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Regions with complex geological histories often have diverse and highly

endemic biotas, yet inferring the ecological and historical processes shaping

this relationship remains challenging. Here, in the context of the taxon cycle

model of insular community assembly, we investigate patterns of lineage diver-

sity and habitat usage in a newly characterized vertebrate radiation centred

upon the world’s most geologically complex insular region: island arcs

spanning from the Philippines to Fiji. On island arcs taxa are ecologically wide-

spread, and provide evidence to support one key prediction of the taxon cycle,

specifically that interior habitats (lowland rainforests, montane habitats) are

home to a greater number of older or relictual lineages than are peripheral habi-

tats (coastal and open forests). On continental fringes, however, the clade shows

a disjunct distribution away from lowland rainforest, occurring in coastal, open

or montane habitats. These results are consistent with a role for biotic inter-

actions in shaping disjunct distributions (a central tenant of the taxon cycle),

but we find this pattern most strongly on continental fringes not islands. Our

results also suggest that peripheral habitats on islands, and especially island

arcs, may be important for persistence and diversification, not just dispersal

and colonization. Finally, new phylogenetic evidence for subaerial island

archipelagos (with an associated biota) east of present-day Wallace’s Line

since the Oligocene has important implications for understanding long-term

biotic interchange and assembly across Asia and Australia.
1. Introduction
Regions with complex geological histories often have diverse and highly endemic

biotas [1,2]. The historical and ecological processes that have shaped this relation-

ship are complex and may vary across space and time. For instance, in rapidly

uplifting mountains, new high-elevation habitats have inflated regional diversity

pools by providing opportunities for ecological diversification and long-distance

colonization [3,4]. In contrast, older mountains have a higher proportion of relic-

tual endemic diversity [2]. Island arcs fringing continental plates are also

characterized by highly dynamic geological histories [5,6], and often famously

diverse and endemic biotas [7,8]. However, resolving the historical processes

that have shaped island-arc biotas is particularly challenging as the geographical

signature of evolutionary processes in these comparatively small and unstable

landmasses may be obliterated by a combination of geological and biotic

processes driving dispersal and extinction [9].
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One process hypothesized to shape biotic turnover on

islands is the taxon cycle [10], a dynamic community-assembly

model for faunal ‘development’ that has recently received

renewed support [11,12]. The taxon cycle proposes that

taxa with certain phenotypes or ecological strategies, often

termed ‘generalist’, are predisposed to disperse and colonize

new habitats (early stage). These taxa are often associated

with peripheral habitats such as small islands, or disturbed

and coastal forests. Subsequent to colonization, these lineages

tend to specialize ecologically, resulting in range fracture and

contraction into more interior habitats (late stage), with many

lineages ultimately going extinct, leaving a pattern of geo-

graphically disjunct, old lineages [10]. The key driver of this

process is hypothesized to be biotic interactions with an

ongoing influx of new immigrants into coastal peripheral

habitats that push earlier colonists inwards and continually

reset the cycle [10]. Some recent studies have supported the

taxon cycle in more isolated island systems [11,12]. However,

others have identified surprisingly deep divergences in wide-

spread insular lineages from disturbed habitats [13,14]. The

latter observations suggest that peripheral habitats have the

potential to be important zones for not just colonization,

but also persistence and diversification, however this idea

remains little tested.

In the tropical West Pacific, the islands spanning Walla-

cea, the Philippines, and Melanesia have the most complex

biogeographic history of any insular region in the world

[15]. Bordered to the west by Wallace’s Line (or the eastern

edge of the Sunda Shelf ) and to the south by the northern

edge of the Australian Plate, this region has played a promi-

nent and ongoing role in the generation and testing of

evolutionary theory, including the taxon cycle [7,8,10]. His-

torical geological reconstructions indicate a near-continuous

chain of island arcs in the Oligocene [15], which subsequently

fractured and was incorporated into present-day landforms

extending from the Philippines to Fiji (sometimes termed

the Vitiaz Arc) [16,17]. These arcs have been linked to

increased rates of floral and faunal dispersal between Austra-

lia and Asia [18–20] and biotic distributions spanning from

the Philippines to Melanesia [17,19,20]. However, while

there are exceptions [17], in many recent molecular phyloge-

netic analyses a role for island arcs in generating endemic

terrestrial biological diversity has been overlooked [21], not

supported [22] or contested [18].

