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Abstract

A model that predicts retention for peptides using a HALO® penta-HILIC column and gradient 

elution was created. Coefficients for each amino acid were derived using linear regression analysis 

and these coefficients can be summed to predict the retention of peptides. This model has a high 

correlation between experimental and predicted retention times (0.946), which is on par with 

previous RP and HILIC models. External validation of the model was performed using a set of H. 

pylori samples on the same LC-MS system used to create the model, and the deviation from actual 

to predicted times was low. Apart from amino acid composition, length and location of amino acid 

residues on a peptide were examined and two site-specific corrections for hydrophobic residues at 

the N-terminus as well as hydrophobic residues one spot over from the N-terminus were created.
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The use of hydrophilic interaction liquid chromatography (HILIC) columns has grown 

tremendously due to the various types of columns available as well as their ability to 

separate polar analytes. Although reversed-phase (RP) chromatography is the method of 

choice for proteomic experiments, HILIC is able to separate peptides that are not retained on 

RP columns, or those that may exhibit inadequate selectivity differences. These two 

complimentary chromatographic techniques have even been paired as a two dimensional 

approach for more complex separations [1–3].

Standard proteomic experiments have long used chromatography coupled to mass 

spectrometry for analysis. In these experiments, peptides are identified by their mass-to-

charge (m/z) ratio and fragmentation data, which usually involves database searching. While 
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this technique is very common, researchers may have trouble identifying multiple peptides 

with the same m/z ratio in which fragmentation data is insufficient in identification. To this 

end, chromatography can be used to further the identification process, as retention times of 

peptides are related to their amino acid sequences. By predicting what the retention would 

be, peptides can quickly be identified by their m/z ratio as well as their retention time, and 

peptides with the same mass but different sequences can be identified separately due to 

differing retention times. This can decrease the time spent in identification as well as 

increase the confidence of identifications [4,5] Targeted approaches can also benefit from 

this, as the time of analysis spent looking for specific peptides can be shortened.

O’Hare and Nice were the first researchers to notice that peptide retention was directly 

related to amino acid composition, and this discovery in 1979 opened the door for models 

that were able to predict the retention of peptides [1,2,4–17]. Almost all of these models 

have been made using RP as the means of separation, but there have been several HILIC 

models that have been made recently [1,2,4,17]. These models derive coefficients for each 

amino acid, describing their hydrophilic or hydrophobic behavior. When summed together, 

the coefficients can accurately predict elution position for a particular column, operated 

under defined conditions. The processes to create these models can range from using linear 

regression analysis to substituting amino acids on a synthetic peptide, and can even include 

sequence corrections, size corrections, or various modifications [4,7,9,10–13,17]. Even 

though most of the prediction models have been created for RP columns, the number of 

HILIC models has increased as the types of HILIC columns available have increased 

throughout the years. The first HILIC peptide prediction model was created by Yoshida in 

1998 on an TSK Amide-80 column, and then Gilar et. al. created coefficients for three 

HILIC columns with different stationary phases: bare silica, bridge-ethyl hybrid silica, and 

an amide modified bridge-ethyl hybrid silica [1,2]. All of these models have very high 

correlation between experimental and actual retention times of peptides (in the range of 

0.92–0.97), however they have also shown that the amino acid coefficients can change with 

different HILIC stationary phases and are also dependent on operating conditions such as 

pH, which affect ionization, thus polarity, of amino acyl side chains. Due to this concern, 

new peptide retention models need to be made for new HILIC stationary phases, operated 

under specific conditions, such as temperature, gradient profile, and mobile phase 

components.

In this paper, we have created a HILIC peptide retention prediction model using 297 

peptides from various proteomic samples for a HALO® penta-HILIC column. Coefficients 

for each amino acid have been derived using linear regression analysis and the correlation is 

very high (0.94553), indicating the agreement between predicted and actual retention times. 

