml of homogenized liquid was taken from the 

BioSampler and SpinCon samples and 10 µl β-mercaptoethanol (β-ME) was added to inhibit 

the potential RNase activity. The liquid samples were centrifuged at 16,100×g for 10 min at 

4°C, after which 950 µl of the supernatant liquid was transferred into a new 1.5 ml 

centrifuge tube and saved along with the rest 50 µl of the sample containing pellet cells at 

−80°C. Our previous study showed that the supernatant liquid after centrifugation of liquid-

based bioaerosol samples could have a substantial quantity of extracellular DNA from 

membrane damaged cells23. Thus, both fractions of samples were subjected to subsequent 

DNA and RNA analysis.

The outdoor sampling experiments were performed with Button Aerosol Sampler and 

BioSampler on Rutgers University’s Cook Campus in New Brunswick, NJ (40.48°N, 

74.44°W). Here, we chose only two types of devices for investigation because they exhibited 

markedly different efficiencies in preserving 16S rRNA from initial laboratory investigation 

with E. coli, while the SpinCon did not show significant impact on the recovery of E. coli 
16S rRNA (explained with details in Results section). The sampling location was on a grass 

field and about 10 meters from a teaching and research building. One Button sampler and 

two BioSamplers were located approximately 1 m above the ground and each sampler set 

approximately 0.5 m from any other sampling devices, i.e. the samplers were collocated. 

The Button samplers have omnidirectional inlet and are only minimally affected by wind 
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direction. All three sampling devices were operated simultaneously for two hours on three 

different days in summer (Aug. 6th, Sep. 15th, and 17th of 2014) and five different days in 

late winter/early spring (Feb. 4th, Mar. 13th, 16th, 23rd, and 25th of 2015). Two BioSampler 

units were employed here to collect sufficient biomass for subsequent analysis. The 

temperature during sampling varied between 21–26°C in summer and 3–12°C in late winter/

early spring. The RH during sampling was between 60–70% in summer and 23–55% in late 

winter/early spring.

Upon completion of each sampling event, the filter from the Button sampler was removed 

with sterile tweezers, immediately placed into a 1.5 ml sterile microcentrifuge tube and 

stored at −80°C for subsequent nucleic acid extraction. The collection liquid from the two 

BioSamplers was combined and transferred into a 50-ml centrifuge tube. Then two 

BioSamplers were refilled with 2 ml sterile water each and shaken vigorously to wash the 

residual particles off inner surfaces32. The washed liquid was then combined with the initial 

sample reaching a total volume of ~15 ml. A 1% β-ME solution was added. Thereafter, the 

liquid sample was centrifuged at 16,100×g for 10 min at 4°C. After centrifugation, the 

pellets were immediately saved at −80°C. The supernatant liquid was first extracted with 

sec-butanol (Acros Organics, Somerset, NJ) to reduce the sample volume to ~400 µl and 

then stored at −80°C. A blank filter for Button sampler and sterile liquid solutions for 

BioSampler were saved and analyzed for quality control.

Nucleic Acids Extraction

The total genomic DNA and RNA of E. coli laboratory samples and outdoor bioaerosol 

samples from cell pellets and supernatant lipid were extracted by a phenol-chloroform 

method as described elsewhere18. For analysis of 16S rRNA, the extracted nucleic acids 

mixtures were subjected to DNase treatment followed by reverse transcription. The details of 

nucleic acids extraction and 16S rRNA preparation protocols are provided in Supplementary 

Information.

Quantitative PCR

We previously developed a dual-internal-reference technique to improve the accuracy of 

analysis when quantifying bacterial 16S rRNA:16S rRNA gene ratio by introducing two 

exogenous DNA and RNA references (Pseudomonas fluorescens genomic DNA and 16S 

rRNA)30. This technique was applied here to quantify the 16S rRNA and 16S rRNA gene for 

E. coli samples from the laboratory experiment by using a multiplex qPCR method30. The 

16S rRNA and 16S rRNA gene from bioaerosols collected outdoors were quantified by 

using a SYBR-Green-based qPCR assay that was performed on iCycler iQ5 RT-PCR 

detection system (Bio-Rad Laboratories, Hercules, CA) by following a previously reported 

method23. The details of both qPCR assays are provided in Supplementary Information.