Here we provide new, robust statistical evidence that a

radiation of small, often secretive and rarely observed lizards

[23,24] of the genus Lepidodactylus and allied genera originally

colonized early island arcs of the West Pacific in the Oligocene

before going through a period of extensive diversification

and localized persistence. A synthesis of distributional and

phylogenetic data for this newly characterized radiation

shows no prevailing pattern that interior habitats are home

to more phylogenetically divergent lineages, which contrasts

with predictions of the taxon cycle. However, on or near con-

tinental margins there is strong evidence of a non-random

distribution, with taxa concentrated away from lowland rain-

forest into open, coastal or montane habitats (here grouped

together into the catchall ‘marginal’) that are likely to be

less species rich for lizards. Taken together, these data suggest

that relatively species-poor ‘marginal’ habitats and island arcs

in the geologically dynamic western Pacific may have played

an important, often overlooked role in the persistence and

generation of regional diversity since the mid-Cenozoic.
2. Material and methods
(a) Sampling and sequence data
Through extensive fieldwork across the Philippines and Melane-

sia over two decades we were able to obtain tissue samples

(mainly liver) of 21 of 33 recognized species of Lepidodactylus
(including two subspecies of L. herrei), plus an additional 22

candidate species (determined by mitochondrial sequence

divergences �10% and/or morphological differentiation). Total

ingroup sampling includes 206 specimens (electronic supplemen-

tary material, figure S1 and table S1), including closely related

taxa in the genera Luperosaurus (n ¼ five taxa) and Pseudogekko
(n ¼ seven taxa) [23,25]. In combined mitochondrial- and

nuclear-data alignments, outgroup samples from the most

closely related genera Gekko and Ptychozoon (electronic sup-

plementary material, table S1) were included from recent

studies [23,25,26]. The full alignment consisted of 2,481 base

pairs (bp) of sequence data comprised of the mitochondrial

NADH dehydrogenase subunit 2 (ND2:1041 bp) gene and the

nuclear loci phosducin (PDC: 395 bp) and recombination-activating

gene 1 (RAG-1:1035 bp) generated using primers and protocols

outlined elsewhere [26,27]. Sequence data were aligned using

the MUSCLE algorithm [28] and subsequently checked by eye.
(b) Phylogenetic analyses
We estimated phylogenetic relationships using Bayesian and

maximum likelihood (ML) approaches as implemented

in BEAST v. 1.8.2 [29] and RAXML-VI-HPC v. 8.2.10 [30], respect-

ively. Topologies and support values from three different subsets

of the data (mitochondrial, nuclear, and mitochondrial þ
nuclear) were compared across analyses. We used partitioning

schemes as suggested by PARTITIONFINDER2 [31]: nuclear first

and second positions; nuclear thirds; mitochondrial firsts, mito-

chondrial seconds and mitochondrial thirds. We employed the

GTR-CAT model in RAXML [30], and used the GTRþG and

HKYþG models for mitochondrial and nuclear partitions,

respectively, in Bayesian analyses. Bayesian analyses were run

for 50 million generations, with confirmation of run stationarity

and effective samples sizes above 200 (using TRACER v. 1.6 [32]).

The first 20% of each chain was discarded as burn-in. All phylo-

genetic analyses were run in the CIPRES gateway (http://www.

phylo.org/).
(c) Bayesian dating
Bayesian dating analyses were performed in BEAST v. 1.8.2 [33].

For initial estimation of the crown-radiation age of Lepidodactylus
and two genera nested within this clade (hereafter Lepidodactylus
sensu lato [s.l.]; see results) we used alignments for nuclear genes

only and excluded mitochondrial data to reduce the probability

of this rapidly saturating gene inflating date estimates [34].

First, we estimated basal-divergence ages in Lepidodactylus s.l.
using a published dataset comprising five nuclear genes and

including almost all recognized gecko genera and key examplars

spanning the diversity of Lepidodactylus s.l. [35]. Partitioning

strategies, model choices, four fossil calibrations and one root

age prior were taken from the source study [35] (electronic

supplementary material, tables S2 and S3). Other younger

fossil and biogeographic calibrations used in the source study

have been shown to be of questionable reliability inasmuch as

dating constraints were not used [36,37]. Subsequently, to

better understand basal-age estimates within Lepidodactylus s.l.,
we focused on a nuclear-gene alignment that included fewer

genes (PDC þ RAG1), the same calibrations (electronic sup-

plementary material, table S3), but more taxa from within the

Lepidodactylus clade.
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To generate a lineage-complete phylogeny for down-