We also introduce a site-specific correction for peptides with hydrophobic amino acids at the 

N-terminus, criteria for peptides selection, and retention expression in glucose units (GU) so 

that the model can be ran on any LC-MS system. This useful model will be able to increase 

protein confidence and reduce the time spent in identification by predicting the retention of 

peptides.
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EXPERIMENTAL SECTION

1.1 Protein Digestion

Human IgGs were separated from human serum (Sigma-Aldrich, St. Louis, MO, USA) 

using a HiTrap™ Protein G column (General Electric Company, Fairfield, CT, USA). 

Myoglobin, transferrin, concanavalin A, fetuin, cytochrome C, lysozyme, ribonuclease B, 

carbonic anhydride, and dextran were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Bovine serum albumin was purchased from Waters (Milford, MA, USA). These proteins as 

well as yeast proteins, mosquito cuticular proteins, and H. pylori proteins were reduced 

using 10-mM DTT and then alkylated using 55-mM IDA, which were both purchased from 

Sigma Aldrich (St. Louis, MO, USA). Sequencing-grade trypsin or chymotrypsin purchased 

from Promega (San Luis Obispo, CA, USA) was added (50:1, w/w, protein/trypsin) and 

samples were incubated overnight.

1.2 LC-MS/MS Settings and Instrumentation

Data were acquired using a Finnegan LTQ (Thermo-Fisher, San Jose, CA, USA) and an 

1100 Series Capillary LC system (Agilent Technologies, Palo Alto, CA, USA) with an ESI 

source that used spray tips made in-house. Samples were suspended in 25%H2O, 75% ACN 

and 0.1% formic acid (Sigma-Aldrich, St. Louis, MO, USA) and 8 μL of each sample was 

injected into the LC. Peptides were separated using a 200μm × 150 mm HALO® penta-

HILIC column packed with 2.7-μm diameter superficially porous particles (Advanced 

Materials Technology, Wilmington, DE, USA). The separation was carried out at room 

temperature due to the absence of a column oven on this LC-MS system. The gradient used 

for each sample was 95–30% ACN over 90 minutes at a 2μL/min flow rate, at ambient 

laboratory temperature of 20°C. The acetonitrile mobile phase contained 0.1% formic acid 

(Sigma Aldrich, St. Louis, MO, USA) and the stronger elution solvent (water) contained 50 

mM ammonium formate (Thermo-Fisher, San Jose, CA, USA). Acetonitrile was used as the 

organic solvent due to its compatibility with ESI as well as its low viscosity, which allows 

for higher flow rates to be used with lower back pressures. The low pH of the mobile phase 

(around 3–4) was used to enhance the protonation of analytes, which will increase the 

sensitivity in the mass spectrometer, as well as influence the retention of peptides that 

contain charged residues. The settings for the mass spectrometer included taking the five 

most intense ions in positive ionization mode from each full mass spectrum (m/z 400–2000) 

for fragmentation using collision-induced dissociation, and the resulting MS/MS spectra 

were recorded.

To make sure that this model would be universal, some of the same digested proteins were 

run on a 4000 Q Trap (AB Science, Chatham, NJ, USA). Peptides were separated by a 2.1 

mm × 15 cm HALO® penta-HILIC column packed with 2.7-μ diameter superficially porous 

particles using a Nexera UFLC (Shimadzu, Columbia, MD, USA). The gradient used the 

same solvents described above, with gradient elution of 78–48% ACN over 80 minutes at a 

0.4-mL/min flow rate. Spectra were obtained using an ESI source.
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1.3 Database Search Parameters

The resulting RAW files were converted using Trans-Proteomic Pipeline (Seattle Proteome 

Center, Seattle, WA, USA), then the MS/MS spectra of each sample were searched using 

Mascot (Matrix Scientific, Boston, MA, USA) against corresponding protein databases of 

theoretical MS/MS spectra. The following parameters were utilized in Mascot: a peptide 

tolerance of 1000 ppm, a fragment tolerance of 0.6 Da, two max missed cleavages of trypsin, 

and a fixed modification of carbamidomethyl (C).

