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Methylation profiling identifies two subclasses of
squamous cell carcinoma related to distinct cells of
origin
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Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer and
usually progresses from a UV-induced precancerous lesion termed actinic keratosis (AK).
Despite various efforts to characterize these lesions molecularly, the etiology of AK and its
progression to cSCC remain partially understood. Here, we use Infinium MethylationEPIC
BeadChips to interrogate the DNA methylation status in healthy, AK and ¢SCC epidermis
samples. Importantly, we show that AK methylation patterns already display classical fea-
tures of cancer methylomes and are highly similar to cSCC profiles. Further analysis identifies
typical features of stem cell methylomes, such as reduced DNA methylation age, non-CpG
methylation, and stem cell-related keratin and enhancer methylation patterns. Interestingly,
this signature is detected only in half of the samples, while the other half shows patterns
more closely related to healthy epidermis. These findings suggest the existence of two
subclasses of AK and cSCC emerging from distinct keratinocyte differentiation stages.
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ARTICLE

utaneous squamous cell carcinoma (cSCC) is a non-

melanoma skin cancer type that originates from epidermal

keratinocytes and represents about 20% of all skin cancers,
with up to 700 000 new cases annually diagnosed in the USA'.
Although usually treated effectively by surgery and/or radio-
therapy, the percentage of cSCC tumors that recur or metastasize
within 5 years is 8% and 5%, respectively'. Chronic sun damage is
known to be the main cause of cSCC, which preferably arises on
highly exposed areas such as face and neck, from a precancerous
lesion termed actinic keratosis (AK)%. AK is defined as an ultra-
violet light (UV)-induced keratinocytic dysplasia with abnormal
cells®. Although most AKs do not progress to cSCC and many
regress spontaneously, the annual risk of progression is estimated
at 0.025-20% per individual lesion®. The precise causes of the AK
to ¢SCC transition still remain obscure. It has been shown that
¢SCC displays a higher mutational load than AK®. However, AK
samples already harbor mutations in the same genes that are
found mutated in metastatic and aggressive ¢cSCC, such as TP53,
NOTCHI-2, FATI, or MLL2°. Other typical cancer-associated
genes that are known to be likewise mutated in both entities are
CDKN2A, RAS, EGFR, or MYC®'%, Molecular studies using
array-based expression profiling have been largely inconclusive! !~
15, However, a recent study that used RNA-seq to analyze and
compare human samples with an UV-irradiated hairless mouse
model, identified distinct transcriptional networks driving the
initial emergence of AK from healthy epidermis and the transi-
tion from AK to cSCC®.

DNA methylation is a covalent egigenetic modification of
cytosines within CpG dinucleotides'®!”. The modification is
established and maintained by a set of specific enzymes called
DNA methyltransferases and regulates cellular identity through
the modulation of gene expression'®!”, Healthy cells are char-
acterized by the absence of DNA methylation at CpG islands,
short CpG-rich regions present in ~60% of human promoters,
and the extensive methylation of gene bodies and repetitive
regions'8. The deregulation of the normal methylome is a major
hallmark of human cancers'® and frequently characterized by
global hypomethylation of lamina-associated domains (LAD) as
well as widespread CpG island promoter hypermethylation!®2°,
Importantly, altered DNA methylation patterns emerge early in
tumorigenesis>!, and can be used as biomarkers for tumor
detection, diagnosis and prognosis®>23.

Our current knowledge about epigenetic changes associated
with ¢SCC is very limited and mostly comprises a moderate
number of cancer-associated genes that become silenced by CpG
island promoter hypermethylation. Examples include CDKN2A,
CDHI, DAPKI1, or MGMT?*?°, In addition, a recent study sug-
gested that UV-irradiation through chronic sun exposure gives
rise to large hypomethylated blocks in healthy epidermis, and that

these blocks are conserved in cSCC2. Finally, with respect to the
transition between AK and ¢SCC, it has been suggested that
CDHI promoter hypermethylation might increase from normal
skin to AK and ¢SCC?’, and that the silencing of miR-204 might
play a role in the progression from AK to ¢SCC?%.

Here, we investigate DNA methylation changes in the pro-
gression from healthy epidermis to AK and c¢SCC using Infinium
MethylationEPIC BeadChips, which contain about 850,000 CpG
probes. Our results provide the most comprehensive epigenomic
analysis of cSCC development to date and suggest the existence of
two distinct subclasses that reflect different cell-of-origin differ-
entiation stages.