Sequence Analysis

Microbial communities in outdoor samples were characterized by a commercial laboratory 

(Molecular Research LP, Shallowater, TX) using multiplex barcoded 16S rRNA amplicon 

pyrosequencing. Prior to sequencing, the bacterial 16S rRNA gene sequences and reversed 

transcribed 16S rRNA sequences in each sample were amplified by PCR with universal 
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primer sets 515f/909r. All amplicon products from different samples were mixed in equal 

concentrations and purified using Agencourt Ampure beads (Agencourt Bioscience 

Corporation, MA, USA). The pyrosequencing was performed on a Roche 454 FLX+ 

titanium instrument (454 Life Sciences, Branford, CT) following manufacturer’s guidelines 

and reagents.

The obtained sequences were analyzed using the Quantitative Insights Into Microbial 

Ecology (QIIME) software package33. Quality filtering was performed by removing any 

sequences with less than 200 base pairs in length, machine quality score lower than 25, 

containing any mismatches in the barcode or primer sequence, or having any ambiguous 

bases. Chimeric sequences were removed by UCHIME34. A total of 1.8×105 sequences 

passed the quality control checks and were subjected to subsequent analyses. Sequences 

were clustered into operational taxonomic units (OTUs) by UCLUST35 using minimal 97% 

sequence similarity, and the representative sequence of each OUT was aligned with 

PyNAST33 against the Greengenes core set from July 201236. Taxonomic assignment was 

conducted using the Ribosomal Database Project classifier37. All samples were rarefied to 

702 sequences prior to downstream analyses of diversity and community composition to 

correct for different sequencing depth. The relative abundance of a bacterial taxon was 

defined as the number of sequences affiliated to the particular taxon divided by the total 

number of sequences per sample. The phylogenetic distance in the microbial community 

between paired samples was analyzed using weighted UniFrac algorithm38, and the results 

were presented in principal coordinate analyses (PCoA) plots. Sequences were deposited in 

the NCBI Sequence Read Archive database under accession number SRP112875.

Statistical Analysis

For each device in laboratory experiments, a one-way ANOVA with Fisher’s LSD analysis 

was performed to compare 16S rRNA gene and 16S rRNA quantities, and 16S rRNA:16S 

rRNA gene ratios for E. coli samples before and after two hours of sampling. For outdoor 

experiments, a two-way nested ANOVA was performed to test the effects of sampling device 

and season on 16S rRNA gene and 16S rRNA quantities, and their ratio. A random factor, 

sampling day, was nested under the main factor season in the two-way ANOVA model to 

stratify the data. Three-way nested ANOVA test was performed to test the effects of season 

(nesting sampling days), sampling device and sequence types on the number of identified 

bacterial genera, and the sum of abundances of bacterial genera detected in both 16S rRNA 

and 16S rRNA gene sequences in each sample. Permutational ANOVA (PERMANOVA) was 

performed in R (ADONIS function in VEGAN package, version 2.4–3)39 to test the effects 

of season, sequence type (16S rRNA or rRNA gene), sampling device and the interactions 

between sequence type and sampling device on the weighted-UniFrac pairwise distances of 

bacterial communities. We performed a Mann-Whitney U test using SPSS (version 20, IBM 

Corp., Armonk, NY) to test the seasonal effect on the relative abundance of individual 

detected bacterial families and genera and the ratios of 16S rRNA: 16S rRNA gene across all 

bacterial families. A Wilcoxon Signed Rank test was performed using SPSS to compare the 

relative abundance of individual detected bacterial family/genus between paired 16S rRNA 

gene and 16S rRNA sequences. Overall, a statistically significant difference was assumed 

for p<0.05.
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RESULTS

Effect of Sampling Device on 16S rRNA:16S rRNA Gene Ratio of E. coli

Figure 1a shows a change in the quantity of spiked E. coli 16S rRNA and 16S rRNA gene 

after two hours of sampling in laboratory experiments as a function of the sampling device. 

