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MAIN TEXT

Most monogenic cases of obesity in humans have been linked to mutations in genes of the 

leptin-melanocortin pathway. Specifically, mutations in the Melanocortin-4 Receptor 

(MC4R), account for 3–5% of all severe obesity cases in humans1–3. Recently, adenylate 

cyclase 3 (ADCY3) mutations have been implicated in obesity4,5. ADCY3 is expressed at 

the primary cilia of neurons6, organelles that function as hubs for select signaling pathways. 

Mutations that disrupt the functions of primary cilia cause ciliopathies, rare recessive 

pleiotropic diseases, of which obesity is a cardinal manifestation7. We demonstrate that 

MC4R co-localizes with ADCY3 at the primary cilium of a subset of hypothalamic neurons, 

that obesity-associated MC4R mutations can impair ciliary localization and that inhibition of 

adenylyl-cyclase signaling at the primary cilia of these neurons increases body weight. 

These data point at impaired signaling from the primary cilia of MC4R neurons as a 

common pathway for genetic causes of obesity in humans.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
**CORRESPONDING AUTHOR: Correspondence should be addressed to Christian Vaisse (vaisse@medicine.ucsf.edu).
*EQUAL CONTRIBUTION: J.E Siljee and Y. Wang contributed equally to these studies
PRESENT ADDRESS:
Baran A. Ersoy: Weill Cornell Medical College, Department of Medicine, New York, NY

AUTHOR CONTRIBUTIONS:
C.V and J.F.R supervised the research. J.E.S, Y.W, C.V. and J.F.R. conceived and designed experiments, performed experiments, 
performed statistical analysis, analyzed the data and wrote the paper. S.Z. Performed experiments. A.B. Performed experiments and 
analyzed data relevant to Figure 4. B.E. Conceived and performed experiments and anlayzed data relevant to figure 2. A.M and M.V 
contributed regents and expertise relevant to Figure 4.

COMPETING FINANCIAL INTERESTS:
The authors declare no competing financial interests.

DATA AVAILABILITY:
All the data supporting the findings of this study are available from the corresponding author upon request.

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2018 July 08.

Published in final edited form as:
Nat Genet. 2018 February ; 50(2): 180–185. doi:10.1038/s41588-017-0020-9.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The majority of mammalian cells, including neurons, possess a single, immotile primary 

cilium, an organelle that transduces select signals7,8. Defects in the genesis or function of 

primary cilia cause a range of overlapping human diseases, collectively termed 

ciliopathies7,9,10. Several ciliopathies, such as Bardet-Biedl syndrome and Alström 

syndrome, cause obesity11, and mutations in genes encoding ciliary proteins, such as CEP19 

and ANKRD26, cause non-syndromic obesity in mice and humans12,13. While the 

mechanisms underlying a number of ciliopathy-associated phenotypes, such as polycystic 

kidney disease or retinal degeneration, have been at least partly elucidated, how ciliary 

dysfunction leads to obesity remains poorly understood7,11. Ubiquitous ablation of the 

primary cilia of neurons in adult mice causes an increase in food intake and obesity, 

suggesting that ciliopathy-associated obesity involves the post-developmental disruption of 

anorexigenic neuronal signals14. Recently, genetic and epigenetic studies have suggested a 

role for ADCY3 variations in human obesity4,15 and loss of function mutations in Adcy3 in 

mice leads to a severe obesity phenotype5. ADCY3, a member of the adenylyl cyclase 

family that mediate Gs signaling from G-Protein Coupled Receptors (GPCRs), is 

specifically expressed at the primary cilia of neurons6.

The melanocortin 4 Receptor (MC4R) is a Gs-coupled GPCR that transduces anorexigenic 

signals in the long-term regulation of energy homeostasis16. Heterozygous mutations in 

MC4R are the most common monogenic cause of severe obesity in humans and individuals 

with homozygous null mutations display severe, early-onset obesity1–3. Similar to humans, 

deletion of Mc4r in mice causes severe obesity17. MC4R is a central component of the 

melanocortin system, a hypothalamic network of neurons that integrates information about 

peripheral energy stores and that regulates food intake and energy expenditure18. Despite 

being a major target for the pharmacotherapy of obesity, nothing is known about the sub-

cellular localization of MC4R.