Results

AK and c¢SCC show similar aberrant methylation patterns.
Epigenetic modification patterns show a considerable degree of
cell-type specificity, which represents a major confounding factor
for the interpretation of epigenetic data. For the analysis of
human AK and ¢SCC methylomes, we therefore placed a parti-
cular emphasis on the cell-type purity of our samples. Conse-
quently, we separated the epidermal from the dermal parts of
punch biopsies and exclusively included samples where a suffi-
ciently large area of the epidermal layer could be dissected in
order to isolate at least 500 ng of genomic DNA. In addition, all
biopsies were taken from the center of the lesions to ensure the
histopathological distinction of AK and squamous cell carcinoma
in situ (see Methods for details). Altogether, we analyzed 12
normal epidermis samples, 16 AK epidermis samples, and 18
¢SCC epidermis samples using Infinium 850k methylation arrays
(Supplementary Table 1). The resulting data sets were quality-
assessed, functionally normalized, filtered for potentially con-
founding probes (those located in sex chromosomes, SNP-con-
tainin§, and self-hybridizing), and subsequently analyzed using
Minfi®.

Principal component analysis (PCA) performed on all 850k
probes clearly separated the normal epidermis from AK and
cSCC samples, but also indicated highly overlapping patterns
between AK and c¢SCC (Fig. 1la). Moreover, while normal
epidermis samples grouped very homogeneously, AK and ¢SCC
distributed more heterogeneously. Pairwise comparisons of the
methylation patterns from the three sample groups using Minfi
revealed a high number (372,213) of significantly (adjusted P <
0.05, F-test) differentially methylated probes between AK and
normal epidermis (Fig. 1b). A similarly high number (310,102) of
differentially methylated probes was detected when ¢SCC and
normal samples were compared (Fig. 1b). However, in agreement
with our PCA, no significantly differentially methylated probes
were detected between AK and ¢SCC (Fig. 1c). These findings
establish pronounced methylation differences between healthy
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Fig. 1 Actinic keratosis (AK) and cutaneous squamous cell carcinoma (cSCC) show similar aberrant methylation patterns. a Principal component analysis
of 12 healthy, 16 AK, and 18 cSCC epidermis samples using all 850k CpG probes. b Scatter plots comparing the epidermis methylomes of healthy and AK
samples (left panel), and healthy and cSCC samples (right panel). Differentially (P < 0.05, F-test) methylated probes are shown in blue. ¢ Scatter plot
comparing the epidermis methylomes of AK and cSCC samples. No significantly (P < 0.05, F-test) differentially methylated probes were detected
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Fig. 2 AK and cSCC methylomes show cancer-specific features. a Methylation status of the different epigenomic substructures in the epidermis of AK
(left) and cSCC (right) patients compared to healthy controls. The box plots indicate highly significant (P < 9.1E-77, two-sided t-test) hypermethylation of
the CpG islands and hypomethylation of the Open Sea probes in both AK and cSCC samples. b Fractions of hyper and hypomethylated CpGs in AK and
cSCC epidermis, within different epigenomic substructures and in comparison to healthy skin. ¢ Probes within lamina-associated domains (LADs) are
significantly (P <3.4E-288, two-sided t-test) hypomethylated in AK and ¢cSCC when compared to healthy epidermis
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Fig. 3 AK and ¢SCC display typical features of stem cell methylomes. a Mean difference between chronological and methylation-based biological age for
healthy, AK, and cSCC samples. b Box plots indicating the average methylation levels of the 210 (left panel) and 263 (right panel) differentially (P < 0.05,
F-test) methylated non-CpG probes in AK and cSCC. ¢ The DNA methyltransferase DNMT3B gene is significantly upregulated in AK (P < 0.002, two-sided
t-test) and cSCC (P < 3.43E-06, two-sided t-test). RNA-seq gene expression data from 7 healthy, 10 AK, and 9 cSCC epidermis samples was obtained

from Chitsazzadeh et al.>

and diseased (AK, c¢SCC) epidermis samples and also suggest
substantial epigenetic similarities between the precancerous
lesions and the tumor samples.