It should be noted here that the 16S rRNA and 16S RNA gene abundances in E. coli cells 

were determined with qPCR by targeting the same section of the E. coli 16S RNA gene 

sequence, and the results were reported as percentage recovery relative to the quantities of 

16S rRNA or 16S rRNA gene in spiked cells, respectively. The recovered 16S rRNA gene 

quantities were 81.7±3.1%, 89.2±14.6 % and 84.0±8.2% for Button sampler, SpinCon 

sampler, and BioSampler, respectively. This suggests a relatively low and similar loss of 

initially collected E. coli cells during continuing sample collection for two hours. However, 

the differences are more marked for the recovery of 16S rRNA: 108.5±12.0%, 82.3±2.1% 

and 52.8±9.7% for Button sampler, SpinCon air sampler, and BioSampler, respectively. The 

distinct difference in the relative abundance of 16S rRNA among the devices is also reflected 

in the 16S rRNA:16S rRNA gene ratios (Figure 1b). For the Button sampler, the ratio 

increased significantly (p=0.034) from ~4300 to ~5900 after two hours of particle-free air 

sampling. For E. coli spiked into liquid-based samplers, the ratio associated with SpinCon 

sampler remained steady at ~4000 (p=0.44); however, two hours of active aspiration with 

particle-free air by the BioSampler resulted in an approximately 40% decrease (p=0.026) in 

the 16S rRNA:16S rRNA gene ratio relative to that of the initially spiked E. coli cells: from 

4330 to 2500.

Quantification of Outdoor Bioaerosols

Similar to the laboratory experiment, the 16S rRNA and 16S RNA gene abundances in 

bioaerosols collected outdoors were determined using qPCR by targeting the same section of 

bacterial 16s RNA gene sequence, and the results were reported as absolute copy number of 

PCR amplicons. The abundance of 16S rRNA gene ranged from 6.9×103 to 1.2×105 

copies/m3 and from 1.0×104 to 1.5×105 copies/m3 for outdoor bioaerosols collected in 

summer by Button sampler and BioSampler, respectively (Figure 2a). In late winter/early 

spring samples, the abundance of 16S rRNA gene ranged from 5.1×104 to 1.3×105 

copies/m3 for the Button sampler and from 8.8×103 to 7.8×104 copies/m3 for the 

BioSampler. No significant differences were observed between 16S rRNA gene quantities in 

samples collected by the two samplers or in two different seasons.

In general, the 16S rRNA abundance was about two orders of magnitude higher than that of 

16S rRNA gene copies from the same sample. For example, the summer samples collected 

by Button sampler and BioSampler contained a range of 2.1×106–3.5×107 copies/m3 and 

2.3×106–2.9×107 copies/m3 of 16S rRNA (Figure 2a). For late winter/early spring samples, 

the abundance of 16S rRNA ranged from 1.4×107 to 4.9×107 copies/m3 for the Button 

sampler and from 1.3×106 to 9.6×106 copies/m3 for the BioSampler. ANOVA test indicated 

that the 16S rRNA quantities collected by BioSampler were significantly lower than those 

collected by Button sampler (p=0.001).
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The 16S rRNA:16S rRNA gene ratios of collected bioaerosols were 234±116 and 168±104 

for Button sampler and BioSampler from three summer sampling events, and 491±270 and 

144±87 for Button sampler and BioSampler in five late winter/early spring samples, 

respectively (Figure 2b). The 16S rRNA:16S rRNA gene ratios from BioSampler samples 

were found to be significantly lower than those from Button sampler (p=0.04) by ANOVA.

Comparison in Airborne Microbial Community

Taxonomic identification of paired 16S rRNA gene and 16S rRNA sequences for all sixteen 

outdoor samples was completed at the genus level or higher due to the short reading lengths 

(466 bp) obtained in pyrosequencing. The Proteobacteria was the most abundant bacterial 

phylum on average, and it accounted for 21.7%, 5.8% and 10.2% of all reads for α-, β- and 

γ- subgroups (Figure S1 in Supplementary Information), respectively. Other dominant phyla 

included the Actinobacteria (17.6%), Bacteroidetes (11.6%), Cyanobacteria (9.1%) and 

Firmicutes (9.8%). The relative abundance of each bacterial phylum and class identified in 

all outdoor samples are presented in detail in Table S1 (Supplementary Information).

