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Understanding how human activities influence immune response to environ-

mental stressors can support biodiversity conservation across increasingly

urbanizing landscapes. We studied a bobcat (Lynx rufus) population in

urban southern California that experienced a rapid population decline from

2002–2005 due to notoedric mange. Because anticoagulant rodenticide (AR)

exposure was an underlying complication in mange deaths, we aimed to

understand sublethal contributions of urbanization and ARs on 65 biochemi-

cal markers of immune and organ function. Variance in immunological

variables was primarily associated with AR exposure and secondarily with

urbanization. Use of urban habitat and AR exposure has pervasive, complex

and predictable effects on biochemical markers of immune and organ function

in free-ranging bobcats that include impacts on neutrophil, lymphocyte

and cytokine populations, total bilirubin and phosphorus. We find evidence

of both inflammatory response and immune suppression associated with

urban land use and rat poison exposure that could influence susceptibility

to opportunistic infections. Consequently, AR exposure may influence

mortality and has population-level effects, as previous work in the focal

population has revealed substantial mortality caused by mange infection.

The secondary effects of anticoagulant exposure may be a worldwide,

largely unrecognized problem affecting a variety of vertebrate species in

human-dominated environments.
1. Introduction
Urbanization presents natural populations with evolutionarily novel stressors

[1–4]. Although toxicant use is an inevitable consequence of urbanization,

their impacts are often cryptic and may be more widespread than we realize.

Toxicants directly kill wildlife [5–7] and cause population declines worldwide

[8,9]. Yet their sublethal effects, which can include impaired immune compe-

tence [10,11] and increased disease susceptibility [3,12], are difficult to study

in natural populations and are thus poorly understood [7].

Secondary toxicant exposure, when toxicants are transmitted among

species, is common [7]. One example is when exposed rodents transfer
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for individuals for which health parameter data were available.
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anticoagulant rodenticides (ARs) to their predators. Globally,

non-target wildlife exhibits widespread secondary exposure

to ARs [5,13–16]. In some populations, more than 80% of

individuals test positive for ARs [5,13–17], pointing to the

potential for ecosystem-wide effects. This secondary expo-

sure can be directly lethal to some mammalian and avian

predators [5,13–17], including endangered species [14,16].

As vitamin K antagonists, ARs are intended to disrupt

coagulation and cause fatal haemorrhage [16]. The sensitivity

of species to the vitamin K antagonistic effects can vary by

orders of magnitude [18] and some species may tolerate

long-term sublethal exposure. Yet, understanding the poten-

tial health effects of long-term sublethal exposure has been

difficult, because doing so requires (i) long-term monitoring,

(ii) methods to measure exposure, (iii) ability to sample both

exposed and unexposed animals while they are alive and

measure appropriate health biomarkers, and (iv) information

to control for potential confounding variables such as age, sex

or sampling conditions.

We assess the sublethal health effects of exposure to ARs

in an urban bobcat (Lynx rufus) population that precipitou-

sly declined due to mange caused by the mite Notoedres cati
(hereafter termed ‘mange’). Although previously reported

only in isolated cases in wild felids, mange was the greatest

source of mortality for urban bobcats at Santa Monica Moun-

tains National Recreation Area (SMMNRA), a national park

in southern California, during 2002–2005 [17]. After mange

was detected in 2001, average annual survival plummeted by

49%. In 2003, 51% of radio-collared animals died of mange

and transect surveys showed a 90% decline in urban bobcat

scats post-epizootic [17]. The epizootic caused a significant

genetic bottleneck [4]. Necropsies of mange-infected bobcats

showed 98% of individuals exposed to ARs, and to signifi-

cantly greater amounts than bobcats that did not die with

mange [17,19,20]. Severe mange in wildlife and domestic ani-

mals is often associated with decreased immune competence
[21]. Carnivore exposure to toxicants other than ARs (including

heavy metals) has rarely been documented in our study area

or more broadly across the State of California (S. P. D. Riley

2017, unpublished data; S. McMillin 2017, unpublished data;

R. Poppenga 2017, personal communication). Therefore, we

hypothesized that urbanization exposes bobcats to novel

immunotoxic effects, mediated principally by ARs that are

widely used in nearby urban areas [19].