When expressed in un-ciliated heterologous cells, MC4R traffics to the cell membrane2. 

However, in ciliated cells such as mouse embryonic fibroblasts (MEFs), Retinal Pigment 

Epithelium (RPE), Inner Medullary Collecting Duct (IMCD3) cells, we find that a 

previously well-characterized, functional, C-terminally GFP-tagged MC4R (MC4R-GFP)19 

localizes to primary cilia (Fig. 1A). In a quantitative assay, developed in IMCD3 cells, the 

ciliary enrichment of MC4R was comparable to that of Smoothened (SMO), a known 

cilium-enriched protein20,21 and was the strongest among members of the melanocortin 

receptor family (Fig. 1 B).

We set out to determine if, and to what extent, MC4R localizes to primary cilia in vivo in 

mice. Most of the anorexigenic activity of MC4R is due to its function in a subset of Single 

Minded 1 (SIM1)-expressing neurons of the paraventricular nucleus of the hypothalamus 

(PVN)22 and all MC4R expressing neurons in the PVN express SIM123. Using a transgenic 

mouse line in which GFP is expressed in all SIM1-expressing neurons, we first investigated 

whether SIM1 expressing PVN neurons are ciliated. We find that an Adenylate-Cyclase 3 

(ADCY3)-positive primary cilium was found at a majority of SIM1-expressing neurons of 

the PVN (Supplementary Fig. 1).
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Previous attempts to determine the subcellular localization of MC4R in vivo in mice have 

been unsuccessful due to the small number of neurons in which it is expressed, its low 

abundance and the lack of tractable antibodies. Using Cas9-mediated recombination in 

mouse zygotes, we inserted a GFP tag in frame at the C-terminus of the endogenous mouse 

Mc4r locus (Fig. 2A). MC4R-GFP/+ knock-in mice do not have an obvious energy 

metabolism phenotype and are fertile, suggesting that the C-terminal GFP does not 

significantly impair the trafficking or function of MC4R in these mice. Confocal imaging of 

the PVN of these mice demonstrates that MC4R co-localizes with ADCY3 to the primary 

cilia of a subset of PVN neurons in vivo (Fig. 2, B–I).

If MC4R localization to the primary cilia is essential for its function, then human obesity-

causing mutations in MC4R may impair its function by compromising its ciliary 

localization. Heterozygous MC4R mutations are the most common genetic cause of severe 

childhood obesity1. Over fifty different obesity-associated mutations in MC4R have been 

described24 (Supplementary Fig. 2). Functional assessment of the effects of these mutations 

in non-ciliated cells has revealed that many of these mutations disrupt trafficking of the 

receptor to the membrane or impair ligand activation (Supplementary Fig. 2). In non-ciliated 

HEK293 cells, eight obesity-associated MC4R mutant proteins (p.(Arg7His), p.(Thr150Ile), 

p.(Pro230Leu), p.(Gly231Ser), p.(Arg236Cys), p.(Leu250Gln), p.(Gly252Ser), p.

(Ile130Thr) ) traffic normally to the cell membrane and respond normally to α-MSH 

activation2,24–27. To determine whether any of these mutations alter ciliary localization of 

MC4R, we quantified their ciliary enrichment in IMCD3 cells (Fig. 3A). We found that 

P230L and R236C significantly decreased MC4R ciliary localization. Interestingly, these 

two mutations are located in the third intracellular domain of MC4R (Supplementary Fig. 2), 

a domain previously implicated in ciliary localization of other GPCRs28.

