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Abstract

Drug development continues to be costly and slow, with medications failing due to lack of efficacy 

or presence of toxicity. The promise of pharmacogenomic discovery includes tailoring therapeutics 

based on an individual's genetic makeup, rational drug development, and repurposing medications. 

Rapid growth of large research cohorts, linked to electronic health record (EHR) data, fuels 

discovery of new genetic variants predicting drug action, supports Mendelian randomization 

experiments to show drug efficacy, and suggests new indications for existing medications. New 

biomedical informatics and machine learning approaches advance the ability to interpret clinical 

information, enabling identification of complex phenotypes and subpopulations of patients. We 

review the recent history of use of “big data” from EHR-based cohorts and biobanks supporting 

these activities. Future studies using EHR data, other information sources, and new methods will 

promote a foundation for discovery to more rapidly advance precision medicine.

Introduction

The completion of the Human Genome Project in 2003 ushered in a promise of a new era of 

personalized medicine. Envisioned were greater understandings of the genome to guide 

therapy for Mendelian diseases, an untangling of the basis of genetic influences underlying 

familial diseases, and the advancement of knowledge to lead to new therapeutics. While the 

impact of genetics on variable drug actions had been studied for decades before the Human 

Genome Project, the pace of discovery in the last 15 years has led to richer understandings 

of the workings of the genome and an uncovering of the genetic influences for drug 

responses as well as hundreds of traits and diseases, including both Mendelian and complex 

diseases. Recently, we are also seeing the advent of genetic-tailored therapies for common 

and rare diseases, and the development of new therapeutics based on genetic findings. A rate 

limiting step, however, has been the development of sufficiently large cohorts with the 

exposure, covariate and outcome phenotype data necessary for study. The majority of early 
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studies focused on well-defined observational cohorts or randomized controlled trials. The 

growth of large national research cohorts and networks incorporating rich and broad 

phenotype data coupled to DNA biobanks is providing a transformational accelerant to 

discovery. Pioneered through several sites and networks such as the Electronic Medical 

Records and Genomics (eMERGE) network,1 electronic health record (EHR) data has 

proven a powerful “big data” tool for genomic discovery in the study of disease and 

therapeutics (Figure 1). Here, we review some of the contributions of routinely collected 

healthcare data, genomics, and large research cohorts to discover and prioritize potential 

drug targets, accelerate pharmacogenomics, predict side effects, uncover more precise 

understandings of diseases, repurpose medications, and mine data for unknown drug effects, 

with the ultimate goal of optimizing therapeutic efficacy while minimizing of adverse 

effects.

Genomics as a tool to prioritize drug targets

A growing body of evidence shows that genetic targets often suggest effective drug targets.
2,3 Much of this evidence comes from genome-wide association studies (GWAS), which can 

survey millions of single nucleotide polymorphisms (SNPs) across the genome in a 

hypothesis-free approach. GWASs provide a systematic assessment of the impact of 

individual genetic variants for a given trait and have been responsible for discovery of 

>49,000 single nucleotide polymorphism (SNP)-trait associations through over 3000 

publications as of this publication. An early example of the power of GWAS to find drug 

targets was in the analysis of low density lipoprotein (LDL) cholesterol levels in 2008, 

which demonstrated that common variants in HMGCR have small effects on LDL-

cholesterol.4 HMGCR encodes HMG-CoA reductase, the target for the potent statin drug 

class. In 2014, Okada et al. reported a large GWAS of more than 100,000 cases and controls 

for rheumatoid arthritis (RA), identifying 101 loci associated with RA.5 These loci identified 

drug targets for 18 of the 27 approved RA drugs at the time and suggested several novel 

therapeutics. Similarly, the genetic variants associated with type 2 diabetes identify the drug 

targets for thiazolidinediones, sulfonylureas, glucagon-like peptide-1 (GLP-1) receptor 

agonists, and one of the newest class of antidiabetic drug classes, sodium-glucose 

cotransporter-2 (SGLT2) inhibitors.6 A prevailing theme in these GWAS findings is that 

these associations often find small effect sizes (often between common, likely non-

functional SNPs and the disease) but represent drug targets with significant impact on the 

disease or trait.