Here, we test for effects of AR exposure and proximity to

urbanization on 65 measures of immune and organ function in

a population of wild bobcats that has been the subject of long-

term study. We used a battery of health assays to accomplish

three objectives: (i) to identify individual markers of potential

immune impairment or organ cellular damage that correlate

with AR exposure or urban proximity (controlling for potential

confounding variables in a linear model framework), (ii) to test

whether there is a system-wide predictable relationship bet-

ween ARs and health parameters such that immune and organ

function parameters themselves can be used to indicate AR

exposure (using a random forests classifier approach), and

(iii) to propose a mechanism by which life at the urban edge

could influence mange susceptibility in bobcats. Using this

multifaceted approach, we provide new understanding of the

cryptic threat toxicants pose at the urban–wildland interface.
2. Material and methods
See electronic supplementary material S1 for detailed methods.

(a) Study area and sample collection
Bobcats (n ¼ 124) were sampled in and around SMMNRA (figure 1)

in southern California during 2007–2012 as previously described

[4,17,19,20]. Sampling occurred within fragmented natural habitat

interspersed within urban areas (THOU, HLWD), fragmented natu-

ral habitat within a predominantly agricultural area (MOOR) and



Table 1. Sample sizes and information for use of the samples in varied tests.

data parameter test (sample type) n

anticoagulants residue analysis for exposure (whole blood and serum) 99

PIVKA clotting time ( plasma) 50

prothrombin clotting time (whole blood) 24

health parameters general (whole blood and serum) 124

immunophenotype (lymphocytes in whole blood profiled by flow cytometry) 64

cytokine concentrations (serum) 93

complete blood counts (whole blood) 118

blood chemistries (serum) 116

B cell clonality immunofixation (serum) 6

PARR (whole blood) 7

pathogen infection or exposure exposure/infection (whole blood and serum) 93

land use percentage urban area (buffer zones) 118
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unfragmented natural areas (protected state and national park

lands; MUGU, MCSP). Bobcats were sexed, measured and classified

as juveniles or adults [19]. Blood samples were collected in EDTA,

serum separating and sodium citrate tubes via jugular, cephalic or

saphenous venipuncture.
(b) Immune and organ measures
We measured a total of 71 blood cell properties (table 1). We used

whole blood to measure complete blood counts (CBC; n ¼ 118)

and serum for serum chemistry (n ¼ 116) as described in [20]. At

the UCLA Center for AIDS Research (CFAR) ImmunoBioSpot

Core we used serum to measure circulating cytokine levels (n ¼
93), using the 19 cytokine Feline Cytokine Panel (EMD Millipore,

Billerica, MA). We isolated peripheral blood mononuclear cells

for immunophenotyping and analysed the samples (n ¼ 64) in

the UCLA CFAR Flow Cytometry Core. We measured the absolute

number and proportion of total T lymphocytes, helper and cyto-

toxic T lymphocytes, activated helper and cytotoxic T

lymphocytes, natural killer cells, monocytes/macrophages, total

B and CD5þ B lymphocytes and CD4þ CD8 þ lymphocytes (elec-

tronic supplementary material, table S1). We removed health

parameters with more than one-third of missing data from the data-

set, leaving us with 65 measures of immune or organ function

(hereafter ‘health parameters’; electronic supplementary material,

tables S2–S5). For reference comparison, we accessed CBC and

serum chemistry values for captive bobcats using the International

Species Information System (ISIS; 2011, Apple Valley, Minnesota

55124–8151, USA). Reference values for cytokines and immuno-

phenotypes are not available because to our knowledge, we are

the first to generate data on bobcat immune parameters.
(c) Pathogen surveys, anticoagulant rodenticide
screening and land use

The presence of AR residues for warfarin, coumachlor, bromadio-

lone, brodifacoum, diphacinone, chlorophacinone and difethialone

was assessed in whole blood or serum (n ¼ 99) at the Center for

Animal Health and Food Safety (CAHFS) as described in [19].