To further determine whether the P230L mutation alters ciliary localization in vivo, we 

injected AAVs that express MC4R-P230L-GFP and MC4R-GFP in a Cre-dependent fashion 

into Sim1-Cre transgenic mice (Fig. 3 B–D). The human wild-type MC4R-GFP localized to 

primary cilia of Sim1-expressing PVN neurons (Fig. 3 E–H) confirming that the human 

receptor also traffics to the cilia in vivo. In contrast, MC4R-P230L-GFP failed to co-localize 

with ADCY3 to primary cilia (Fig. 3 I–L). Together, these results suggest that MC4R 
mutations may cause human obesity by altering the ciliary localization of the receptor.

If MC4R and ADCY3 function at the primary cilia to regulate body weight, we predicted 

that specific inhibition of Adenylyl cyclase at the primary cilia of MC4R expressing neurons 

should be sufficient to cause obesity. Specific inhibition of Adenylyl cyclase at primary cilia 

of neuron can be achieved by expression of a constitutively active version of the cilia 

specific Gi-protein coupled receptor GPR88 (GPR88p.(Gly283His) or GPR88*)29. GPR88* 

was delivered to Sim1 expressing neurons of the PVN using the same approach used for the 

hMC4RGFP DIO-AAV (Fig 3) but using high level of virus delivered at the midline to 

ensure large coverage of PVN neurons (Supplementary Figure 3). As visualization of cilia 

expression requires confocal imaging, a DIO-AAV expressing mCherry was co-injected with 

the DIO-AAV expressing a Flag tagged version of GPR88* to facilitate verification of the 

accuracy of the targeting and the coverage of the PVN at the end of the experiment in each 

mouse (Supplementary Fig. 3). Weight-paired littermate mice injected only with the 
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mCherry DIO-AAV were used as controls. Following AAV injections, mice in which Flag-

GPR88* was expressed at the primary cilia of Sim1 expressing PVN neurons increased their 

food intake and gained significant weight compared to controls (Figure 4) demonstrating 

that Adenylyl cyclase signaling at the primary cilia of these neurons is essential for the 

regulation of body weight.

Combined, our data suggest that impaired signaling from the primary cilia of MC4R 

expressing neurons is a common pathway for syndromic and non-syndromic causes of 

monogenic obesity in humans. Our data do not indicate, however, that the primary cilia is 

necessary for Gs coupling and ADCY activation by MC4R since these occur in non ciliated 

cells. Rather our data suggest that this signaling has to occur at the primary cilia since 

impairing localization of MC4R at the primary cilia or inhibiting ADCY at the primary cilia 

impairs regulation of body weight. This functional link between MC4R and ciliopathy-

associated obesity parallels findings underlying other human ciliopathy associated 

phenotypes. For example, syndromic and non-syndromic polycystic kidney disease is linked 

to impaired function of Polycytin 1 and 2, proteins expressed at the primary cilia of renal 

tubular cells, while impaired function of Rhodopsin (RHO) in the anterior segment of retinal 

cells, a specialized primary cilia, is a common pathway for both common and ciliopathy 

associated retinal phenotypes7.

Our findings also provide important new insights into the sub-cellular basis underlying the 

relationship between short-term regulation of food intake and long-term regulation of energy 

homeostasis. PVN MC4R expressing neurons are part of a neuronal circuitry implicated in 

short term control of feeding as they receive synaptic gabaergic and glutamatergic inputs in 

particular from the arcuate nucleus of the hypothalamus30. MC4R itself, however, controls 

long-term energy homeostasis as evidenced by the phenotype of MC4R deficient mice or 

humans and both MC4R ligands have a slower effect on food intake regulation. In strong 

support of this model, a recent report has elegantly established that the PVN MC4R 

expressing neurons receive fast-acting food intake regulating synaptic inputs from the ARC 

that are post-synaptically modulated by MC4R through its slower acting neuropeptide 

ligands αMSH and AGRP30.