Perhaps the first major prospective example of a primarily genomic discovery leading to a 

new therapeutic drug class was the recent development of proprotein convertase subtilisin/

kexin type 9 (PCSK9) inhibitors, for which there are now two drugs available in the US. By 

sequencing PCSK9 in individuals with very low levels of LDL in the multiethnic Dallas 

Heart Study, Cohen et al. found two loss of function (LOF) variants in individuals of African 

ancestry that resulted in a 40% decrease in LDL cholesterol levels.7 They were later able to 

show individuals with LOF variants in PCSK9 had a 88% reduction in cardiovascular 

disease in African Americans.8 Missense variants associated with lesser changes in LDL 

discovered in European Americans were also associated with reduced cardiovascular 

disease. Following these promising genetic findings, monoclonal antibodies have been 
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developed against PCSK9 and were approved in 2015. Randomized controlled trials have 

shown that these PCSK9 inhibitors further reduce LDL cholesterol levels and cardiovascular 

disease when combined with statin therapy.9

The studies of PCKS9 follow the pattern of Mendelian randomization (MR) studies (Figure 

2). MR is a technique used to provide evidence for the causality of a biomarker on a disease 

state in conditions in which randomized controlled trials are difficult or too expensive to 

pursue. For example, LDL and high-density lipoprotein (HDL) levels have long been 

associated with myocardial infarction in observational cohorts, but it was unclear whether 

they are markers for the disease process or causal for the outcome; perhaps LDL and HDL 

levels are indicators for diet, activity level, or other unknown factors that contribute to the 

pathogenesis of disease. It is essentially impossible (and possibly unethical) to perform the 

definitive study, a randomized control trial that alters participants' LDL or HDL levels. 

However, a number of genetic variants have been found that alter LDL and HDL levels. 

Since alleles randomly distribute at meiosis, studying the impact of biomarker-influencing 

alleles provides a naturally occurring randomization of the risk factor. Genetic variants are 

generally not associated with behavioral, social, and some physiological factors – reducing 

confounding. Thus, by studying the impact on the clinical outcome of the variants associated 

with the biomarker, one can assess causality of the biomarker to the outcome. MR has 

proven a powerful tool in recent years. MR studies have demonstrated clear associations 

between LDL and triglyceride levels and cardiovascular disease while casting doubt on the 

role of HDL in protecting against cardiovascular disease.10,11 The latter is particular 

interesting as cholesteryl ester transfer protein (CETP) inhibitors, medications effective at 

raising HDL, have so far not been successful at reducing cardiovascular events12 with the 

exception of anacetrapib whose cardiovascular event reduction could be through the 

reduction of non-HDL cholesterol.13 MR has also cast doubt on the causality of C-reactive 

protein in heart disease risk, 14 decreasing enthusiasm for the development of therapeutics 

targeting C-reactive protein levels.

Another example of MR demonstrating a clinical effect is seen with ezetimibe, which lowers 

LDL cholesterol by inhibiting Niemann-Pick C1-like protein 1 (encoded by NPC1L1). 

Ezetimibe was introduced as a new class of LDL cholesterol medication in 2002 as an 

alternate to or adjuvant with statin therapy. However, its efficacy in reducing cardiovascular 

disease had been in doubt15 until a MR study demonstrated that individuals with LOF 

variants in NPC1L1 had both reduced LDL-cholesterol levels and a 53% reduction in 

cardiovascular disease.16 The reduction in cardiovascular events was demonstrated through 

study of 113,094 individuals with genotyping for these LOF variants. Importantly, 21,131 of 

those individuals were identified in an EHR-linked biobank with extant genotyping whose 

cases and controls were found within about 3 weeks, demonstrating the potential power for 

reuse of clinical datasets for discovery. Soon after this study was published, the IMPROVE-

IT randomized controlled trial of ezetimibe + simvastatin vs. simvastatin alone demonstrated 

a small cardiovascular benefit with the addition of ezetimibe.17

Recent exome array and exome sequencing studies using large EHR-linked populations have 

elucidated other new targets for lipid disease. Stitziel et al. studied 193,638 individuals 

(23,576 from EHR cohorts) with exome array data for rare variants associated with 
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cardiovascular disease, plasma lipids, blood pressure, and type 2 diabetes.18 They identified 

novel rare missense variants in SVEP1, ANGPTL4 (which inhibits lipoprotein lipase, or 