A principle coordinate analysis (PCoA) of weighted-UniFrac distance was conducted to 

compare the bacterial communities across all outdoor samples, and the results are presented 

in Figure 3. The data points representing summer samples were clustered together and 

clearly separated from the data points for late winter/early spring. There was no distinct 

clustering of sample points separated by either sampling device (Button sampler or 

BioSampler) or sequence type (16S rRNA gene sequences or 16S rRNA sequences). Results 

from permutational ANOVA (PERMANOVA) analysis (Table 1) showed that bacterial 

communities were significantly different between two seasons (p=0.011) and also between 

two sequence types (p=0.006), while no difference was observed in bacterial communities 

collected by the two devices (p=0.869). Interestingly, the interaction between sampling 

device and sequence type exhibited significant impact (p=0.046) on the bacterial community 

composition.

The relative abundance of major bacterial families (>1% average abundance in samples from 

either season) was further compared between two seasons, and those bacterial families that 

exhibited significantly different abundances are shown in Figure S2 (Supplementary 

Information). The Sphingomonadaceae, Methylobacteriaceae, Sphingobacteriaceae, 

Enterobacteriaceae, and Pseudonocardiaceae families were more abundant in summer 

samples relative to late winter/early spring samples. The genera Methylobacterium 
(Methylobacteriacea family), Novosphingobium (Sphingobacteriaceae family) and 

Actinomycetospora (Pseudonocardiaceae family) showed the greatest differences between 

two seasons: their average abundances in summer compared to late winter/early spring 

samples were higher by factors of 4, 4, and 10 respectively. On the contrary, families 

Moraxellaceae and Flavobacteriaceae showed higher abundance in late winter/early spring 

than in summer. The representative genera contributing to the difference are Psychrobacter 
(Moraxellaceae family) and Flavobacterium (Flavobacteriaceae family). The abundance of 

these two genera in late winter/early spring was higher than in summer by a factor of 

approximately 150x and 5x, respectively.
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Comparison Between Relative Abundance of 16S rRNA and 16S rRNA Gene Sequences in 
Outdoor Bioaerosols

The 16S rRNA and 16S rRNA gene-based community data were further analyzed for 

differences at both family and genus levels. Because different seasons harbored distinctly 

different bacterial communities, the comparison was stratified by season. For summer 

samples (Figure 4a), bacterial families Methylobacteriaceae, Cytophagaceae, 

Xanthomonadaceae, Acetobacteraceae, Pseudonocardiaceae, and Isosphaeraceae showed a 

higher relative abundance of 16S rRNA than 16S rRNA gene. Within those families, genera 

that contributed to relatively higher 16S rRNA abundances were Methylobacterium 
(Methylobacteriaceae family), Hymenobacter (Cytophagaceae family), Rhodanobacter and 

Luteimonas (Xanthomonadaceae family), Roseomonas (Acetobacteraceae family), and 

Actinomycetospora (Pseudonocardiaceae family). For late winter/early spring samples 

(Figure 4b), families of Xenococcaceae, Xanthomonadaceae, Acetobacteraceae, 

Rhodobacteraceae, and Erythrobacteraceae exhibited a significantly higher relative 

abundance of 16S rRNA than that of 16S rRNA gene. At the genus level, genera 

Rhodanobacter (Xenococcaceae family), Luteimonas (Xanthomonadaceae family), and 

Roseomonas (Acetobacteraceae family) were determined to have relatively higher 

abundances of 16S rRNA. On the other hand, two bacterial families (Micrococcaceae and 

Ruminococcaceae) in summer samples and one family (Sphingobacteriaceae) in late winter/

early spring samples exhibited a higher relative abundance of 16S rRNA gene than 16S 

rRNA (Figure 4). No particular bacterial genus was detected in greater abundance in 16S 

rRNA gene than 16S rRNA in samples collected from either season.