AK and c¢SCC methylomes show cancer-specific features.
Cancer methylomes are often characterized by specific features,
such as hypomethylated lamina-associated domains (LADs) and
hypermethylated CpG islands!®?°. Furthermore, hypomethylated
LADs have also been described as a prominent feature of cSCC?°.
We therefore compared the methylation status of different epi-
genomic substructures such as CpG islands, shelves, shores, and
open sea regions in our data sets. The results showed robust
hypomethylation of open sea probes as well as hypermethylation
of CpG islands and their shores in both AK and ¢SCC samples.
(Fig. 2a). Similarly, the fraction of probes changing their
methylation in the different epigenomic substructures was also
very similar between normal epidermis and AK or cSCC (Fig. 2b).
Finally, we used published data sets® to define the association of
the 850k probeset with LADs. This revealed that LAD probes
were significantly hypomethylated in AK and in ¢SCC (Fig. 2c¢).
Our results thus suggest that the premalignant AK samples
already display key features of cancer methylomes and that these
features are conserved in cSCC.

AK and c¢SCC display typical stem cell methylation features.
DNA methylation can be used to predict the chronological age of
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a given human tissue with high accuracy®'. When we applied the
age predictor to our samples, we observed a methylation age for
the AK and ¢SCC samples that was clearly below the chron-
ological age of the respective patients (Fig. 3a). This effect is
reminiscent of the reduced methylation age observed for stem
cells*!. Another key feature of stem cells is the presence of DNA
methylation marks outside of the canonical CpG context (non-
CpG methylation)>>%3, Indeed, our analysis revealed significantly
(P <0.05, F-test) increased non-CpG methylation levels, both in
AK and in SCC samples (Fig. 3b). Non-CpG methylation has
been closely associated with the DNMT3B DNA methyl-
transferase, which also represents an important epidermal stem
cell gene®%. Consistent with our methylation data, we observed a
significant increase of DNMT3B expression in AK and ¢SCC
samples when compared to healthy controls (Fig. 3c). Together,
these results suggest that DNA methylation patterns of AK and
cSCC show key features of stem cell methylomes.

Stem cell features of AK and ¢SCC were also confirmed by
immunohistochemical analysis of an independent sample set (11
healthy skin, 11 AK, and 11 ¢SCC). Specific markers included
p63, an epidermal stem cell transcription factor>>3°, as well as
keratins K5 and K14, that are predominantly expressed in basal
keratinocytes>”*8. Our results confirmed expression of these three
markers in the epidermal basal layers of healthy skin samples
(Fig. 4), while atypical keratinocytes from AK and cSCC samples
showed broad p63, keratin K5, and keratin K14 expression
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Fig. 4 AK and cSCC express epidermal stem cell markers. The figure shows representative hematoxylin and eosin stainings, as well as p63, keratin K5, and
keratin K14 immunostainings in epidermis from healthy donors, AK and cSCC patients, respectively. Ectopic expression of the three epidermal stem cell

markers was observed in AK and c¢SCC samples. Scale bars, 200 um

(Fig. 4). These findings are consistent with previous reports that
had shown elevated expression levels of epidermal stem cell
markers in AK or cSCC3*™2, suggesting that AK and cSCC
can arise from mutated epidermal stem cells of the epidermal
basal layer*3.

Keratin gene methylation defines two subclasses of AK/cSCC.
Keratin expression patterns correspond to the epithelial cell type
and its degree of differentiation*. We therefore analyzed the
methylation patterns of the keratin gene clusters on chromo-
somes 12 and 17 and observed major DNA methylation differ-
ences between healthy donors and AK and c¢SCC patients (Fig. 5a,
Supplementary Figure 1). A closer inspection of individual ker-
atin genes confirmed this notion and also indicated the presence
of two distinct keratin methylation patterns within the AK and
cSCC sample groups (Fig. 5b). Intriguingly, the analysis of TP63
gene methylation provided a similar result (Supplementary
Figure 2), suggesting that methylation differences within sample
groups may be differentiation-related.

For a more comprehensive and systematic keratin gene
methylation pattern analysis, we extracted the methylation data
for all 1364 probes that are associated with the 55 keratin genes.
This information was also extracted from 7824 cancer data sets
from The Cancer Genome Atlas (TCGA), representing 26
different tumor entities. In agreement with our initial findings,
principal component analysis again distributed the AK and ¢SCC
samples into two groups (Fig. 5c). Interestingly, one group
clustered together with the cancer samples, while the other group
was closely related to the healthy epidermis samples (Fig. 5c).
Similarly, hierarchical clustering of the same samples and tumor
entities also separated the AK/cSCC samples into own branches,
one closely related to healthy epidermis and the other one related
to other epithelial tumor entities such as kidney, thyroid, or breast
cancer (Fig. 5d). In conclusion, keratin gene methylation patterns
clearly define two distinct subtypes of AK and c¢SCC that
potentially originate from different keratinocyte differentiation
stages.