LPL), and LPL associated with cardiovascular disease. The LOF ANGPTL4 variants were 

associated with reduced triglyceride levels as well as protection from coronary artery 

disease. Similarly, the DiscovEHR cohort at Geisinger Health System is proving a powerful 

discovery resource, currently with EHR-linked DNA collected on more than 100,000 

participants. An analysis more than 50,000 participants with whole exome sequence data 

from Geisinger and Regeneron investigators also found that the rare ANGPTL4 E40K 

variant (rs116843064) found in the Stitziel study was associated with reduced triglyceride 

levels, increased HDL levels, and lower risk of coronary artery disease.19 This group further 

demonstrated that monoclonal antibody inhibition of Angptl4 in mice reduced triglyceride 

levels. A similar theme is evolving with other lipid traits, leveraging use of healthcare-

derived data: rare variant discovery suggesting new drug targets and in some cases leading to 

development of new candidate therapeutics.20–22

MR can also be used to evaluate expected safety profiles of a given medication. An example 

comes from PCSK9 inhibitors. Given the risk of type 2 diabetes with statins, Schmidt et al. 

performed a MR study using PCSK9 functional variants, looking at replication of known 

cholesterol effects and evaluating for a potential effect on type 2 diabetes. 23 Their meta-

analysis (including EHR samples) replicated known LDL-cholesterol lowering effects and 

showed a potential risk of increased glucose and type 2 diabetes.

Accelerating pharmacogenetic discovery with EHRs

Pharmacogenetics focuses on the discovery of genetic variants that alter medication 

response, through alteration of effective drug levels via changes in absorption, distribution, 

metabolism, or excretion of medication, differences in effect, such as variants in drug 

receptors, or via off-target effects, such as drug hypersensitivity examples. One early 

pharmacogenomic discovery was a description of TPMT genotypes and activity.24 Since the 

sentinel studies identifying the impact of genetic variants on enzyme function and thus drug 

response, GWAS have become a powerful tool for the elucidation of the genetic basis of 

diseases and traits. However, the vast majority of GWAS to date have explored disease 

outcomes or phenotypic traits, with only ∼9% performed on pharmacogenomic traits, with 

the majority of these focused on anticoagulants and antiplatelet therapies, statins, 

chemotherapy, and psychiatric medications.25 Several challenges may hinder the collection 

of large cohorts with the information required for pharmacogenomic discovery. As with all 

GWAS, large sample sizes are needed and many of the events are rare or may be largely 

unpredictable, requiring longitudinal follow-up of large populations to experience. 

Traditional prospective population cohorts are often not large enough to note very rare 

adverse events (such as Stevens-Johnson Syndrome or heparin induced thrombocytopenia) 

or lack the regular and comprehensive collection of medication exposures and diverse 

outcomes necessary to evaluate more common drug effects (e.g., a response to blood 

pressure medication in a psychiatric cohort). In addition, retrospective assessment of 

outcomes with high morbidity and mortality may be difficult to ascertain.
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Use of EHRs may be a particularly advantageous tool for assessing drug effects given their 

continuous and prospective longitudinal assessment of clinically relevant outcomes and 

medication exposures (Table 1). Moreover, use of EHR data for pharmacogenomic study has 

an added benefit in representing the “real world” conditions of patient medication use, 

comorbid conditions, secular treatment trends, and interacting medications that may better 

represent the clinical effect of drug genome interactions. EHR-based candidate gene studies 

and GWAS have proven fruitful for replication and discovery of pharmacogenomic 

phenotypes. Delaney et al. replicated the association between cardiovascular risk and 

CYP2C19*2 and ABCB1 in patients receiving clopidogrel; the effect size in this study was 

nearly identical to prior efforts.26 Similarly, associations between variants in CYP2C9, 

VKORC1 and CYP4F2 and steady state warfarin dose in European ancestry individuals have 

been replicated in EHR data sets.27 EHRs have been used for pharmacogenetic traits have 

identified a number of other pharmacogenetic associations, some of which are summarized 

in Table 1. An analysis of a project at Vanderbilt that studied 31 EHR-defined drug 

phenotypes found that use of the EHRs decreased cost 72% per subject, shortened study 

time, and more efficiently leveraged valuable patient data.28 Furthermore, data from 90% of 

the individuals were used in more than one study, suggesting the strong reuse potential for 

these data.