stream biogeographic analyses we used a concatenated dataset

(ND2 þ PDC þ RAG1) that included a single exemplar of all

species/candidate species. We ran analyses with, and without,

third positions from the mitochondrial data alignment to assess

age inflation from saturated sites [34]. Basal ages for crown

Lepidodactylus and its sister lineage Gekko were constrained secon-

darily using the most conservative (youngest) crown-age priors

(mean and 95% HPD) derived from analyses of the dataset

comprising five nuclear genes (electronic supplementary

material, table S3). We ran all four possible combinations of the

strict and uncorrelated lognormal clock models and Yule and

Birth–Death models. Results were identical across combinations

(electronic supplementary material, table S3), and we only report

results with the highest marginal likelihoods.

(d) Geographical-range evolution
To estimate whether ancestral biogeographic ranges for taxa in

both Lepidodactylus s.l. and its sister clade (Gekko þ Ptychozoon)

were on island arcs or continents we used BIOGEOBEARS

v. 0.2.1 [38,39] and BEAST v. 1.8.2 [33]. We evaluated the fit of

three alternative models implemented in BIOGEOBEARS (DEC,

DIVALIKE and BAYAREALIKE) with and without the jump (J)

parameter, and we selected best models using maximum-

likelihood model comparisons (AIC; electronic supplementary

material, table S4). These analyses were implemented on a line-

age-complete maximum-credibility tree obtained from BEAST.

To assess whether topological uncertainty at the base of the

tree confounded geographical-range estimation we also ran

additional analyses in BEAST, including areas as unordered

states with a simple stochastic model of equal probability of all

transitions and otherwise using parameters and settings identical

to the dating analyses above.

We coded regions according to their underlying geology

(three states): (i) continental, including the Sunda Shelf and the

central and southern portions of New Guinea; (ii) island arcs,

including the Philippines, northern New Guinea, eastern Mela-

nesia; and finally (iii) oceanic islands, meaning small islands

(less than 1000 km2) with no history of connection to any

larger landmasses (Christmas Island, Micronesia and French

Polynesia). Several lineages were of potentially ambiguous place-

ment under this scheme, and we dealt with them as follows:

portions of the western Philippines (Palawan, Zamboanga Penin-

sula of Mindanao) are of continental origins and defined as

crustal fragments that have rifted to their current locations [40],

so we ran separate analyses coding taxa endemic to these areas

as either continental or island arcs; New Guinea likewise is a

conglomerate of continental and island-arc fragments, so we

assigned geological codes based on where the majority of taxa

in each major lineage occur [41]; finally, the East Papuan Compo-

site Terrane (EPCT) of eastern New Guinea may not be derived

from island arcs but is also not continental [41], so we again

ran separate analyses to explore the impact that alternative

coding schemes might have on ancestral-state estimation.

(e) Evolutionary shifts in habitat types
The taxon cycle predicts an ongoing transition of lineages from

marginal to interior habitats. To understand patterns and evol-

utionary shifts of Lepidodactylus habitat usage in the context of

the taxon cycle we undertook three sets of analyses. First, we

simultaneously estimated the evolution of habitat type (at collec-

tion localities) and the phylogeny using BEAST. Second, we

tested the prediction that rainforest and montane habitats

should contain more deeply divergent lineages than do coastal

and open habitats (here equating deeply divergent lineages

with relictual/specialized under the taxon cycle). Third, our

newly synthesized distributional data suggested that continental
Lepidodactylus were non-randomly distributed away from low-

land rainforests and their rich biotic communities (electronic

supplementary material, table S5), so we tested if the number

of taxa occurring in different habitat types in regions with differ-

ent geological underpinnings (island arcs versus continental)

departed from predictions of a null model.

For initial ancestral-state estimation, we used four ecological

states: (i) lowland rainforest, (ii) coastal forest, including entire

islands less than 200 km2, (iii) montane forest, and (iv) open
habitats, such as beaches, disturbed anthropogenic landscapes,

savannahs and swamp forests (electronic supplementary

material, table S5). Taxa occurring across multiple habitats

were coded as occupying each. Second, because our ancestral-

state analyses suggested continental Lepidodactylus were

non-randomly distributed away from lowland rainforests, we

also undertook a subsequent two-state estimation contrasting

lowland rainforest versus a combination of the other three habitat

states. We did not code outgroups for ecology, and we estima-

ted ancestral states as per geological regions (see above)

using BEAST.