Epidermal differentiation stages define AK/cSCC subclasses.
The Infinium MethylationEPIC array provides unique
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opportunities for the analysis of enhancer methylation states and
enhancers have been shown to be a particularly relevant target of
DNA methylation®>#°, Furthermore, enhancer methylation pat-
terns can be used to define cellular identity?®. To determine
whether the observed AK/cSCC subtypes could arise from distinct
keratinocyte differentiation stages, we classified our AK and c¢SCC
epidermal samples according to the DNA methylation status of
104,477 probes located in the 77,154 enhancers of H1 human
embryonic stem cell (ESC) line, as well as 123,257 probes located
in the 79,155 enhancers of normal human keratinocytes*’4®
(Fig. 6a). Subsequent hierarchical clustering identified the same
subclasses of AK and c¢SCC: one closely related to keratinocytes
and the other one related to ESCs (Fig. 6b). These results strongly
suggest that the two observed AK/cSCC subclasses develop from
two distinct cell types of origin that are related to undifferentiated
epidermal stem cells and to more differentiated keratinocytes,
respectively.

We further refined our analysis by the integration of reference
data sets, using published methylation profiles of epidermal stem
cells (EpSC) and differentiated keratinocytes®!. Unsupervised
clustering of the corresponding enhancer methylation profiles
again separated the AK and SCC samples into the two previously
described subclasses (Fig. 6¢). In addition, our results also identify
the EpSC-specific enhancers as a key feature of the EpSC-like
subgroup (Fig. 6¢). Pathway Analysis of the genes (n=1188)
associated with the hypermethylated EpSC-specific enhancer
regions highlighted their role in developmental functions
(Supplementary Figure 3). Finally, we also performed whole-
exome sequencing of 20 samples (10 AK and 10 c¢SCG;
Supplementary Table 1) to investigate a potential relationship
between DNA methylation-based subtypes and genetic mutation
patterns. The results showed a higher mutational heterogeneity in
the AK samples (Supplementary Figure 4), as described
previously>. However, no correlation between genetic mutations
and the DNA methylation patterns defining the two subgroups
could be found (Supplementary Figure 4). Collectively, these
findings confirm the existence of two distinct subclasses of AK
and ¢SCC, which originate from different keratinocyte differ-
entiation stages and are independent of the mutational profile.
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Fig. 5 A specific methylation signature at keratin gene clusters identifies two distinct subclasses of AK/cSCC. a UCSC genome browser tracks showing
significant DNA methylation differences (Ap, P < 0.05, F-test, vertical green lines) at the keratin gene cluster on chromosome 12 for AK (upper part) and
¢SCC (lower part) in comparison to healthy epidermis. b Specific DNA methylation patterns of the genes encoding keratins K5, K14, K15, and K80 (KRTS,
KRT14, KRT15, and KRT80, respectively). Heatmaps show DNA methylation levels (in g values, from blue (= 0) to red (= 1)) of probes (columns) located in
the promoter and gene body, for individual healthy, AK, and cSCC samples (rows). Filled and empty circles denote the two distinct subclasses of AK
(purple) and cSCC (black), respectively. € Principal component analysis of healthy, AK, and cSCC epidermis samples based on 1364 keratin-associated
methylation probes. For comparisons, keratin methylation patterns from 26 additional tumor entities were also included. d Hierarchical clustering of the
dataset shown in ¢. The 26 tumor entities depicted in this graph, and also used in ¢, are from left to right: testicular germ cell tumors, liver hepatocellular
carcinoma, esophageal carcinoma, head and neck squamous cell carcinoma, lung squamous carcinoma, cervical squamous cell carcinoma and endocervical
adenocarcinoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma, lung adenocarcinoma, stomach adenocarcinoma, ovarian serous
cystadenocarcinoma, bladder urothelial carcinoma, colon adenocarcinoma, rectum adenocarcinoma, skin cutaneous melanoma, adrenocortical carcinoma,
glioblastoma multiforme, sarcoma, thyroid carcinoma, kidney renal papillary cell carcinoma, cholangiocarcinoma, prostate adenocarcinoma, breast invasive
carcinoma, pancreatic adenocarcinoma, kidney renal clear cell carcinoma, and mesothelioma