Given the nuances of defining exposure, covariate, and outcome phenotypes for 

pharmacogenomic studies, sharing of data extraction methods, validation across different 

sites and EHR systems, and codification of variable definitions are necessary for efficient 

progress in the field. Networks such as eMERGE Network have established a strong track 

record for accurate identification of disease and drug response phenotypes from the EHRs, 

with median positive predictive values (PPV) of published algorithms >95%.29 Typically 

these algorithms involve the combination of billing codes, medication data, lab values, and 

text mining to achieve these results. However, most of these were disease or trait focused 

algorithms; algorithms for pharmacogenomics often require sequencing of medical events 

and medical exposures in time. Research has shown that many pharmacogenetic traits can be 

assessed with accurate performance without requiring manual review, just as for disease 

algorithms. Examples include angiotensin converting enzyme inhibitor induced cough,30 

warfarin27 or vancomycin31 dose, and statin effect of LDL-cholesterol lowering.32,33 A 

common theme across these pharmacologic phenotypes is that they involve chronically 

administered medications (alleviating the need to accurately determine a medication stop 

date), inpatient administrations with clear documentations of medication exposures, or a 

clinical event that is relatively unambiguous (e.g., drug level or physician-asserted adverse 

event). Other pharmacogenomic algorithms sometimes require manual review to confirm 

true positive cases. For example, an algorithm for drug-induced liver injury, in which 

algorithm sensitivity was intentionally favored over positive predictive value in order to 

capture all events, found a PPV of 20%,34 and the clopidogrel-MACE phenotyping 

algorithm referenced earlier had a 44% PPV rate for cases, primarily due to difficulty 

automatically ascertaining the stop date for clopidogrel.26

Using EHR data for pharmacogenomic studies is not without bias. As noted above, assessing 

accurate medication start and stop dates can be challenging, and for most health systems, the 

medication exposures are based on prescribing records instead of pharmacy fill records or 
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pill counts and thus can overrepresent the medications people actually take. Inaccuracies in 

understanding medication start and stop dates can lead to challenges determining if an event 

occurred during the medication exposure or not or with interacting medications or not. 

Healthcare events can occur at outside providers, leading to cases misclassified as controls. 

Use of over-the-counter (OTC) medications is not rigorously documented in the EHR, 

precluding assessment of these medications or of drug-drug interactions with OTC drugs. 

The vast majority of these biases for pharmacogenetic studies will bias toward a null result, 

reducing the likelihood of false positive associations but hindering the identification of 

potentially important drug gene interactions.

Repurposing existing medications and predicting side effects through 

phenome-wide approaches

Phenome-wide association studies (PheWAS) provide a way to serially test an independent 

variable against a comprehensive range of phenotype outcomes. The first PheWAS was 

performed in EHR data using genetic variants,35 but PheWAS has also been performed using 

observational cohort data.36 PheWAS has been used to replicate hundreds of known SNP-

phenotype associations.37–39 Using the hypothesis established above that genomic 

associations can suggest effective drug targets (and their effects), PheWAS can provide an 

approach by which one can simultaneously assess both potential drug indications and their 

on-target side effects. Diogo et al. found functional variants in TYK2 associated with 

rheumatoid arthritis (RA), and then performed a PheWAS on these variants to look for other 

potential indications and adverse effects for medications targeting TYK2 used in RA.40 

Their PheWAS of these partial LOF variants supported the potential for blockade of TYK2 

as a treatment (as noted by odds ratios <1) for RA, inflammatory bowel disease, and 

systemic lupus erythematosus, and did not identify significant adverse events (as would be 

noted by odds ratios>1 and significant p-values). Rastegar-Mojarad et al.41 applied a similar 

approach using published SNP-phenotype associations in the PheWAS catalog to test this 

hypothesis on a large scale using common variants in genes that represent current drug 

targets as identified in DrugBank. They found evidence for 127 drug-indication pairs and 

identified 2583 potential novel drug-disease associations.