1.4 Selection of Peptides for Prediction Model and Post-Run Data Analysis

All peptides that had a higher Mascot score than 10 were considered. Peptide retention times 

were found by hand from RAW files from the apex of the peaks using Xcalibur software 

(Thermo-Fisher, San Jose, CA, USA), and resulting MS/MS data were visually inspected to 

verify the peptide assignments. Chromatographic peaks for each peptide had to have a peak 

asymmetry value of between 0.25 - 4, and peptides exhibiting peak widths greater than 5.5 

minutes were excluded from analysis. Peptides had to be fewer than 15 amino acids in 

length. Peptide retention times in minutes were converted to glucose units based on dextran 

samples that were run immediately before. Linear regression analysis using StatPlus 

(AnalystSoft, Walnut, CA, USA) was used to find the coefficients for each amino acid and 

297 peptides were used in this study.

RESULTS AND DISCUSSION

2.1 Amino Acid Coefficients

Different HILIC columns exhibit different selectivites from one another, making the creation 

of a new model for the penta-HILIC stationary phase a requirement in order to predict 

peptide retention [2,3]. To this end, linear regression analysis was used to find coefficients 

for each amino acid, and these results are shown in Table 1. Using Equation 1 shown below, 

predicted retention times of peptides, RT, can be calculated, where Li is the amount of 

residue i in the peptide, AAi is the amino acid coefficient of residue i, and b0 is the intercept 

of the model:

(1)

The predicted retention times of the 297 peptides in this model were plotted against their 

actual times and the derived correlation coefficient is 0.94553, which expresses the minimal 

differences in deviation between actual and predicted retention times using these amino acid 

coefficients (Supplementary Figure 1). This value is on the higher end of previous RP and 

HILIC peptide retention prediction models [1,2,4–17]. A bar graph is shown in Figure 1 that 

displays the distribution of the experimental-calculated deviations compared to a theoretical 

Gaussian distribution. This figure shows that the actual and theoretical distributions of the 

deviations match up very well, with actual data having slightly more instances at lower 

deviations in general.
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The amino acid residues that have positively charged side chains (arginine, lysine, and 

histidine) have a positive effect on retention and have the largest effect overall, consistent 

with other studies [1,2,4,18]. These side-chains interact with the stationary phase to a greater 

extent and increase the retention of the peptides. Aspartic acid and glutamic acid have 

negatively charged side chains that also increase retention, but they do not have as great of 

an effect as the positively charged side chains. This is because the pH of the mobile phase 

(around 3) is lower than that of the pKa of both residues (3.86 for aspartic acid and 4.07 for 

glutamic acid), making them neutral and thus interact less strongly with the stationary phase 

than a charged species. The large, aromatic or aliphatic amino acid residues such as 

phenylalanine, tryptophan, and tyrosine all decreased the retention of peptides due to the 

hydrophobic nature of the side chains minimally interacting with the highly polar stationary 

phase. While the coefficients for these residues are inversely related to reverse phase models, 

Gilar, et. al. showed that it is not necessarily a linear correlation, and that HILIC and RP can 

be combined in multidimensional HPLC for more complex separations [2]. Several amino 

acids that had p-values indicating statistical insignificance for contribution to retention. 

These amino acids are small (i.e. glycine and alanine) or had both hydrophobic and 

hydrophilic characteristics (i.e. proline and methionine). It is noted that retention is 

described with a comparably large intercept value, which may describe the hydrophilic 

character of both the N and C termini on a peptide (ionization of carboxylic acid amine 

functional groups), as well as the time it takes for the unretained peptides to travel through 

the column and reach the MS detector.

All of the coefficients are expressed in glucose units (GU) rather than minutes to permit the 

model to be used on any LC-MS system. Procainamide-labeled dextran samples were 

analyzed twice before each sample, averaged, and then the retention time of peptides in 

minutes was converted to GU based on the logarithmic fit for the dextran samples. Dextran 

samples elute in order of increasing monosaccharide number, providing a reference for the 

retention times of peptides. Conversion to time units (minutes) is simple, and an example of 

that is shown in Figure 2. This approach allows the model to be used regardless of LC-MS 

system as long as the dextran standard is employed for calibration before the samples. 

System calibration also permits modifications to the LC-MS system, such as capillary line 

changes in length or diameter, or instrumental changes, such as inclusion of additional 

detectors (absorbance or fluorescence). To ensure that dextran is a suitable retention time 

calibrant, a set of peptide standards were run on different LC-MS systems over the course of 

a month and the relative retention times of the standards exhibited minimal changes when 

suitably calibrated.