Our finding that MC4R localizes to the primary cilia of MC4R PVN neurons provides for a 

sub-cellular compartmentalization of the slower signaling by the endogenous MC4R ligands, 

allowing for an independent control of long-term energy homeostasis, in neurons also 

implicated in the short-term regulation of food intake.

ONLINE METHODS

Studies in cell lines

Expression plasmids—hMC1R-GFP, hMC2R-GFP, hMC3R-GFP and hMC5R-GFP 

expression constructs were constructed as previously described for hMC4R-GFP18, as have 

the hMC4R mutant constructs used25.

Ciliary expression of MC4R in cultured cells—Cell lines [IMCD3 (ATCC 

CRL2123), MEF (NIH/3T3 ATCC CRL-1658) and RPE (ATCC CRL-4000)] were 
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maintained at 37°C and 5% CO2 and cultured in 50% DMEM/50% Ham’s F-12 nutrient mix 

(CCF, UCSF, San Francisco, CA), 10% FBS, and 2mM Glutamax (GIBCO, CA) (IMCD3) 

or DMEM (CCF) with 10% FBS (MEF). Effectene (QIAGEN, Chatsworth, CA) was used 

for transfections according to the manufacturer’s protocol. Upon reaching confluency, cells 

were cultured in Opti-MEM (Life Technologies) for 24h to induce ciliation. Plasmid-

transfected cells were fixed and stained prior to imaging by confocal microscopy. For 

immunofluorescence staining, cells were fixed with 4% PFA for 20 min at 4°C, 

permeabilized in binding buffer (10% BSA, 2% goat serum and 0.02% NaAzide in PBS) 

with 0.3% Triton-X100 (Sigma), and blocked in binding buffer with 3% goat serum. Primary 

antibodies were added in binding buffer and incubated overnight at 4°C. Subsequently, cells 

were washed in PBS followed by a 1h incubation with secondary antibodies and 5 min 

incubation with Hoechst33342 at room temperature and mounted in Prolong Gold (Life 

Technologies). GFP was detected by chicken polyclonal anti-GFP (abcam, ab13970). The 

Flag epitope was detected by mouse monoclonal anti-FlagM2 (Sigma, F1804). Primary cilia 

were detected by mouse monoclonal anti-Acetylated tubulin (Sigma, T7451), rabbit anti-

Arl13b (gift of Tamara Caspary), or rabbit anti-Adcy3 (Santa Cruz Biotechnology, sc-588). 

Secondary antibody: goat anti-chicken Alexa fluor 488 (Invitrogen, A11039), goat anti-

mouse Alexa fluor 555 (Invitrogen, A21424), goat anti-rabbit Alexa fluor 555 (Invitrogen, 

A21429), or goat anti-mouse Alexa fluor 633 (Invitrogen, A21052). Nuclei were labeled by 

DAPI, To-Pro3 (Invitrogen) or Hoechst33342 (Invitrogen).

Microscopes—Imaging of transfected immortalized cells was performed on a Zeiss 

Upright Axioscope 2 Plus Fluorescence Microscope and/or on a Leica SL, a Leica SP5 or a 

Zeiss LSM 780 confocal microscope.

Quantification of ciliary localization in cultured cells—A 3-plane Z-stack of 

transiently transfected IMCD3 cells was acquired on an Olympus IX-70 microscope, and 

best focus of average was recorded using Metamorph software (Molecular Devices, 

Sunnyvale, CA). Relative ciliary enrichment was calculated using Matlab Software as the 

ratio between the green chanel pixel intensity of GFP-chimera expression at the primary 

cilium versus pixel intensity of the cell body, wherein the cilium was defined by acetylated 

tubulin staining recorded in the red channel.

In vivo studies in mice

All animal procedures were approved by the Institutional Animal Care and Use Committee 

of the University of California, San Francisco. Zygote injection and implantation was 

performed at the transgenic core of the Gladstone Institute.