Following this paradigm, another potential avenue for genetics is the repurposing of existing 

medications with known safety profiles for new indications. Such use cases may be 

especially useful for special populations such as obstetrics, geriatrics, or pediatrics, for 

which development and testing of new medications can be more challenging, and for 

minority populations who have historically not been well represented in phase I-III clinical 

trials. Leveraging the known drug targets of existing US Food and Drug Administration 

(FDA)-approved medications could identify additional indications through PheWAS of 

variants in the drug target genes. In this repurposing model, new indications are recognized 

by having the same direction of effect for a given genetic variant in the target gene as 

existing indications; potential side effects are noted by having in opposite direction of effect 

for a given variant as the existing indications (Figure 1, PheWAS component). Thus, for this 

approach, it is not necessary to find LOF variants in a gene; rather the known indications 

provide orientation to potential new indications or side effects using all available common 
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variants in the gene. Thus, the vast catalog of EHR-associated GWAS data could aid in this 

sort of discovery, and an opportunity to develop or extend EHR-linked cohorts with 

populations underrepresented in biomedical research, including minorities, the elderly, 

children, and pregnant women. Limitations of this approach include having sufficiently large 

samples sizes and finding variants clearly associated with the drug target, since many 

common variants in GWAS studies are not necessarily clearly linked to expression or 

function of their nearest gene.

Discovering of drug effects using large-scale clinical data alone

While much of the discovery discussed above has involved the study of genomic data linked 

to EHRs, a number of investigators have also shown the utility of EHR data by itself to 

identify potential adverse or therapeutic drug effects and drug-drug interactions. Brownstein 

et al. demonstrated a two standard deviation rise in myocardial infarctions in their hospital 

systems 8 months after the introduction of rofecoxib that resolved within one month of 

rofecoxib's withdrawal from the market.42 LePendu et al. applied natural language 

processing to large scale EHR data to find known drug adverse events.43 Of note, in the 

retrospective analysis, their approach also identified a significant association between 

rofecoxib and myocardial infarction using data from before this safety signal was identified 

in a clinical trial. A similar approach was used to show that the claudication drug cilostazol 

may be safe in patients with congestive heart failure, a listed contraindication.44 Tatonetti at 

al. evaluated the combination of paroxetine and pravastatin on glucose levels, 45 showing the 

hyperglycemic effect originally discovered from the FDA's Adverse Event Reporting System 

(AERS) database was found in a small population in their EHR. They replicated the effect in 

two other EHRs.

Identification of new therapeutic effects can lead to drug repurposing. Xu et al. evaluated the 

effect of metformin on cancer mortality in two health systems.46 Their results demonstrated, 

as have others using administrative data,47 improved survival in the metformin treated group 

for many cancers within both healthcare systems. Statins have also been a popular target for 

population studies for potential repurposing. A study of the Danish population suggested an 

improvement in cancer survival with statin therapy.48 However, a recent randomized 

controlled trial evaluating the use of pravastatin in small cell lung cancer did not find a 

mortality benefit,49 and another recent study using Surveillance, Epidemiology, and End 

Results (SEER) showed no effect in a broader population when using methods selecting only 

users initiated on statins after developing cancer.50 This latter study highlights some of the 

challenges when evaluating retrospective clinical data for new drug effects; the effect on 

cancer survival was only seen when an immortal bias was introduced by the selection 

criteria. A recent population study using Canadian claims data suggested statin use may 

improve all-cause and lung-related mortality in patients with COPD.51

Unlike genetic studies, which have the benefit of an exposure (the genotype) that is not 

influenced by clinical care, use of clinical data for drug effect studies must be carefully 

considered for biases. Individuals take medications for a given indication; often their 

alternatives are often not chosen with equipoise, such as with statins, which are clearly the 

first line therapy for hyperlipidemia. Moreover, one could choose a medication specifically 
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because of the potentially “additional” indication in question. For instance, physicians may 

preferentially choose metformin in a patient with cancer and mildly elevated glucose values 

or otherwise well-controlled diabetes, leading to indication bias. Statistical approaches such 

as propensity score adjustments or penalized regression models using dense phenotype 

models may help counter some of these confounders but may not be able to adjust for all 

factors. One must also be wary of immortal time biases and selection biases if methods 

employed require presence of an exposure in one of the analyses groups not present at time 