There have been previously made models that relied on other calibration methods, such as 

Gilar’s, which used the percentage of organic solvent at the time of peptide elution [2]. 

While this technique has shown to be suitable for retention prediction on a single LC-MS 

system, it may be unreliable across multiple systems due to differing dwell volumes and 

variations in the accuracy of the percentage reading from system to system. One of the main 

focuses of this model was for it to be able to be used on completely different LC-MS 

systems, and running a retention time calibrant on each system mitigates this problem. 

Instead of having to worry about the accuracy of the percentage reading or accounting for 
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the dwell volume, all that is required for accurate calibration is a simple dextran run on the 

system.

2.2 Test Peptides

To test the model’s accuracy of prediction, H. pylori samples were run on the same LC-MS 

setup as the peptides used to create the model. From the test samples, 64 peptides fit the 

selection criteria and were investigated. Figure 3 shows the actual times of the test peptides 

plotted against the predicted times, which yielded a high correlation coefficient of 0.96444, 

slightly higher than the correlation coefficient of the model itself. This shows that the model 

is more than capable of predicting retention times for biologically relevant samples. Of the 

64 test peptides, 38 of them had lower actual retention times than their predicted ones 

(59%), which were calculated using Equation 1. Over the course of a 90-minute long 

gradient the average deviation from actual to predicted times was only 0.35 GU, or 1.72 min, 

indicating the accuracy of prediction.

A 4000 Q-Trap with a Nexera UFLC system was used to test the accuracy of prediction of 

the model on a completely different LC-MS system. BSA and carbonic anhydrase were run 

on this system that had a different column size, flow rate, gradient, column temperature, and 

length of analysis. Peptides identified on both LC-MS systems only differed by an average 

of 2.29 minutes (0.52 GU) and were within 3.73% of each other, indicating that despite the 

LC-MS system and numerous gradient conditions being different from the setup used to 

create the model, predicted retention times were still very close to actual retention times. 

This allows researchers to use the model for prediction even if there are contrasting gradient 

conditions.

2.3 Peptide Retention Prediction Purpose and Correlation with Database Searching

The purpose for peptide retention prediction is threefold. First, it can provide a quicker data 

analysis as peptides can be identified from their m/z ratio as well as their retention time, 

eliminating the need for database searching, which can be time-consuming. This is similar to 

accurate mass and time (AMT) tagging technology. Second, retention prediction is able to 

filter out false positives and lead to more confident identifications by comparing actual 

retention times to theoretical retention times. When MS2 is insufficient for identifying 

peptides with the same m/z ratio, retention time prediction offers an additional identification 

layer. Finally, it can help in isomeric identification. In a recent study, our lab was able to 

fully separate the n-Asp and isoAsp versions of the peptide 

GFYPSDIAVEWESNGQPENNYK, which are indistinguishable in the mass spectrometer. 

The derived retention coefficients for these two modifications were different, allowing the 

prediction model to distinguish between the two peptides [19]. This shows that when MS2 

data is inadequate for separately identifying different species, retention time prediction can 

help.

In database searching, peptides are scored based on the “match” between experimental data 

and their database sequence. The higher the score of the peptide match, the less likely it is a 

random match. To test if our model was similar in this aspect, namely that peptides with 

lower deviations from actual to predicted retention times would have a lower probability of 
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being a random match, 100 peptides from H. Pylori proteins were ran on the same LTQ 

setup as the peptides used to create the model, and their deviations were compared to their 

Mascot scores. Figure 4 shows this comparison, as peptides were grouped based on their 

Mascot score and plotted against their average deviations. The resulting data shows an 

agreement with Mascot score and deviation from predicted to actual retention times, as the 

peptides with lower deviations have higher Mascot scores and vice versa. It also shows that 

peptides with lower Mascot scores and higher deviations between actual and predicted times 

have much larger standard deviations. This indicates that peptides with actual retention times 

that are very close to theoretical ones are less likely to be false positives.