We assessed clotting times using two measures: prothrombin

times (PT) [22] and the more sensitive proteins induced in vitamin

K absence (PIVKA) [23]. We measured PT (n ¼ 24) using the Coag

DX machine according to the manufacturer’s instructions (IDEXX,

Irvine, CA). PIVKAs were assessed at CAHFS using plasma

samples frozen in liquid nitrogen as described in [23].
In addition to testing the effects of AR exposure on our dataset

of health measures, we also tested the potential effects of urban land

use. We previously documented that testing blood only indicates

recent AR exposure events, thus leading to frequent false negatives

(approximately 62% of the time; see [19] for more detail) respective

to an individual’s history of exposure. Urbanization, therefore, is

arguably a more sensitive measure of AR exposure than AR levels

in the tissues we are able to sample (i.e. peripheral tissues such as

blood) [19], but it can also reflect potential exposure to other toxi-

cants from urban environments. To quantify ‘urbanization’ or

‘land use’ for each individual, we used a standardized metric pre-

viously described in [19]. We calculated the proportion of natural

and developed area within a radius (buffer zone) approximating

one home range (females 2.3 km2; males 5.2 km2) around each

individual’s capture location (n ¼ 118).

We tested individuals (n ¼ 93) for exposure (i.e. seropositivity)

to the bacterial pathogen bartonella (Bartonella spp.), the protozoan

Toxoplasma gondii, and the viral pathogens feline immuno-

deficiency virus, puma lentivirus, feline calicivirus and feline

herpesvirus. We also tested for infection with bacterial pathogens

Mycoplasma haemofelis, M. haemominutum, Bartonella henselae and

B. clarridgeaie. All testing was done at the Center for Companion

Animals Studies or in the Feline Retrovirus Research Laboratory

at Colorado State University as described in [24]. All individuals

were inspected for signs of clinical mange as described in [17,20].

Four bobcats were captured with clinical signs of mild-to-severe

mange. We excluded these individuals from further analy-

ses because our goal was to isolate the effects of ARs, without

introducing the noise from immune response to mange.
(d) Statistical analyses
(i) Identifying individual immune measures associated with AR

exposure or land use
Our primary goal was to identify individual immune or organ

function parameters associated with AR exposure or land use.

However, because demography (age class and sex), season of

sample collection and disease exposure or infection status may

also have strong effects on immunity, we first used principal com-

ponents analysis (PCA) to determine which of these parameters

explained significant variance in our dataset. To do so, we first

imputed missing values in our dataset of 65 health measures

(using a k-nearest-neighbours algorithm from the impute package

[25]; n ¼ 75 individuals), and used a Spearman’s rank correlation

to test for a relationship between each potential covariate and the
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top 20 principal components (PCs). We identified three covari-

ates—age class, M. haemominutum infection and Bartonella sp.

exposure—that explained significant variance in the overall data-

set (i.e. that correlated with one or more of the top 20 PCs at a

20% false discovery rate (FDR) threshold [26,27]). We controlled

for these three parameters in all downstream analyses.

Next, we used linear models to test for a relationship between

each of the 65 health parameters and AR exposure or urban land

use, controlling for age class, M. haemominutum infection and Bar-
tonella sp. infection. Each variable was normalized via z-score

transformation prior to linear modelling using the ‘scale’ function

in R. While AR exposure is the primary predictor of interest, we

included urban land use in each of our linear models to capture

the spectrum of health effects at the urban edge (see electronic sup-

plementary material, S1 results and table S6 for analyses that test

for effects of AR exposure and urban land use separately). For

each model, we extracted the p-value associated with the AR

exposure or urban land use effect and corrected for multiple

hypothesis testing using an FDR approach [27] implemented in

the R package ‘qvalue’ [26].
72533
(ii) Testing for systemic, predictable differences between AR-
exposed and unexposed individuals