zero. Careful attention to the design of phenotype algorithm in prospectively captured data 

sets (such as EHR and claims data) can ameliorate this bias.50

Machine learning approaches applied to large data sets

As available clinical data sets and their size have increased, there has been a rise in use of 

novel methods to explore these data. Machine learning methods have been applied to clinical 

data sets for more than a decade but typically for very focused problems, such as to improve 

identification of a case status for a defined problem (e.g., detection of tobacco exposure52,53, 

extracting elements of diabetic foot exams,54 or identifying clinical diseases55,56) or to 

improve general purpose tools such as natural language processing algorithms.57,58 These 

approaches typically have been hampered by their requirement for well-labeled training sets 

– referred to as supervised machine learning methods. The supervised machine learning 

approach has been used to aid in identifying phenotypes from clinical data records, 

particularly for disease phenotypes.59,60 The creation of these training sets requires costly 

annotation by clinical or domain experts. Supervised machine learning approaches have also 

been used to find drug adverse events,61,62 although to date such approaches typically have 

not achieved the same level of performance as with disease phenotype models, a recognition 

of the inherent challenges in defining drug efficacy and adverse events in EHR data sets 

mentioned above.

Recently, the availability of newer machine learning methods combined with very large data 

sets has given rise to “deep learning” methods that can learn distinguishing features from a 

dataset without supervision. These approaches have garnered substantial interest from 

academia as well as industry which may be better equipped to support the large-scale 

computing needs required to employ deep learning methods on unstructured information. 

One of the early examples of these methods was a demonstration project by Google that was 

able to learn patterns such as human faces, cats, flowers, wine, pizza, and many other 

characteristics from images selected from YouTube videos.63 These methods are also being 

applied to clinical studies. Lasko et al. used deep learning methods to learn features from 

time-compressed curves of uric acid laboratory values to differentiate tumor lysis syndrome 

from gout with an area under the receiver operator characteristic curve (AUC) of 0.97.64 A 

team of Google investigators applied deep learning to more than 128,000 images of patients 

with diabetic retinopathy and controls without diabetic retinopathy.65 Their algorithms were 

able to identify diabetic retinopathy with similar performance to ophthalmologists with an 

AUC of 0.99. Similarly, a research group from Stanford was able to identify melanomas 

with similar performance to trained pathologists using deep learning applied to a training set 

of 129,450 pathology images.66
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Following the promises of machine learning successes applied to real-world data such as 

these and others within computer science domains, a number of groups are exploring 

accumulation of real world evidence to aid in prescribing decisions.67 The FDA has 

demonstrated its commitment to use of real-world data for safety via the Sentinel Initiative68 

and, more recently, the Information Exchange and Data Transformation (INFORMED) 

Initiative,69 which seeks to create a big data environment to advance cancer care. In 

addition, a number of companies are also exploring applications of machine learning to 

health, including International Business Machine70–72 and Alphabet companies (which were 

involved in some of the studies mentioned above).

Big data approaches may also help identify subtypes of disease, which could suggest 

differential treatment and prognoses. Li et al. used EHR disease data (from billing codes) to 

identify different clusters of patients with type 2 diabetes, which associated with different 

genetic variants, and included clusters with differential risks of cardiovascular disease, 

metabolic factors, and cancers. Doshi-Velez et al. applied hierarchical classifications to 

identify subtypes of autism, finding disease-associated clusters of phenotypes also presented 

at different ages and different disease trajectories.73 These autism subclusters were 

replicated at two other hospital EHR systems.74 Nonnegative tensor factorization has also 

been used to find novel clusters of diseases with medications when evaluating EHR data.75 

Collectively, these approaches to defining subtypes of diseases with differential comorbid 

disease risk and different prognoses could suggest future implications for differential 

treatment using big data approaches. However, at the current time, the prognostic value of 

these computationally defined phenotypes for either prognosis or tailoring medical therapy 

is unknown.

Discussion

The identification of new, effective, and safe therapeutic targets remains challenging and 

expensive, with 90% of most novel therapeutics entering clinical trials failing efficacy or 

safety trials.76 In addition, many adverse drug reactions are unpredictable and costly, 

amounting to an estimated $4 billion in the US.77 A growing body of research is 

demonstrating the efficacy of genomic approaches linked to EHR data to prioritize drug 

targets for diseases, replicate and discover clinically relevant genetic variants that influence 

drug response, and rapidly add samples to large consortia for experiments using techniques 

such as MR, GWAS and PheWAS.