A positive correlation was observed between the log-transformed relative abundances of 16S 

rRNA and 16S rRNA gene across all bacterial genera. (Figure S3 in Supplementary 

Information, Pearson correlation p<0.0001, R2=0.22). The 16S rRNA:16S rRNA gene ratios 

were calculated with the relative abundances of bacterial families that were found in both the 

paired 16S rRNA and 16S rRNA gene sequences, and the ratios ranged from 0.07 to 16 

(1.44 on average) and from 0.02 to 52 (2.00 on average) for samples collected in summer 

and late winter/early spring, respectively. No difference was found between the ratios of all 

bacterial families from two seasons (p=0.13). Negative correlations (Figure 5) were 

observed between the 16S rRNA:16S rRNA gene ratio and relative abundances of 16S rRNA 

gene of bacterial families across all samples from two seasons (Kendall correlation p<4e–11, 

τ= −0.27 for summer, p<2e–16, τ= −0.35 for late winter/early spring samples).

DISCUSSION

It has been known that microbes in an active growth stage may shift towards the non-growth 

maintenance activities under certain stress11, 40. For example, E. coli was reported to 

actively respond to desiccation stress by changing the membrane phase behavior41–43, e.g. 

increasing the fraction of saturated fatty acids41, and synthesizing more intracellular 

compatible organic solutes including trehalose, proline and glutamine42, 43. At the same 

time, only a limited amount of published work is currently available regarding the 

relationship between non-growth-related cell activities and rRNA concentration11, 26. In our 

tests, E. coli cells exposed to osmotic and desiccation stress did not manifest any growth: a 
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lower quantity of genomic DNA was recovered from filters post-exposure relative to the 

initial quantity in spiked E. coli cells. Thus, non-growth cell maintenance of E. coli may 

partially explain the elevated 16S rRNA:16S rRNA gene ratio under desiccation conditions.

In our tests with two liquid-based samplers, a significant degradation of 16S rRNA was 

observed in E. coli samples after two hours of particle-free air sampling with the 

BioSampler, but not with the SpinCon sampler, although both devices use a similar 

collection principle. It is worth mentioning that we observed a greater temperature drop in 

the collection liquid of BioSampler after 2 hours of operation (25 °C to 12 °C) than in 

SpinCon (25 °C to 22 °C). Cold shock to E. coli has been known to elevate the RNase R 
activity within E. coli cells44, 45, e.g. more than 10-fold increase was observed for a 

temperature drop from 37°C to 10°C46. Thus, we hypothesize that this difference in the 

temperature drop might be the main factor responsible for different rRNA abundance in 

samples from the two devices. For both devices, the air is pulled through either three nozzles 

(BioSampler) or a thin slot (SpinCon) at high velocities and then impinged into the liquid 

inside the collection vessel. An air pressure below atmospheric is needed inside both 

collectors to create the air flow. Low air pressure results in a rapid evaporation of water, and 

thus the evaporative cooling effect on the remaining collection liquid47. However, each 

BioSampler nozzle operates as a critical orifice resulting in the air flow moving at the sonic 

velocity (~340 m/s)48 and pressure of about 0.5 atmospheres inside the collector; on the 

other hand, the air velocity through the SpinCon’s inlet slot is much lower at an estimated 

~30 m/s (from manufacturer’s specifications), which results in a higher absolute pressure 

inside the SpinCon compared to BioSampler. Overall, the difference in absolute pressure 

inside the two samplers very likely leads to the faster liquid evaporation rate of BioSampler 

and thus a stronger cooling effect on the collection liquid containing bacteria than SpinCon.

In the laboratory experiments, statistically significantly higher fraction of spiked E. coli 16S 

rRNA was recovered from filter samples (Button sampler) than from BioSampler samples 

(Fig. 1). The same pattern held for total 16S rRNA recovered from outdoor samples (Fig. 2). 