Discussion

Altered DNA methgrlation patterns are considered a classical
hallmark of cancer'®*’, but their precise significance and func-
tional relevance for tumorigenesis are still not completely
understood. We have now generated high-resolution methylation
profiles to analyze for the first time the methylomes of ¢SCC and
its precursor lesion, AK, in epidermis samples that were carefully

NATURE COMMUNICATIONS| (2018)9:577

prepared to avoid contamination from surrounding tissue. This
focused our analysis on keratinocyte-related methylation patterns
and minimized the impact of confounding patterns from other
cell types. Our results classify ¢SCC into two distinct subgroups
that are defined by stem cell-like and keratinocyte-like methyla-
tion patterns, respectively. Interestingly, the same subclassifica-
tion could be applied to the AK samples. These findings are
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Fig. 6 Enhancer methylation patterns separate AK and cSCC into keratinocyte-like and epidermal stem cell-like subtypes. a Venn diagram displaying the
total number of enhancer regions defined for human embryonic stem cells and keratinocytes, respectively®’: 48 As expected, both cell types only share
about a quarter of their enhancers (b) Hierarchical clustering of AK and cSCC epidermis samples based on the methylation status of the 850k probes
contained in ESC (left) and keratinocyte (right) enhancers. Methylation profiles of ESCs epidermis samples were used as reference. Filled and empty circles
denote the two distinct subclasses of AK (purple) and cSCC (black), respectively. € Heatmaps showing the methylation profiles of enhancers gained (n=
109, left) and lost (n=11,825, right) during EpSC differentiation, in AK and cSCC epidermis samples, respectively. Colors represent the normalized average

methylation levels of each enhancer region

consistent with the notion that cSCC develops from AK and that
both lesions share common cell types of origin.

Whether AK represents a benign precancerous lesion or
malignant tissue is a matter of ongoing debate?. Our observation
that AK methylomes display typical cancer-related features, such
as CpG island hypermethylation and LAD hypomethylation may
indicate a significant malignant potential of AK. This is consistent
with previous reports showing that both AK and ¢SCC share
mutations in key genes associated with cancer development and
progression®~1%, In addition, several published studies failed to
identify major expression differences between AK and cSCC>!'!~
15, This is in agreement with our finding that epigenetic differ-
ences in comparison to normal skin are shared between unstra-
tified groups of AK and ¢SCC samples.

Our detailed analysis of the AK and ¢SCC methylomes also
revealed key features of stem cell methylomes. In particular we
observed a lower methylation age and a higher level of non-CpG
methylation, both typical characteristics of stem cells*'=3>. These
results, together with the ectopic expression of the epidermal stem
cell markers® p63, keratin K5 and keratin K14, can be inter-
preted to reflect the development of ¢cSCC from pr0§enit0r cells in
the epidermal basal layer, as previously proposed*’.

Cancer-associated DNA methylation profiles are increasingly
interpreted to reflect the epigenetic program of the cancer cell-of-
origin®=3, This concept is similar to the use of keratin

6 NATURE COMMUNICATIONS | (2018)9:577

expression patterns for tumor classification, which is based on the
finding that epithelial tumors largely maintain the keratin
expression pattern of their cell-of-origin®*. Interestingly, our
analysis revealed two distinct keratin methylation profiles within
our AK/cSCC sample set, one resembling that of the healthy
epidermis and the other one resembling that of other tumor
entities, which often present a certain degree of dedifferentia-
tion>>%, These results strongly suggested two different cell types
of origin for the two observed AK/cSCC subgroups. Our analysis
of enhancer methylation patterns further associated these two cell
types with epidermal stem cells and more differentiated kerati-
nocytes, respectively. Altogether, our findings support a model
(Fig. 7) where AK and c¢SCC originate from two (or more) dif-
ferentiation stages of epidermal stem cells. The detailed char-
acterization of these cell types and the analysis of their clinical
significance will be important aspects for future studies.