A major challenge to discovery is having large richly phenotypes populations available for 

research. Demonstrating the power of very large numbers, a recent GWAS of height on over 

700,000 individuals discovered associations with 83 rare variants with effect sizes up to ten 

times larger than typically seen with common variants.78 In contrast, most of the research 

using EHR data has been applied to single healthcare systems, which in addition to limiting 

sample size, allows for certain biases based on coding and clinical practice variations, 

geographic location, and population architecture (especially with genetic studies). A current 

standard for genomic studies is replication in an independent cohort, or use of large meta-

analyses that combine data from many independent cohorts. Legal and privacy concerns 

hinder sharing of clinical data. However, networks such as eMERGE network have 
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pioneered multisite studies using EHR data linked to genetic information, including many of 

the EHR-based genetic studies referenced in this paper. The growing adoption of common 

data models79 for EHR data, including the data models put forth by the Observational Health 

Data Sciences and Informatics (OHDSI) network80 and the Patient-Centered Clinical 

Research Network (PCORnet),81 are proving effective at aggregating disparate EHR 

datasets.

In the future, clinical data studies will integrate EHR data with multiple other big data 

sources. Currently, most of the US prescription medication data is amalgamated at 

SureScripts, which has built a e-prescription network with most of US retail pharmacies and 

pharmacy benefit managers, and some other countries have national prescribing records. 

Incorporation of data from pharmacies would allow a more comprehensive picture of a 

patient exposure to medications and allow for more accurate construction of timelines of 

medication exposures and clinical events. In addition, integration with patient portals may 

aid discovery of drug adverse events. Patient generated messages to their physicians about 

drugs they are taking also contain information about adverse events they experience, which 

may not be otherwise documented in a clinical visit. Patient portals could also be actively 

used for dynamic feedback from patients as they are taking medications. Questionnaires 

could be sent to patients allowing for the collection of how they are responding to 

medication and whether or not they have had an adverse event. When coupled to 

technologies such natural language processing or intelligent form completion, a structured 

representation of medication exposures and response could be developed for future data 

mining. These sorts of collections of multiple complementary data sets could enable richer 

and more complete discovery than current limitations relying on a single resource such as 

the electronic health records – as well as benefiting clinical care.

Translation of discoveries personalizing drug therapy to clinical impact will require new 

types of clinical decision support implemented within EHRs. The incorporation of omic 

information into care – from the “simple” translation of particular variants into a 

recommended pharmacologic pathway to machine learning approaches operating on 

potentially millions of variables – are beyond what can be expected from a provider. Early 

decision support incorporating single or multiple variants have been implemented for 

pharmacogenetic prescribing at a variety of sites and within a variety of EHR systems, as 

propagated by NIH-funded networks such as the Electronic Medical Records and Genomics 

(eMERGE) and the Implementing Genomics Into Practice (IGNITE) networks.1,82–87 These 

systems provide the beginnings of automating genomic decision support at the point of care 

and have proven effective at altering prescribing behaviors and improving outcomes.87,88 To 

support machine learning approaches in clinical care, the new models of clinical decision 

support will be needed that reason on a much higher density of information, potentially 

modeled and computed outside the EHR in special omic resources.

Newer national cohorts have the promise of dramatically scaling “big data” discoveries to 

accelerate pharmaceutical development, repositioning, and adverse event prediction (Table 

2). The Million Veteran Program has currently recruited over 600,000 veterans with a goal to 

reach at least 1 million individuals, each with linkage to the VA's longitudinal EHR system, 

which also includes pharmacy data.89 Other large cohort studies such as the China Kadoorie 
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Biobank90 and the UK Biobank91 also leverage routinely-collected healthcare data. 