Therefore, the potential impact of the two sampling devices on airborne bacterial community 

analysis was further investigated. While the outdoor community composition identified by 

16S rRNA and 16S rRNA genes were statistically different from each other, there was no 

difference in community structure between samples collected by the two devices (Table 1). 

Interestingly, a significant interaction between the sampling device and sequence type was 

observed (p=0.046, Table 1), which suggests that the different community structure as 

revealed by 16S rRNA sequences compared to 16S rRNA gene sequences was dependent on 

sampling device. This finding, together with the result showing the sampler-dependent 

difference in 16S rRNA abundance, further highlights the importance of sampler selection 

when studying airborne bacteria using 16S rRNA sequences. However, unlike in our 

laboratory studies with E. coli, there was no reference sample that would have represented 

16S rRNA sequences in outdoor bioaerosols prior to their collection. Thus, it was impossible 

to determine accurately how the air sampling stress changes the abundance of 16S rRNA of 

individual bacterial species and, consequently, the overall composition of the microbial 

community in outdoor air samples.
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Our data show that bacterial communities collected at the same outdoor location were 

distinctly different in different seasons regardless of the sampling device and analysis 

sequence type (Figure 3 and Table 1). Other studies also reported temporal variation in 

airborne bacterial population across several consecutive days49 as well as across different 

seasons50–52. This temporal variability could be driven by changing contribution from 

individual sources, e.g. soils, water bodies, plant surfaces, animal and human activities51–53. 

For example, genera Methylobacterium54, 55, Novosphingobium56, 57 and 

Actinomycetospora58, 59 that are frequently associated with plant leaves were detected with 

higher abundances in summer samples than in late winter/early spring samples. In addition, 

meteorological conditions (temperature) also play a role in shaping the outdoor airborne 

microbial community60. For example, bacterial genera Psychrobacter and Flavobacterium 
were found with higher abundances in late winter/early spring samples than in those 

collected during summer. Both genera contain a number of psychrotolerant species and have 

been detected with higher frequency in low temperature and snow-covered 

environments50, 61–63.

In addition to the temporal variation in airborne bacterial population49, the selection of 

sampling device might also contribute to the observed microbial community difference 

across multiple samples. For instance, Hoisington et al.64 reported that four different types 

of active samplers that were collocated in a concurrent air sampling event revealed different 

microbial composition in an indoor environment. It was suggested that the unique design 

and working principle of various samplers might selectively capture microbes with different 

characteristics (e.g. aerodynamic diameter)64. Apart from this potentially influencing factor, 

it is also likely that the collocated samplers that operated simultaneously could introduce 

competing sampling artifacts due to the interference of air flow from other devices. In our 

experimental design, we deliberately adjusted the position of each sampler in order to 

minimize this potential artifact. In fact, we did not observe the variation in community 

composition between sampling devices (Table 1). However, it is possible that other main 

effects, e.g. temporal variation and sequence type (Table 1), might have masked the impacts 

from the two above-mentioned factors associated with sampler selection (the sampler type 

and competing air flow when placing side by side). As a result, the sampler-associated 

artifacts in bioaerosol characterization results should be considered and warrant future 

investigation.

Several bacterial families and genera were identified in the current study with higher relative 

abundance in 16S rRNA sequences than in 16S rRNA gene sequences (Figure 4). Among 

these bacterial taxa, the genera Hymenobacter (Cytophagaceae family) and Roseomonas 
(Acetobacteraceae family) were also recently reported with significantly higher 16S rRNA:

16S rRNA gene ratios than other taxonomic groups in air samples collected at a high 

elevation research station18, 19. These findings suggest the prevalence of both bacterial 

genera in the atmosphere in a potentially active state across different geographic locations. 

However, considering the fact that the copy number of 16S rRNA genes in a bacterial 

genome varies among different species, the higher 16S rRNA:16S rRNA gene ratio does not 

necessarily indicate that the 16S rRNA content of a specific taxonomic group is elevated 

relative to that of others on a per-cell basis. For a specific bacterial species, the quantity of 

16S rRNA per cell could be determined by multiplying the 16S rRNA:16S rRNA gene ratio 
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by the copy number of 16S rRNA gene per genome. Therefore, for all bacterial genera that 

exhibited higher relative abundance in 16S rRNA than 16S rRNA gene in either summer or 

late winter/early spring samples, we searched the GenBank database (http://

www.ncbi.nlm.nih.gov/genbank/) for their complete genomes. As a result, we found eleven, 

six and one complete genomes for Methylobacterium, Hymenobacter, and Rhodanobacter, 
respectively. No complete genome assembly could be retrieved for other bacterial genera. 