2.4 The Effect of Amino Acid Location

Site-specific trends were investigated in the dataset of 297 peptides, specifically at the N-

terminus due to the use of trypsin on most of the samples. It was found that 44 out of 70 

(63%) peptides with hydrophobic residues at their N-terminus eluted earlier than predicted 

and optimized coefficients were created for this, as shown in Table 2. Using an iterative 

process that maximized the correlation coefficient, it was found that a 10% decrease in the 

value of the original hydrophobic amino acids (phenylalanine, isoleucine, leucine, 

tryptophan, and tyrosine) resulted in optimized coefficients that had a R-squared value of 

0.95552, which is a 0.00952 increase in the original R-squared value. With these optimized 

coefficients, the average deviation between actual and predicted retention times dropped 

from 0.255 GU to 0.246 GU, and the sum of deviation went from −5.133 GU to −0.259 GU, 

increasing the fit of the model. With this alteration, 37 out of the 70 (53%) peptides eluted 

earlier than predicted, evening the distribution of predicted retention times greater and 

smaller than actual retention times. These coefficients are only to be used for the first 

hydrophobic amino acids at the N-terminus of a peptide and no others. Hydrophilic amino 

acids at the N-terminus were also investigated, but although there was a slight trend (40 of 

73, 55%) of peptides with actual retention times larger than their predicted ones, the 

optimization of the coefficients would be negligible and would not help increase the 

correlation coefficient.

Peptides with hydrophobic residues one position over from the N-terminus were also 

investigated for trends, and it was found that 11 of 15 (73%) of peptides that fit this 

description had actual retention times that were shorter than their predicted ones. Using the 

same iterative process, it was found that a 5% decrease in the value of the original 

hydrophobic coefficients resulted in optimized coefficients that had an elevated R-squared 

value of 0.95563, which is a 0.00963 increase in the original R-squared value. These 

optimized coefficients are found in Table 3 and are only for the hydrophobic residue of a 

peptide that is one position over from the N-terminus, while the first residue at the N-

terminus is also a hydrophobic residue. In addition to an increased R-squared value, the 

average deviation dropped from 0.199 GU to 0.193 GU and the sum of deviation went from 

−1.593 GU to −0.254 GU using the optimized coefficients, with a more even distribution of 

predicted retention times that were greater and smaller than actual retention times (8 out of 

15 (53%) peptides had actual retention times shorter than predicted ones). Hydrophilic 

residues in this position were also investigated, but it was found again that even though there 
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was a significant trend (10 of 15, 67%), the optimization of the coefficients would again be 

negligible and would not help the correlation of the model.

A potential reason that the hydrophobic residues are having a greater impact than the 

hydrophilic residues at the N-terminus is due to the fact that the N-terminus is already 

charged and hydrophilic, allowing hydrophobic residues to change the interactions with the 

stationary phase to a greater extent than the hydrophilic residues. There have been some 

models that have incorporated optimized coefficients that are based on the distance from the 

termini, but excluding the coefficients derived from hydrophobic residues one spot over from 

the N-terminus, there were no other identified trends that suggested that doing the same 

would improve the fit of the model [4,5,17].

2.5 The Effect of Peptide Length

Although amino acid composition contributes the most to peptide retention, other models 

have shown that length has an effect as well [4,20–22]. Mant, et al. showed that the retention 

of peptides that have 15 or more residues in their sequence deviated more than expected and 

cannot be overlooked [21,22]. Table 4 shows peptides from standard proteins that were not 

used in this model due to their length, and the average deviations (1.06 GU, or 4.80 min.) are 

3–4 times higher than peptides with shorter sequences that were used in the model. A 

potential reason for this could be due to longer peptides more easily forming second order 

structures and interacting with the stationary phase in a way that cannot be predicted 

accurately. This consideration was applied to the creation of this model, as the cutoff for 

peptide size was 15 amino acids in length.

Applying an elevated column temperature could disrupt a peptide’s secondary structure so 

that it interacts in a more predictable manner with the stationary phase. Long peptides from 

human IgGs, BSA, transferrin, concanavalin A, lysozyme, and cytochrome C were run at 

column temperatures of 25°C and 60°C, and the data are shown in Table 5. It is clear from 

this data that the higher column temperature decreases the deviation from predicted times. 