Similarly, the All of Us Research Program (formerly known as the Precision Medicine 

Initiative Cohort Program) has as its goal a collection of 1 million or more individuals who 

agree to be recontacted, will complete health surveys, and will share biospecimens and EHR 

data.92 Collectively, these cohorts envision an international set of millions of participants 

with molecular data (including genomics) linked to dense EHR data and other phenomic 

data that will be accessible to many researchers. The integration of medication and clinical 

data in a way that preserves chronicity will enable pharmacologic and genetic discovery with 

the sample sizes and phenotypic density necessary to advance discovery of medication 

effects, to prioritize potential new drug targets, and to accelerate drug repurposing. Perhaps 

paradoxically, it will be through the collection of very large research cohorts that we will 

significantly advance the care of individual patients.
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Figure 1. Electronic Health Records support genomic and pharmacogenomic discovery
NLP=Natural Language Processing. PheWAS=Phenome-wide association study; 

GWAS=Genome-wide association study. Disease clusters adapted from Lingren et al.74 and 

Lasko et al.64
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Figure 2. Mendelian Randomization (MR) vs. Randomized Controlled Trials (RCT)
MI=myocardial infarction. LDL=low density lipoprotein levels. *Allele could be a single 

SNP or group of SNPs (e.g., genetic risk score).
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Table 1
Selected EHR-based genomic studies predicting drug effects

All reported results were significant in their respective studies.

Phenotype Type Cases Gene/SNP

Replications of pharmacogenetic effects using EHR biobanks

 Warfarin-stable dose27 Candidate 1167 VKORC1, CYP2C9, CYP4F2, CALU 
variants

 Warfarin-stable dose (pediatrics)81 Candidate 100 CYP2C9, VKORC1 variants

 Clopidogrel efficacy26 Candidate 225 CYP2C19*2, ABCB1 rs1045642

 Tacrolimus stable dose82 Candidate 446 CYP3A5 rs776746

Pharmacogenetic discoveries using EHR biobanks

 ACEI-induced cough30 GWAS 1,346 KCNIP4 rs145489027

 Serum creatinine during vancomycin therapy GWAS 745 GJA1 rs2789047

 Anthracycline induced cardiomyopathy83 GWAS 385 rs7542939 (near PRDM2)

 Warfarin-related bleeds84 Candidate 249 CYP2C9*3

 Statin LDL reduction85 Candidate PCSK9 R46L

 Heparin-induced thrombocytopenia GWAS 73 GPR65 rs10782473

EHR data for drug target discovery

 Drug targets for RA (includes EHR)5 GWAS 103,638 101 risk loci; 98 gene candidates suggesting

 Statin LDL-lowering effect (includes EHR)32 GWAS 18,596 LDL-lowering effect of statins mediated by 
LPA, APOE, SLCO1B1, and a SORT1/
CELSR2/PSRC1 loci

 Triglyceride levels and cardiovascular disease (EHR 
only)19

Exome sequencing 42,930 ANGPTL4

 NPC1L1 LOF variants on LDL and cardiovascular 
disease (includes EHR)16

NPC1L1 sequencing; 
exome array

NPC1L1 (ezetimibe target) lowers LDL and 
protects against CV disease

PheWAS-based drug effect discovery

 Effects of TYK2 partial LOF variants40 PheWAS 29,377 Potential indications for RA and Psoriasis; no 
potential adverse events associated

 Analysis of PheWAS Catalog for known drug targets PheWAS 13,835 127 replicated drug/indication pairs; 2,583 
drug-indication pairs suggested
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Table 2
Large cohorts leveraging clinical data for genomics research

Limited to cohorts exceeding 100,000 individuals with biosamples. Sizes reported are as of 9/2017.

Biobank Region Start Year Size Website

eMERGE U.S. 2007 105,325 gwas.net

BioVU U.S. 2007 >247,000 victr.vanderbilt.edu/pub/biovu

UK Biobank U.K. 2006 512,000 ukbiobank.ac.uk

Million Veteran Program U.S. 2011 >580,000
Goal: 1 million

www.research.va.gov/MVP/default.cfm

Kaiser Permanente Biobank U.S. 2009 240,000 www.rpgeh.kaiser.org

China Kadoorie Biobank China 2004 510,000 ckbiobank.org

All of Us Research Program U.S. 2017 Goal: 1 million or more joinallofus.org

Taiwan Biobank Taiwan 2005 86,695
Goal: 200,000

www.twbiobank.org.tw

Geisinger MyCode U.S. 2007 >150,000

eMERGE: The Electronic Medical Records and Genomics Network
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