Methods

Samples. To obtain healthy epidermis samples, suction blisters®” were induced on
the forearms of healthy male volunteers. After their removal, suction blister roofs
were immediately stored at —80 °C. Suction blistering was approved by the Frei-
burger Independent Ethics Committee (011/1973) and written, informed patient
consents were given from all volunteers. AK and ¢SCC samples were obtained as
punch biopsies (diameter 4 mm) at the Charité University Hospital (Berlin, Ger-
many) from three diagnostic stages of AK and ¢SCC. Half of the tissue was
immersed in liquid nitrogen within 2 min of resection and stored at =70 °C. The

| DOI: 10.1038/541467-018-03025-1| www.nature.com/naturecommunications
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Fig. 7 Model describing the emergence of AK/cSCC subtypes from
different stages of epidermal differentiation. Mutations giving rise to AK
can result in the transformation of distinct epidermal differentiation stages,
resulting in two distinct subclasses of AK/cSCC

other half of each biopsy (excluding normal skin specimens) was fixed in formalin,
embedded in paraffin, and sections were stained with hematoxylin and eosin for
histology. To exclude a misdiagnosis of squamous cell carcinoma in situ (SCCIS) as
AK, punch biopsies were taken from the center of the lesions. Biopsied tissues were
further dissected to allow histopathological analyses of the core of the lesions. AK
samples with histopathological features of SCCIS were excluded from further
analysis. The study was approved by the local ethics committee at the Charité,
University Hospital, Berlin, Germany (number Si. 248). An overview of all samples
is provided in Supplementary Table 1. The epidermal parts were separated from the
dermal parts of the punch biopsies by heat split (56 °C for 2 min) and careful
manual dissection. DNA was isolated using the QIAamp DNA Investigator Kit
(Qiagen).

Analysis of Infinium 850k data. DNA methylation profiles were obtained using
Infinjum MethylationEPIC BeadChips (Illumina) according to the manufacturer’s
protocols. Methylation analysis was performed using the R Bioconductor package
Minfi (v1.20.2)%”. In short, raw IDAT files were read and preprocessed. Methyla-
tion loci (probes) were filtered for high detection p-value (P> 0.01, as provided by
Minfi%%), location on sex chromosomes, ability to self-hybridize, and potential SNP
contamination. Array normalization was carried out using the preprocessFunnorm
function, available in Minfi*%. Quality control was performed after every pre-
processing step. Differentially methylated probes were identified by fitting a linear
model followed by statistical analysis using an empirical Bayes method to moderate
standard errors. Eventually, differentially methylated probes were filtered by sig-
nificance threshold (P < 0.05, F-test, after correction for multiple testing using the
Benjamini—-Hochberg method). Methylation age was determined by using the DNA
methylation calculator (https://dnamage.genetics.ucla.edu/). LAD association of
Infinium 850k probes was determined using previously published data setsC.

Gene expression analysis. RNA-seq data were extracted from a published data
set>. We plotted the normalized expression counts for healthy, AK, and cSCC
samples using R. P-values were calculated by a t-test and corrected for multiple
testing (Benjamini—-Hochberg method).

Immunohistochemistry (IHC) analysis. IHC analysis was performed on 1 um-
thick sections of formalin-fixed, paraffin-embedded (FFPE) epidermis from 11
healthy donors, 11 AK, and 11 ¢SCC patients, respectively. All samples shared the
same gender (male) and ethnicity (Caucasian), and were provided and processed
by the tissue bank of the National Center for Tumor Diseases (NCT, Heidelberg,
Germany) in accordance with its own regulations and with the approval of the
ethics committee of the University of Heidelberg. Sections were cut using a HMA
340E Electronic Rotary Microtome (Thermo Scientific), dried and stored at room
temperature until their analysis with a BenchMark ULTRA instrument (Ventana
Medical Systems). Antigens were retrieved with Protease I (Ventana Medical
Systems) for 12 min at room temperature. Primary antibodies and dilutions used to
detect the different markers were as follows: p63 (790-4509, Ventana Medical
Systems; 0.140 ug mL 1), keratin K5 (7904554, Ventana Medical Systems; 10.4 ug
mL™!) and keratin K14 (760-4805, Ventana Medical Systems; 1-5 ug mL™1). Sec-
tions were incubated with the corresponding antibodies at 36 °C for 24 min and
detected using the OptiView DAB IHC Detection Kit (Ventana Medical Systems).
A NanoZoomer Slide Scanner (Hamamatsu) was used to generate the final images
and their analysis was performed with the Aperio ImageScope viewing software
(Leica Biosystems, version 12.3.2.8013).
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Keratin gene methylation analysis. Keratin gene methylation analyses were based
on the 1364 850k probes contained in 55 keratin genes. For comparisons, we also
obtained Infinijum HumanMethylation450 BeadChip level 3 methylation data from
7824 samples of TCGA, and averaged them for each of the 26 considered cancer
types. After extracting the 522 450k CpG probes contained in all keratin genes, the
p values corresponding to each gene were also averaged. Finally, PCA and unrooted
cluster dendrograms were performed using the R packages FactoMineR and APE,
respectively.