We observed strong associations between AR exposure and

many individual health parameters. We next wanted to test if

these associations were system-wide and predictable, such that

the health parameters themselves could be used to indicate AR

exposure. To test this possibility, we used a random forests clas-

sifier (see [28–30] for information on random forests and their

application to ecological datasets). This algorithm proceeds by

randomly sampling a training set from the original data and a

test set comprised the remaining individuals. The training set

is used to grow a series of decision trees that accurately classify

individuals with respect to the variable of interest, and the test

set is used to test the predictive accuracy of the model. Further,

this framework can be used to estimate the importance of indi-

vidual variables by quantifying the mean decrease in accuracy

for a random forests classifier that does versus does not include

the focal variable. Importantly, for our purposes, a random forests

approach allowed us to evaluate the importance of all 65 health

parameters in one analysis simultaneously, using a method that

is well-suited to handle a range of statistical relationships among

predictor variables (e.g. correlation, interaction or context depen-

dency [28–30]). Thus, while linear models allowed us to test for

an association between each immune measure and AR exposure

independently, random forests provide a complementary perspec-

tive by accounting for the complex relationships among the health

parameters themselves.

To implement random forests, we first regressed out the effects

of major covariates—age class, M. haemominutum infection and Bar-
tonella sp. infection—from the filtered, imputed dataset of 65 health

measures (n ¼ 75 individuals; note that we again z-score normal-

ized each measure prior to linear modelling). We used these

residuals, combined initially with information on land use, to pre-

dict AR exposure, using the R package ‘randomForest’ [31] and

default parameter settings; note that we also used the R package

‘ROCR’ to evaluate model sensitivity/specificity as quantified by

area under the curve (AUC) [32]. To identify important variables,

we used the package ‘rfPermute’ to quantify the mean decrease

in accuracy associated with the removal of each predictor variable

[33]. We considered variables to be significant if they passed a

10% FDR threshold. We also repeated these analyses without

land use information in the model, and report those results in

electronic supplementary material, table S7 and figure S1.

Testing blood for AR residues leads to 62% false negatives

because blood measures only recent exposure [19]. We therefore

hypothesized that (i) some individuals with no detectable levels
of ARs in blood would be classified by the random forest as

AR-exposed, and (ii) these individuals represent a set of truly

AR-exposed individuals for whom the blood tests produced a

false negative. If true, we would expect individuals living in

more urbanized areas (where AR exposure is widespread) to fall

into the misclassified group (i.e. to have immune profiles that are

similar to known AR-exposed individuals, even though ARs

were not detected in blood). To test this possibility, we used a

Wilcoxon-signed rank test to ask whether individuals categorized

as AR-exposed by random forests (but unexposed based on blood

tests) had higher proportions of urbanization in their buffer zones

than individuals classified as unexposed by both blood tests and

random forests.

(iii) Hypergeometric assessment to assess overlap with model-
organism studies

Finally, we used a hypergeometric test to ask whether our findings

were in accordance with those from human or model-organism

laboratory studies [34–46]. Specifically, we asked whether the set

of immune measures we identified as (i) associated with AR

exposure in our linear model analyses or (ii) important for predict-

ing AR exposure in our random forests were significantly enriched

for immune measures previously associated with therapeutic

doses of anticoagulants. The list of immune measures previously

reported to be associated with the anticoagulants that we exam-

ined in this study is provided in electronic supplementary

material, table S8. All statistical analyses described here were

performed in R v. 3.2.3 [47].
3. Results
(a) Sampling and measures of immune and organ

function
Between 2007 and 2012, we collected samples from 124 appar-

ently healthy bobcats (table 1) across a 1264 km2 study area of

natural, urban and agricultural land (figure 1). We report

descriptive values for the 65 health parameters, sample

sizes and comparative reference ISIS values in electronic

supplementary material, tables S2–S5.