Generation of Mc4r-GFP knock-in mice—Super-ovulated female FVB/N mice (4 

weeks old) were mated to FVB/N stud males. Fertilized zygotes were collected from 

oviducts and injected with (1) Cas9 protein (50 ng/ul), (2) a donor vector (20 ng/ul) 

consisting of 1kb of 5’flanking sequence (i.e. the MC4R coding sequence) followed by GFP 

(cloned in frame) and 5.5 kb of 3’flanking sequence and (3) a sgRNA (25 ng/ul) of which 

the guide sequence (see supplementary table) was designed to target nucleotides 

immediately downstream the MC4R stop codon in a short region that was not present in the 

Siljee et al. Page 5

Nat Genet. Author manuscript; available in PMC 2018 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



donor vector into pronucleus. Injected zygotes were implanted into oviducts of 

pseudopregnant CD1 female mice. Pups were genotyped for insertions at the correct loci by 

PCR. Tissue specific expression of Mc4r-GFP was verified by qPCR. Imaging experiments 

were done in F2–F5 mice from two different founders.

Origin of the other mouse lines used—Mice expressing Cre under the control of the 

Sim1 promoter, Tg(Sim1-cre)1Lowl, were obtained from Jackson Laboratories (Bar Harbor, 

ME). Sim1-GFP mice, Tg(Sim1-EGFP)AX55Gsat, were obtained from the Mutant Mouse 

Regional Resource Center (Davis, CA).

Mice were housed in a barrier facility and maintained on a 12:12 light cycle (on: 0700-1900) 

at an ambient temperature of 23±2°C and relative humidity 50–70%. Mice were fed with 

rodent diet 5058 (Lab Diet) and group-housed up to 5. Experiments were performed with 

weight matched littermates.

Generation and injection of AAVs—AAV DIO MC4RGFP, AAV DIO 

P230LMC4RGFP and AAV DIO GPR88* plasmids were generated by replacing 

hChR2(H134R)-EYFP in pAAV-Ef1a-DIO- hChR2(H134R)-EYFP-WPRE-pA (obtained 

from K. Desseiroth, Stanford University) with hMC4RGFP, P230LMC4RGFP or 

GPR88(G283H) respectively. AAV DJ were prepared and titrated by the Stanford 

Neuroscience Viral Core which also provided the stock mCherry DIO-AAV ( GVVC-

AAV-14).

DIO AAV were injected in the PVN of Tg(Sim1-cre)1Lowl mice to anatomically and 

genetically restrict expression to Sim1 expressing PVN neurons. For experiments presented 

in Figure 3, 0.2 ul of AAV DIO MC4RGFP or AAV DIO P230LMC4RGFP were 

stereotaxically injected unilaterally in the PVN (coordinates: AP=−0.8, ML=0.2, DV=−5.2). 

Mice were sacrificed 7 days after the injections. For experiments presented in Figure 4 (and 

supplementary Figure 3), AAV DIO mCherry +/− AAV DIO Flag-GPR88* were 

stereotaxically injected in 1ul at the midline just above the third ventricle (coordinates: AP=

−0.8, ML=0.0, DV=−5.2). Weight was measured for 2 months, after which mice were 

sacrificed to confirm the site of injection. Mice with missed injections were excluded prior 

to data analysis. mCherry expression was assessed in all mice by widefield microscopy to 

verify the accuracy and extent of the AAV infection and GPR88* expression since in mice 

injected with both AAV DIO mCherry and AAV DIO Flag-GPR88* infected neurons were 

infected with both viruses (supplementary figure 3).

Mouse Metabolism Studies—For experiments presented in Figure 4 (and 

supplementary Figure 3), mice were single housed after AAV injections. Weight was 

measured for 2 months. Food intake was measured by CLAMS (Columbus Instruments, 

Columbus, OH) at baseline and 6 weeks after AAV injections. Mice were tested over 96 

continuous hours, and the data from the middle 48 hours were analyzed.