Enhancer methylation analysis. ChromHMM segmentations for H1 ESCs and
normal human epithelial keratinocytes were downloaded from the University of
California Santa Cruz (UCSC) web server (https://genome.ucsc.edu) and enhancer
regions were extracted (77,154 and 79,365, respectively). After identifying the 850k
CpG probes contained in both enhancer sets (104,477 and 123,257, respectively),
the methylation values of those probes contained in each enhancers were averaged
for all individual AK and c¢SCC samples. Methylation data for H1 cells were
obtained from the Roadmap Epigenomics Project®®, methylation data for kerati-
nocytes was obtained from the healthy epidermis samples. Hierarchical clustering
was performed using APE. Locations of enhancers gained and lost during EpSc
differentiation were obtained from published data>*, We identified the 850k probes
contained in these regions (387 and 85,381, respectively) and averaged the
methylation values of those contained in each of the enhancers for all our samples.
After subtracting the f values of healthy epidermis, the final numbers were used for
sample clustering and visualized as heatmaps.

Pathway analysis. Ingenuity Pathway Analysis software (Qiagen) was used to
assess the developmental role of the genes (n=1188) contained in the EpSC-
specific enhancer regions found hypermethylated in the EpSC-related AK/cSCC
subclass (normalized Ap value > 0.2).

Whole-exome sequencing. Exome capture was performed using the Agilent
SureSelect Human All Exon v5 kit. The capture area comprised 357,999 exons from
21,522 genes (~50 Mb in total). Paired-end 100 bp DNA sequencing reads were
subsequently generated on a HiSeq 4000 system (Illumina), achieving an average
coverage of 180 x (Supplementary Table 2). Data preprocessing was performed
using the One Touch Pipeline (OTP) platform®, Reads were then mapped to the
human reference genome build hs37d5 (phase II reference of the 1000 Genomes
Project including decoy sequences) using the Burrows-Wheele Aligner (BWA)
version 0.7.15 mem function with default parameters (except for invoking -T 0)
6162, Duplicates were marked with Sambamba version 0.6.5%. Single-nucleotide
variations (SNVs) and insertions/deletions (indels) were called using an in-house
workflow, based on SAMtools/BCFtools 0.1.19 (for SNVs) and Platypus 0.8.1 (for
indels)®*%>. The annotation was performed with ANNOVAR (version 2016Feb01)
©. To remove artifact SNVs/indels we calculated a ‘confidence score’ for each
mutation. This score was first defined as 10, and then deducted if the mutation
overlapped with repeats or DUKE excluded regions, DAC blacklisted regions, self-
chain regions, or segmental duplication records®”%8, For indels, the filters from
Platypus were additionally considered to calculate the confidence score, which was
deducted if alleleBias, badReads, MQ, SC, GOF, QD, or strandBias was set. Thus,
mutations were excluded from the analysis if this confidence score was too low
(<8), if sequencing depth was too high or too low, or if the reads were not properly
mapped. Common polymorphisms that could be found in mutation databases were
further filtered out: variants were excluded if present in dbSNP 147 with ‘COM-
MON =1’ tag (although rescued if they had the corresponding OMIM record), the
Exome Aggregation Consortium (EXAC) database 0.3.1 (>0.1%)%%, the Exome
Variant Server (EVS) ESP6500SI-V2 (>1%), and in our in-house control data set
(>2%, among 280 controls). Based on ANNOVAR annotations, only the variants
in coding regions were selected for the analysis. The oncoprint plot was finally
generated using the ComplexHeatmap R package’’.

Data availability. Infinium MethylationEPIC BeadChip data are available from the
ArrayExpress database under the accession number E-MTAB-5738. Whole-exome
sequencing data has been deposited at the European Genome-phenome Archive
(EGA), which is hosted by the EBI and the CRG, under accession number
EGAS00001002670.
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