(b) AR exposure, land use and pathogens
Blood samples from 98 bobcats were available for anticoagu-

lant residue testing of which 38 were positive in blood,

indicating recent exposure [19]. Bobcats were exposed to 1–5

compounds (electronic supplementary material, table S9),

and for 32 individuals, we detected only diphacinone. The pro-

portion of urban land use (residential, agricultural or

developed open space areas) near each individual’s habitat

ranged between 0% and 92% (mean ¼ 28.13%, s.d.¼ 25.04%,

median ¼ 23.96%; n ¼ 118). AR exposure detected in blood

was significantly positively associated with urban proximity

(b ¼ 1.57, p , 0.001), but not individual age or sex.

We tested 93 individuals for exposure to or infection with

nine common feline pathogens. Prevalences were generally

low (less than 25%; electronic supplementary material, table

S10), with the exceptions of M. haemominutum (55%) and

Bartonella henselae (65%). No pathogen was associated with

urban proximity.

(c) AR exposure rarely affects clotting factors
Neither PT (t¼ 20.51; p¼ 0.307) nor PIVKA clotting times

(t¼ 20.76; p¼ 0.227) differed significantly between
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AR-exposed or unexposed bobcats (electronic supplementary

material, table S11), suggesting that bobcats are tolerant to

vitamin K antagonistic effects of ARs at levels to which they

were exposed.

(d) Analyses of individual variables reveal immune
perturbations associated with urbanization and ARs

Linear models indicated associations between both AR

exposure and urban proximity and multiple parameters reflec-

tive of immune and organ function (table 2; electronic

supplementary material, table S6 and figure S1). Cell signalling

proteins keratinocyte-derived chemokines (KC; b ¼ 21.1; p ¼
0.029) were negatively associated with urbanization suggesting

that as urban land use increases, there is a decrease in KC cyto-

kines that mobilize granulocytic white blood cells (e.g.

neutrophils) key to nonspecific immune responses. Although

the association with AR exposure and KC was not signifi-

cant, KC expression was 50% lower in AR-exposed bobcats

(electronic supplementary material, table S5). By contrast,

stem-cell factor (SCF; b ¼ 1.2; p ¼ 0.019) and interleukin (IL)-

12p40 (b ¼ 1.1; p ¼ 0.029) were elevated in bobcats captured

closer to the urban edge. Positive relationships with SCF and

IL-12 indicate potential heightened activity of cytokines linked

with the earliest stages of blood cell formation and development

and differentiation of T lymphocytes in urban areas [48].

On a cellular level (table 2; electronic supplementary

material , tables S2–S6 and figure S2), AR exposure and

urban land use were similarly linked with both immune stimu-

latory and suppressive effects. Lymphocyte (b ¼ 0.7; p ¼ 0.008),

basophil (b ¼ 0.7; p ¼ 0.004) and eosinophil (b ¼ 0.6; p ¼ 0.016)

counts were positively associated with AR exposure. In parti-

cular, lymphocyte counts were on average 44% greater in

AR-exposed bobcats, suggesting a link between AR exposure

and generalized inflammation [48]. The fraction of neutrophils,

relative to the distribution of other white blood cells, was

suppressed by 10% in AR-exposed bobcats ( p ¼ 0.004). While

mild suppression of neutrophils may not directly impede

an ability to mount immune responses, the suppression

may signal that larger autoimmune or cytokine-mediated

inflammatory processes of concern are present [49].

We used immunophenotyping to identify and quantify

specific lymphocyte populations central to the adaptive

immune response (electronic supplementary material, tables

S1, S4 and S6). CD4 þ CD8 þ T lymphocytes associated with

cell-mediated immunity to tumour and viral-infected cells

[48] decreased with urban land use (b ¼ 21.6; p ¼ 0.019).