The Methylobacterium was the only genus that possessed a higher number of 16S rRNA 

gene copies (5.8 on average, Table S2 in Supplementary Information) in its genome than the 

average four copies per bacterial genome65, suggesting a greater current or potential cellular 

activity10, 11 of Methylobacterium spp. compared to other bacterial genera in summer. 

Bacteria from the genus Methylobacterium can grow on one-carbon compounds as the sole 

source of carbon and energy, and they have been reported in a variety of habitats including 

soil, dust, leaf surfaces and air, etc.55 As common airborne microorganisms, 

Methylobacterium spp. are capable of resisting desiccation to a certain degree and 

scavenging trace amounts of nitrogen and carbon which makes them well suited to survive in 

stressful environments66. Due to the lack of information on the residence time of these 

bacteria in the air, we can only speculate that the elevated cellular rRNA abundance in genus 

Methylobacterium compared to the average abundance from other genera could be attributed 

to their potential activities when airborne. However, this observation adds to a growing body 

of work on metabolic activity of microorganisms in the airborne phase18, 19. Thus, future 

investigations on the activity of environmentally-relevant bacterial species in airborne phase 

should consider Methylobacterium spp.

One advantage of analyzing 16S rRNA in combination with 16S rRNA gene sequences is 

the ability to identify the potentially active bacterial populations in environments of 

interest10, 11, 13, 19. In general, the 16S rRNA:16S rRNA gene ratios observed in this study 

(ranged from 0.07 to 16 with an average of 1.44 in summer; from 0.02 to 52 with an average 

of 2.00 in late winter/early spring) were comparable to the ratios (ranged from 0.002 to 122 

with an average of 3.71) reported previously with airborne microbial community19. Besides, 

we also observed a pattern of the active microbial community that has been found in other 

environments13, 67–69 including the air19: bacterial taxa with higher 16S rRNA:16S rRNA 

gene ratios were also the rare members that exhibited lower relative 16S rRNA gene 

abundance than other taxa. However, current understanding of the function and ecological 

significance of those rare but potentially active microbes in the atmosphere is still limited19, 

and future research is warranted.

Our results showed that the absolute quantity of 16S rRNA in outdoor bioaerosols was 

generally almost two orders of magnitude higher than that of 16S rRNA gene (Figure 2a). 

The relatively higher abundance of rRNA greatly increases the sensitivity of detection 

method, especially for species that are rare in a particular environment10, allowing the 

reduction of air volume needed and, subsequently, the sampling time and effort needed to 

obtain sufficient sample size. Thus, 16S rRNA sequence analysis has a great potential to be 

applied in near realtime monitoring of potentially active bioaerosols, e.g. for public health 

monitoring and homeland surveillance purposes.
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This study provides insight into a potential bias introduced by long-term air sampling stress 

on the accuracy of quantification and characterization of 16S rRNA in bioaerosols. We 

observed sampling device-dependent differences in 16S rRNA abundance for E. coli cells 

(laboratory experiments) and complex bacterial community (field experiments). Liquid 

impingement-based BioSampler recovered consistently less 16S rRNA than the filtration 

based Button sampler. The 16S rRNA sequences revealed different bacterial communities 

compared with the 16S rRNA gene-based results, and this difference depends on the 

sampling device. Overall, this study highlights the importance of selecting a sampling device 

when collecting and analyzing 16S rRNA in bioaerosols.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We investigated potential bias caused by air sampling stress on the 

measurement and characterization of 16S rRNA for bioaerosols in both 

laboratory and field experiments.

• Liquid impingement-based BioSampler recovered consistently less 16S rRNA 

than the filtration based Button sampler.