However, some peptides run at 25°C were closer to the predicted times, suggesting that not 

all of the longer peptides may have had second order structure. Regardless, applying the 

column temperature decreases the deviation from 1.06 GU to 0.60 GU, allowing for better 

prediction for peptides over 15 amino acids in length.

It is also evident from the dataset that long peptides with actual retention times closer to 

predicted retention times at 25°C had a smaller average deviation (0.904 GU) than long 

peptides with closer retention times at 60°C (1.291 GU). This indicates that applying the 

elevated column temperature produces a more significant change in interaction with the 

stationary phase, and further supports our reasoning that many of these long peptides have 

second order structure that unravels at higher temperatures. There were only 3 cases out of 

18 where a peptide had a longer retention time at 65°C in comparison to 25°C, and in all 

cases they were closer to the predicted times. Applying a higher temperature to a column 

will decrease the retention times to peptides without higher order structure, but in these 

cases there is significant evidence that their structure and/or interaction with the stationary 

phase changed due to the increase in retention times.
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CONCLUSION

A peptide retention model based on amino acid composition was created using a HALO® 

penta-HILIC column with gradient elution. This model was shown to have a high correlation 

coefficient (0.946), on par with previously reported RP and HILIC models. It also includes 

optimized coefficients for hydrophobic residues at the N-terminus and hydrophobic residues 

one residue over from the N-terminus. The use of dextran as a retention time calibrant was 

essential for making this model capable of being used on any LC-MS system and adopters of 

this model can easily create an excel table using the derived coefficients that can be 

customized to fit into their workflow.

We are currently deriving coefficients for peptides with post-translational modifications that 

can be separated from unmodified peptides using the HILIC column. Many of these 

modifications cannot be separated by RP chromatography and they include oxidation, 

deamidation, and O-linked glycosylation, among others [23]. Our results have shown that 

HILIC is suitable for separating the modified peptides from their unmodified counterparts 

due to the hydrophilicity of the modifications. Coefficients for the oxidation of methionine 

and deamidation of asparagine, as well as the O-glcNAcylation, O-galNAcylation, and O-

fucosylation of serine and threonine residues have been derived [19,23]. We hope to further 

develop our glycopeptide retention prediction model by combining this model with a glycan 

retention prediction model that is currently being developed in our laboratory, and we also 

hope to create an easy-to-use public tool that can predict the retention of unmodified 

peptides and peptides with hydrophilic modifications using the HILIC column.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• A novel HILIC peptide retention prediction model based on amino acid 

composition was created.

• The model exhibited a high correlation (0.946) between predicted and actual 

retention times.

• Peptides over 15 amino acids in length were shown to deviate from predicted 

times more than shorter peptides

• Length and position were shown to impact peptide retention, and site-specific 

corrections were created for hydrophobic residues at the first two positions at 

the N-terminus.
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Figure 1. 
Deviations of actual and theoretical retention times of the 297 peptides used in the study 

compared against a calculated Gaussian distribution of the data. Each deviation has a range 

of +/− 0.1 GU, so the value listed at 0 GU would include the range 0.1 to −0.1 GU.
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Figure 2. 
Procainamide-labeled dextran samples served as a retention time calibrant to the peptides 

used in the model. Monosaccharides elute in terms of increasing linkage (A) and then 

peptide retention times (B) were converted from minutes to glucose units (GU) using the 

logarithmic fit of the dextran units (C).
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Figure 3. 
Predicted vs. actual times of H. pylori test peptides
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Figure 4. 
Deviation of actual retention times and theoretical retention times plotted against Mascot 

score
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Table 1

Derived coefficients for each amino acid. Red amino acids are hydrophilic, blue amino acids are hydrophobic, 

and the contribution to retention for green amino acids did not achieve statistical significance.