To test the critical taxon cycle assumption of shifts between

habitat types, we focused on the prediction that interior habitats

would be dominated by older lineages than would peripheral

(coastal and open) habitats. We coded primary lowland rainfor-

est and montane habitats as interior and all other habitats—such

as coastal habitats, strand forests, disturbed or open habitats

including towns, gardens, savannahs, swamp forests—as periph-
eral. We extracted tip branch lengths for all taxa (using functions

in the R package ape [42]) and then tested if interior taxa were

statistically associated with longer terminal branches, both

across the entire phylogeny and within three relatively diverse

and geographically cohesive regions (Philippines, New Guinea,

Pacific Islands þ eastern Melanesia).

To test if continental taxa are non-randomly distributed away

from lowland rainforest, we coded lowland rainforest as core and

all other habitats as marginal. We grouped taxa according to

Geology (see above: continental, island arcs and oceanic), with

the EPCT alternately coded as ‘continental’ or ‘island arc’ in

separate runs. We excluded oceanic island taxa, as they all

occur on small islands where, under our definition, core lowland

rainforest habitats are unavailable. We then generated null distri-

butions for expected numbers of marginal taxa occurring in the

two focal geological categories. First, we estimated the rate of

transitions between habitats (q) on a trimmed topology (no

oceanic taxa) with GEIGER [43], using both equal-rate (ER) and

all-rates-different (ARD) functions in separate analyses. The

equal-rate function had the best AICc value (67.256 versus

69.417) and was used to conduct 1000 simulations (function

simchar in [41]) of evolutionary shifts in habitat type, with the

root set to marginal, on the assumption that the earliest colonists

of an island arc must have dispersed through coastal marginal

habitats. From these simulations we obtained distributions

for the expected number of marginal taxa in each of the two

geological categories.
3. Results
(a) Phylogenetic analyses
All phylogenetic analyses (Bayesian and ML) identify a well-

supported clade (hereafter Lepidodactylus s.l.) composed of 12

major lineages, including all sampled Lepidodactylus (nine

deeply divergent and geographically cohesive lineages),

Luperosaurus (in part, two lineages) and Pseudogekko (one line-

age) (figure 1; electronic supplementary material, figure S1).

A sister-taxon relationship between Lepidodactylus s.l. and a

clade centred to the west of Wallace’s Line, comprising
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the genera Gekko, Ptychozoon and one lineage of ‘Luperosaurus’

from Sulawesi (generally referred to as the Gekko group), is

strongly supported. Deeper relationships among the 12

major lineages of Lepidodactylus s.l. are generally not well

supported (figure 1; electronic supplementary material,

figure S1). Only three lineage pairs receive high support

(posterior probability (pp) . 0.95); the L. manni group (Fiji/

Tonga) þ L. flaviocularis (Solomons), true Luperosaurus
(Philippines) þ L. guppyi group (East Melanesia), and the

L. orientalis group (New Guinea, EPCT) þ the L. pumilus
group (central New Guinea) (figure 1). A further pairing of

Lepidodactylus listeri (Christmas Island) and the L. lugubris
group (widespread) receives support in analyses of

nuclear data.

(b) Bayesian dating
Fossil-calibrated divergence-date estimation using nuclear

genes recovers an initial mid-Cenozoic (mean 34.7 Ma, 95%

HPD 23.3–44.4 Ma) radiation of Lepidodactylus s.l., preceded

by divergence from a primarily Asian sister lineage (51.9,

41.1–62.6) (see table 1 and electronic supplementary material,

table S3 for full details of age ranges). Analyses of the

five-nuclear-gene dataset estimate the age of radiation for

Lepidodactylus s.l. as older than co-occurring gekkonid

clades, including Cyrtodactylus (22.3, 14.9–29.7), Gehyra
(30.6, 21.3–40.6) and Nactus (15.6, 7.8–24.4) (electronic sup-

plementary material, figure S2).

Analyses of both nuclear-only and nuclear þmitochon-

drial datasets infer all major lineages of Lepidodactylus s.l.
to have diverged before the start of the Miocene (23 Ma;

figures 1 and 2; electronic supplementary material, figure

S3). Mean estimates of crown divergences within two Philip-

pines-centred lineages (Pseudogekko, the L. lugubris group)

and one New Guinean lineage (L. pumilis group) both cluster

around the early Miocene (16–28 Ma), further indicating long

histories of diversification within offshore island arcs

(figure 1).