Immunofluorescence studies of mouse hypothalamus—Mice were perfused trans-

cardially with PBS followed by 4% paraformaldehyde fixation solution. Brains were 

dissected and post-fixed in fixation solution at 4°C overnight, soaked in 30% sucrose 
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solution overnight, embedded in O.C.T. (Tissue-Tek, Sakura Finetek USA, INC., Torrance, 

CA), frozen, and cut into 20–35 μm coronal sections. After washing, sections were blocked 

for 1 hr (3% normal goat serum in PBS, 0.4% Triton X-100, 0.2% sodium azide) followed 

by incubation with primary antibody: chicken anti GFP (abcam, ab13970), rabbit anti-Adcy3 

(Santa Cruz Biotechnology, sc-588) or mouse anti FLAG M1 (Sigma, F3040) overnight at 

4°C. Sections were extensively washed in PBS, and then incubated with secondary antibody: 

goat anti-chicken Alexa fluor 488 (Invitrogen, A11039), goat anti-mouse Alexa fluor 488 

(Invitrogen, A11001), or goat anti-rabbit Alexa fluor 633 (Invitrogen, A21071).

Image capture and processing—Widefield images were generated using a Zeiss 

ApoTome microscope. Confocal images were generated using a Zeiss LSM 780 confocal 

microscope. In confocal images, MC4R-GFP was labeled with Alexa 488, and the neuronal 

cilia marker Adcy3 was labeled with Alexa 633. For Alexa 488, the detector range was set 

from 490–534 nm. For Alexa 633, the detector range was set from 600–750 nm. Images 

were processed with Fiji. Maximal intensity Z projections are from at least 20 slices over 10 

μm.

In confocal images, GPR88-FLAG was labeled with Alexa 488, and the neuronal cilia 

marker Adcy3 was labeled with Alexa 633. For Alexa 488, the detector range was set from 

490–534 nm. For Alexa 633, the detector range was set from 600–750 nm. mCherry was 

detected by direct fluorescence. Images were processed with Fiji. Maximal intensity Z 

projections are from at least 40 slices over 20 μm.

Statistics—Sample sizes were chosen based upon the estimated effect size drawn from 

previous publications7 and from the performed experiments. Data distribution were assumed 

to be normal but this was not formally tested. All test used are indicated in the figures. We 

analyzed all data using Prism 7.0 (GraphPad Software).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MC4R localizes to the primary cilia in heterologous cells
A) Representative confocal microscopy images of transiently transfected MEF, RPE and 

IMCD3 cells, transfected with MC4R-EGFP labeled for the cilia specific protein acetylated 

Tubulin (TubulinAc, red) and GFP (green), and nuclei with Hoechst 33342 (blue). MC4R-

GFP localize to the primary cilium (yellow arrowheads). Scale bars represent 10 μm. (B) 

Relative ciliary enrichment of melanocortin receptor family members compared to ciliary 

enrichment of GFP (negative control) and Smoothen (postive control). Data are Mean±sem. 

Means were compared to GFP (n=12 cells, mean=1.24) and Dunnet’s multiple comparison 

test was applied. Smo-Myc: n=7 cells, mean= 2.35, p=0,0001; MC1RGFP: n=13 cells, 

mean=1.29, p=0.9995, MC2RGFGP: n=13 cells, mean=1.23, p=0.9999, MC3RGFP: n=10 

cells, mean=1.24, p=0.014; MC4RGFP: n=9 cells, mean=2.68, p=0.0001, MC5RGFP: n=9 

cells, mean=1.96, p=0.0008.
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Figure 2. MC4R localizes specifically to the primary cilia of a subset of PVN neurons in vivo
A) Strategy used to target the mouse Mc4r locus by Crispr/Cas9. B) Schematic 

representation of hypothalamic region studied in C–I. C) Coronal section of the PVN of the 

hypothalamus of a heterozygous MC4R-GFP mouse immunostained for GFP and Adcy3. 