Amino Acid Coefficient

Alanine (A) 0.164

Cysteine (C)* 0.293

Aspartic Acid (D) 0.800

Glutamic Acid (E) 0.719

Phenylalanine (F) −0.967

Glycine (G) 0.233

Histidine (H) 1.564

Isoleucine (I) −0.615

Lysine (K) 2.121

Leucine (L) −0.799

Methionine (M) −0.337

Asparagine (N) 0.610

Proline (P) 0.129

Glutamine (Q) 0.703

Arginine (R) 1.828

Serine (S) 0.334

Threonine (T) 0.357

Valine (V) −0.306

Tryptophan (W) −1.138

Tyrosine (Y) −0.430

Intercept 1.535

R-Squared Value 0.94553

*
Carbamidomethylated cysteine
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Table 2

Optimized coefficients for the first hydrophobic amino acid at the N-terminus

Amino Acid Coefficient

Phenylalanine (F) −1.063

Isoleucine (I) −0.676

Leucine (L) −0.879

Tryptophan (W) −1.252

Tyrosine (Y) −0.473

R-Squared Value 0.94620
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Table 3

Optimized coefficients for the second hydrophobic amino acid at the N-terminus

Amino Acid Coefficient

Phenylalanine (F) −1.015

Isoleucine (I) −0.646

Leucine (L) −0.839

Tryptophan (W) −1.195

Tyrosine (Y) −0.451

R-Squared Value 0.94600
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Table 4

Retention of peptides with 15 or more amino acids

Peptide Length Deviation (min) Deviation (GU)

RPCFSALTPDETYVPK 16 6.01 1.88

LFTFHADICTLPDTEK 16 8.90 2.35

NTDGSTDYGILQINSR 16 0.58 0.16

EDLIWELLNQAQEHFGK 17 0.37 0.09

GITWGEETLMEYLENPK 17 5.96 0.98

VYACEVTHQGLSSPVTK 17 24.24 4.33

TTPPVLDSDGSFFLYSK 17 6.06 0.95

GITWGEETLMEYLENPKK 18 7.54 1.79

TVAAPSVFIFPPSDEQLK 18 3.33 0.56

RTVAAPSVFIFPPSDEQLK 19 1.20 0.29

AAPSVTLFPPSSEELQANK 19 0.16 0.04

ANPTVTLFPPSSEELQANK 19 0.91 0.24

EVQLVQSGGGLVQPGGSLR 19 5.45 1.28

DLILQGDATTGTDGNLELTR 20 3.84 1.10

VDNALQSGNSQESVTEQDSK 20 0.36 0.16

GLVLIAFSQYLQQCPFDEHVK 21 7.96 1.64

GFYPSDIAVEWESNGQPENNYK 22 0.89 0.27

SPDSHPADGIAFFISNIDSSIPSGSTGR 28 2.61 0.89
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Table 5

Retention of long peptides with and without a column oven

Peptide Length Predicted RT (GU) RT (Without Oven) RT (With 60° Oven)

RPCFSALTPDETYVPK 16 6.39 8.28 6.63

LFTFHADICTLPDTEK 16 5.05 7.40 4.56

NTDGSTDYGILQINSR 16 6.27 6.43 6.35

EDLIWELLNQAQEHFGK 17 5.47 5.39 5.05

GITWGEETLMEYLENPK 17 4.33 3.35 4.04

VYACEVTHQGLSSPVTK 17 6.69 2.37 4.07

TTPPVLDSDGSFFLYSK 17 3.19 4.14 3.18

GITWGEETLMEYLENPKK 18 6.45 4.66 6.52

TVAAPSVFIFPPSDEQLK 18 3.65 4.22 3.92

RTVAAPSVFIFPPSDEQLK 19 5.49 5.78 4.92

AAPSVTLFPPSSEELQANK 19 5.77 5.81 5.18

ANPTVTLFPPSSEELQANK 19 6.24 6.00 5.87

EVQLVQSGGGLVQPGGSLR 19 4.84 6.11 4.60

DLILQGDATTGTDGNLELTR 20 6.27 7.38 5.73

VDNALQSGNSQESVTEQDSK 20 10.70 10.54 10.04

GLVLIAFSQYLQQCPFDEHVK 21 4.01 5.65 4.69

GFYPSDIAVEWESNGQPENNYK 22 6.82 7.08 6.13

SPDSHPADGIAFFISNIDSSIPSGSTGR 28 7.65 8.54 5.62
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