(c) Geographical-range evolution
The distribution of major lineages in Lepidodactylus s.l. is con-

spicuously centred on island arcs or former island arcs that

have accreted to continents: the Philippines (four lineages

total), northern New Guinea (two lineages) and eastern

Melanesia (three lineages; figure 1). One additional lineage

occurs across a geological composite of arc and continental

geology in central New Guinea. The two remaining major

lineages have restricted distributions: Christmas Island in

the Indian Ocean and lower-montane areas of Mt. Kinabalu,

Borneo. The latter is thus far the only lineage with mid-

Cenozoic origins in this clade that is also endemic to the

Sunda Shelf.

Geographical analyses using model-choice-based ML

(figures 1 and 2; electronic supplementary material, figure

S4) and Bayesian methods strongly infer island arcs as the

ancestral geographical range for Lepidodactylus s.l. Three

shifts from island arcs (the Philippines, northern New

Guinea, and East Melanesia) to more isolated oceanic islands

are inferred, as are three shifts from island arcs to continental

areas, including central New Guinea (figure 1). Within these

island arcs, an early Miocene (see below) dispersal event

between the Philippines and eastern Melanesia receives

strong support. In contrast, among the sister lineage of
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Lepidodactylus s.l. (Gekko, Ptychozoon), most initial diversifica-

tion is continental, with more recent and limited colonization

of island arcs in the West Pacific (electronic supplementary

material, figure S4).

(d) Evolutionary shifts in habitat types
Lowland rainforest is the most commonly observed of the four

habitat states (figure 1). However, few continental taxa occur

in lowland rainforest: Depending on whether the EPCT was

or was not coded as island arc the number was respectively

2 out of 15 or 0 out of 7. Instead, lowland rainforest taxa are

concentrated in island arcs, primarily in the Philippines and,

to a lesser extent, along northern New Guinea: (EPCT coded

as island arc, 21 out of 42 taxa; EPCT coded as continental,

17 out 36 taxa). Ancestral habitat estimation using four habitat

types infers Lepidodactylus s.l. as having a lowland rainforest

ancestral state (figure 1). Additional ancestral-habitat esti-

mation based on two ecological states (lowland rainforest

versus all other habitats) supports habitats other than lowland
rainforest as ancestral for the entire radiation (electronic

supplementary material, figure S5).

There was no significant difference in lineage length

between interior (lowland rainforest and montane forest)

and non-interior taxa (all other habitat types) in New

Guinea and Philippine taxa (electronic supplementary

material, table S6); however, interior lineages were signifi-

cantly older in combined analyses of taxa from the eastern

Melanesian islands and the Pacific (although note small

number of taxa n ¼ 9).

The observed dearth of continental taxa from lowland

rainforest is outside the 95% confidence limits predicted

from our simulations of ecological state evolution, regardless

of whether the EPCT is considered island arc or continental

( p-values 0.03 and 0.01, respectively). Conversely, the distri-

bution of species across lowland rainforest and other

habitats on island arcs does not significantly differ from the

null model (electronic supplementary material, figure S6

and table S6).
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4. Discussion
(a) Can species-poor ‘marginal’ habitats facilitate

persistence and diversification?
In the original formulation of the taxon cycle, coastal and dis-

turbed peripheral habitats were hypothesized to play a key

role in facilitating ongoing colonization, followed by evol-

utionary shifts into more interior habitats such as lowland

and montane forests [10]. Recent work has provided support-

ing evidence of ecological displacement of older lineages into

interior habitats in small island biotas, as predicted by the

taxon cycle [11,12]. Here, however, our strongest result is

an absence of Lepidodactylus s.l. species inhabiting lowland

rainforest on continental plates. Instead, continental taxa

have disjunct distributions across montane forest and open

or disturbed habitats (beaches, swamp forests or mangroves).

Strikingly, some montane lineages are older than current esti-

mates for the uplift of the mountains on which they occur,

especially in New Guinea [41]. Ecological displacement

away from lowland-forest environments having diverse squa-

mate communities [44] is one possible explanation for the

outwardly disjunct ecological distributions of these divergent

continental taxa. Thus, this pattern is potentially consistent

with the underlying biotic displacement processes, but not

the geographical context, of the traditional taxon cycle

model [10,11]; to wit, it is occurring on the peripheries of

continents instead of on islands.