Note that no immunofluorescence is detectable at this resolution. D–I) Maximal intensity 

projections of confocal sections through two PVN regions indicated in C reveals MC4R-

GFP (green) co-localized with neuronal primary cilia (Adcy3, red) in a subset of PVN 

neurons. Co-localization of MC4R-GFP with cilia has been observed in the PVN of over 10 

mice (male and female) derived from two independent founders. Red scale bars represent 

200 μm, White scale bars represent 10 μm.
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Figure 3. A subset of human obesity-associated mutations selectively impair ciliary localization 
of MC4R
A) Relative ciliary enrichment of eight obesity-associated mutant MC4R compared to the 

wild-type (WT) receptor. Data are Mean±sem. Means were compared to MC4RWT (n=16 

cells, mean=2.89) and Dunnet’s multiple comparison test was applied. MC4RR7H: n=10 

cells, mean= 2.57, p=0.28; MC4RT150I: n=17 cells, mean=2.57, p=0.21; MC4RP230L: 

n=12, mean=1.87, p=0.0004, MC4RG231S: n=18, mean=3.10, p=0.39, MC4RR236C: n=22, 

mean=2.1, p=0.0013, MC4RL250Q: n=10, mean=2.83, p=0.85; MC4RG252S: n=11, 

mean=2.72, p=0.54; MC4RI301T: n=4, mean=2.59, p=0.47. B) Design of DIO AAV 

expressing MC4RGFP and MC4RP230LGFP. C) Experimental protocol D) Schematic 

representation of injection site. E, I) Coronal section of the PVN of the hypothalamus of 

Sim1 cre mice injected with the MC4RGFP DIO AAV (E) and the MC4RP230LGFP 
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DIOAAV (I) respectively. (F–H and J–L) Maximal intensity confocal projection of sections 

through the PVN regions indicated in E and I respectively reveals co-localization of 

MC4RGFP (F–H) but not MC4RP230LGFP (J–L) with neuronal primary cilia in PVN 

neurons. Expressions of MC4R-GFP (WT vs P230L) have been observed in the PVN of over 

6 mice (male and female). Red scale bars represent 200 μm, White scale bars represent 10 

μm.
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Figure 4. inhibition of Adenylyl cyclase at the primary cilia of Sim1 PNV neurons is sufficient to 
cause weight gain
A) Experimental protocol (See also supplementary Figure 3). B) Midline stereotaxic 

injections of AAV DIO Flag-GPR88* + AAV DIO mCherry or AAV DIO mCherry were 

performed in male Sim1 cre mice. C) Coronal section of the PVN of the hypothalamus of a 

Sim1 cre mouse injected with the AAV DIO Flag-GPR88* + AAV DIO mCherry. D–F) 

Maximal intensity projections of confocal sections through the PVN region indicated by a 

red square in C. Arrows indicate cilia expressing GPR88. Scale bars represent 10 μm. G) 

Percent weight changes (mean ± SE) of Sim1cre mice following midline PVN injection of 

AAV DIO GPR88(G283H)+ AAV DIO mCherry (n=12) or AAV DIO mCherry (n=9). Mice 

were paired at baseline by body weights and litters. Repeated measures of two-way ANOVA 

followed by Sidak’s multiple comparisons test were performed (treatment F(1, 19) = 8.898, 

P = 0.0076; time F(5, 95) = 49.07, P < 0.0001; interaction F(5,95) = 8.789, P < 0.0001; p 

values from Sidak’s multiple comparisons test are shown in the figure). H) Individual weight 

changes of Sim1cre mice in G) (each line represents one mouse). I) Food intake at baseline 

and 6 weeks after AAV injections (mean± SD). Repeated measures of two-way ANOVA 
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followed by Sidak’s multiple comparisons test were performed (treatment F(1, 19) = 2.41, P 
= 0.1370; time F(1, 19) = 9.328, P = 0.0065; interaction F(1, 19) = 9.196, P = 0.0068; p 

values from Sidak’s multiple comparisons test are shown in the figure). Red scale bars 

represent 200 μm, White scale bars represent 10 μm.
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