• The 16S rRNA sequences revealed a different bacterial community compared 

with 16S rRNA gene-based results, and this difference depended on the 

sampling device.

• A number of bacterial taxa exhibited higher abundance in the 16S rRNA gene 

sequences than 16S rRNA sequences, which suggests potential metabolic 

activity of certain microbes in airborne phase.
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Figure 1. 
The effect of sampling device on the 16S rRNA:16S rRNA gene ratio for E. coli cells spiked 

into the three samplers (Button sampler, SpinCon sampler, and BioSampler) and recovered 

after two hours of active sampling of particle-free air. Each bar group (or bar) from left to 

right shows the average for 10, 4, 3 and 3 samples respectively; error bars are one standard 

deviation. Bars with different capital letters (A or B) or small letters (a, b, c or d) are 

statistically different (Fisher’s LSD, p<0.05). a) The abundance of 16S rRNA gene and 16S 

rRNA recovered from each sampler compared to an initially spiked reference quantity of 

16S rRNA gene or 16S rRNA. b) The 16S rRNA:16S rRNA gene ratio of E. coli cells spiked 
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into three samplers and recovered after two hours of active air sampling of particle-free air 

compared with the ratio of initially spiked E. coli cells.
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Figure 2. 
a) The abundance of bacterial 16S rRNA gene (closed circle) and 16S rRNA (open circle) in 

air samples collected by Button sampler and BioSampler simultaneously in an outdoor 

environment for two hours on three different days in summer (left) and five different days in 

late winter/early spring (right). The paired 16S rRNA gene and 16S rRNA data points are 

aligned vertically and positioned on the x-axis in order of sampling date. b) The 16S rRNA:

16S rRNA gene ratio of bioaerosol samples collected by Button sampler and BioSampler 

simultaneously in an outdoor environment for two hours on three different days in summer 
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(left) and five different days in late winter/early spring (right). The bars are averages and 

error bars show one standard deviation.
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Figure 3. 
Weighted UniFrac-based bacterial diversity principal coordinate analysis of outdoor air 

samples collected by two devices (Button sampler: round markers; BioSampler: square 

markers) in two seasons (summer: red markers; late winter/early spring: blue markers) and 

analyzed based on 16S rRNA gene (DNA, filled markers) and 16S rRNA sequences (RNA, 

open markers).
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Figure 4. 
Bacterial genera that exhibited different relative abundances (p<0.05) in 16S rRNA and 16S 

rRNA gene sequences of outdoor bioaerosols collected in two seasons. Each boxplot 

represents the results of six samples collected in a) summer and ten samples collected in b) 

late winter/early spring. To the left of the dashed line: bacteria genera showing higher 

relative abundance in 16S rRNA sequences than in 16S rRNA gene sequences; to the right of 

the dashed line: bacteria genera exhibiting lower relative abundance in 16S rRNA sequences 

than in 16S rRNA gene sequences. In each boxplot, the line through the middle represents 

the median. The bottom and top of each box are the 25th and 75th percentiles. Outliers are 

indicated with points beyond the whiskers and are defined as the data points lower (or 

higher) than 1.5 interquartile (the difference between the upper and lower quartiles) range of 

the lower (or higher) quartile.
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Figure 5. 
The relationship between 16S rRNA:16S rRNA gene ratio and relative abundance of 16S 

rRNA gene in a) summer and b) late winter/early spring air samples collected in an outdoor 

environment. Each point represents individual bacterial family detected in one sample. 

Colored points represent those bacterial families that exhibited significantly higher relative 

abundances of 16S rRNA than 16S rRNA gene.
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Table 1

PERMANOVA results on the effects of season, sampling device, sequence type, as well as the interaction 

between sampling device and sequence type on the bacterial community weighted-UniFrac pairwise distances. 

Bold text indicates that p< 0.05.

Variables df Pseudo-F p

Season 1 3.841 0.011

Sampling Device 1 0.551 0.869

Sequence Type 1 2.157 0.006

Sampling Device × Sequence Type 1 1.582 0.046

Residuals 27 0.769

Total 31
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