We also found little evidence that older lineages were

concentrated in lowland rainforest and montane habitats on

insular landmasses. Across Lepidodactylus s.l. nearly half of

the species, including phylogenetically ancient taxa, occur in

habitats that can be regarded as peripheral under Taxon

Cycle models (especially savannahs, swamps and coastal

forest, which are predicted to hold fewer deeply divergent

lineages). Several other unrelated lizard groups of the West

Pacific are also rare or marginalized in continental systems

yet are abundant in disturbed or peripheral habitats on

islands and show substantial phylogenetic divergences despite

clearly having been capable of overseas dispersal [13,45]. One

important caveat here is that in Lepidodactylus from islands of

eastern Melanesia and the Pacific (the region from which the

taxon cycle was originally formulated), there is some evidence

that interior lineages are more deeply divergent. More

sampling is required to investigate patterns in this area more

carefully. Broadly, however it would appear that while periph-

eral habitats certainly play an important role in community

assembly and colonization, they may also allow colonizing

lineages to persist and even diversify without becoming

restricted to interior habitats. One potential explanation of

this may be that in geologically complex insular systems

newly forming and often species-poor habitats may be the

only continuously and reliably accessible habitats. Alter-

natively, in groups that disperse rarely, new colonists may

simply be too infrequent to drive a taxon cycle.
(b) Life of the lost arcs
Geological models indicate that fragments of present-day

landmasses extending from the Philippines, across much of

Melanesia, and as far east as Fiji formed a near continuous

chain in the late Eocene (approximately 35 Ma) (figure 2)

[15], but they do not provide clear evidence as to whether
the key landforms were subaerial or submarine. Our late

Eocene estimates of initial diversification ages in Lepidodacty-
lus s.l. provide the first dated phylogenetic corroboration of

these geological models and support earlier, often over-

looked inferences that West Pacific’s island arcs have been

generating biodiversity since at least the Oligocene [6,20].

Indeed, many of the lineages we identified are old enough

that persistence and transfer across the West Pacific on geolo-

gic fragments of a formerly more continuous arc [15] seems a

likely explanation for extant distributional patterns spanning

from the Philippines to New Guinea. This is not to say that

overseas dispersal, with subsequent speciation on isolated

islands, has not occurred, as it clearly has in both Lepidodacty-
lus (oceanic islands such Christmas Island, French Polynesia,

Micronesia) and other overlapping lizard lineages [46]. How-

ever, in the Philippines, four ancient lineages of Lepidodactylus
s.l. with disparate phenotypes and ecological attributes co-

occur [7]. Likewise, in New Guinea and Eastern Melanesia

endemic lineages widely pre-date estimates for the current

configuration (or even existence) of key landmasses such as

New Guinea [15,41]. These patterns suggest palaeotransport

and accretion of formerly isolated arc fragments with asso-

ciated biotas. They also support phylogenetic studies

suggesting that elements of the highly diverse and endemic

New Guinean biota have Miocene (or earlier) island arc

origins [47], while standing in stark contrast with recent

phylogenetic studies that have either not supported [22] or

have contested this idea [18].

The antiquity of Lepidodactylus s.l. further underlines the

potential long-term role island arcs may have played in shap-

ing dispersal and diversification across Asia and Australia.

Indeed, the evolutionary diversity of Lepidodactylus s.l. is of

comparable (or older) age to most of Australia’s diverse

continental vertebrate radiations [17,18,48,49]. In contrast,

lineages from the more intensively studied Wallacean region

[21] appear to be relatively recently derived. The importance

of island arcs in Asian-Australian biogeography may have

been frequently overlooked in part because recent dated bio-

geographic studies have often focused on vertebrates that

may not preserve signatures of early island-arc diversification

(i.e. they may disperse either too readily [18], or too poorly

[50]). However, while island arcs will certainly not explain

diversity patterns in all groups, further work on historical dis-

persal and diversification across the West Pacific should more

explicitly incorporate island arcs as both a potential zone of

long-term persistence and a source of diversity for nearby

areas such as the Australian continental plate [51].
5. Conclusion
Our results are consistent with a role for biotic interactions (as

predicted by the taxon cycle) in shaping distributions, but

they suggest resultant patterns may be highly contextual

across taxa of varying dispersal ability, and island systems

of varying size, complexity and proximity to continents. Fur-

thermore, in geologically complex and dynamic settings such

as island arcs the ongoing formation of marginal, ephemeral

and relatively species-poor habitats may not only mediate

dispersal, but also play a role in long-term persistence and

evolutionary diversification. Finally, our results also indicate

that diversification, persistence and accretion on formerly iso-

lated Oligo-Miocene islands with their associated endemic
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biotas may be an important mechanism underpinning

regional diversity not just in Wallacea [52], but across the

West Pacific and Australasia [20,51].
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