Urbanization was also associated with greater B lymphocyte

activity (b ¼ 0.7; p ¼ 0.039), and was associated with AR

exposure in joint AR and urban models, albeit not significantly

(table 2); when we tested for association with AR exposure

alone, B cells were significantly associated with AR exposure

(electronic supplementary material, tables S4 and S6). Specifi-

cally, B cell counts were 48% higher in AR-exposed bobcats

(b ¼ 0.9; p ¼ 0.005) and B cell fractions were 36% higher (b ¼

0.7; p ¼ 0.025). B lymphocytes are the humoral adaptive

immune component that targets invading pathogens [48]. We

verified that B cells were polyclonal to rule out lymphocytic

leukaemia (see electronic supplementary material, S1 methods).

AR exposure and urban proximity were also associated

with anomalies in biochemical markers associated with

organ function (table 2; electronic supplementary material,

table S6 and figure S2). Creatinine, a protein indicator of
kidney function, was negatively associated with AR exposure

(b ¼ 20.5; p ¼ 0.049). The serum concentrations of the min-

erals calcium (b ¼ 0.8; p ¼ 0.028) and phosphorus (b ¼ 0.9;

p ¼ 0.007) were positively associated with urbanization.

Blood urea nitrogen (b ¼ 21.0; p ¼ 0.046), a marker of

kidney function, was negatively associated with urban land

use, whereas alkaline phosphatase, a marker of liver function,

was positively associated with urban land use (b ¼ 0.9; p ¼
0.015). The clinical implications of these associations are

unknown, but highlight that ARs and urbanization may have

system-wide physiological consequences for species that

persist at the urban–wildland edge.

(e) Urbanization and ARs have systemic, predictable
effects on health parameters

We used random forests to explore the cumulative, system-wide

relationship between AR exposure and health effects. Random

forests revealed that the differences between AR-exposed and

unexposed individuals were systemic and predictable such

that the parameters themselves can be used to predict an indi-

vidual’s exposure status (predictive accuracy¼ 67.3%, error

rate ¼ 32.7% and AUC ¼ 0.68, electronic supplementary

material, figure S2a–b; proportion of individuals correctly

classified as exposed and unexposed¼ 18/29 and 31/46).

The parameters important for predicting whether an animal

was exposed to ARs were linked with both immune and

organ function (figure 2a; electronic supplementary material,

tables S7 and S11). For example, the number of activated

helper T lymphocytes, the number and fraction of cytotoxic T

cells and the fraction of B cells significantly contributed to

model accuracy (figure 2a; electronic supplementary material,

tables S7 and S11). These findings were similar across

models that did not incorporate urban land use (electronic

supplementary material, tables S7 and S11).

We predicted that systemic health parameter changes may

be a better indicator of AR exposure than blood residue tests.

Our random forests predicted that 11 bobcats testing negative

for ARs in blood were actually AR-exposed; in support of the

idea that these individuals represent false negatives for AR

blood tests (and truly were exposed), these animals had

greater urban proximity compared with individuals classified

as unexposed to ARs by both random forest and blood tests

(Wilcoxon rank sum test, p ¼ 0.001; figure 2b).

( f ) Bobcat response to ARs mirrors model-organism
response to therapeutic anticoagulants

We tested whether our findings were in accordance with

those from human and model-organism laboratory studies

[34–39] (electronic supplementary material, table S8).

For example, concordant with published studies, we found

increased lymphocyte activity and a decrease in neutrophil

fractions associated with anticoagulants (figure 3). The overlap

we observe is more so than expected by chance ( p ¼ 0.005,

hypergeometric test).
4. Discussion
Carnivores in SMMNRA are widely and chronically exposed to

ARs [5,17,19,50], but the sublethal consequences of this exposure

were unknown. Here, we focused our analyses directly on the
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Figure 2. (a) Results of random forest analyses ranking variable importance scores for parameters key to predictive accuracy. All parameters are absolute counts
unless indicated as a percentage. (b) Boxplot comparing land use info for individuals correctly classified versus misclassified individuals.

monocytes

TNF-a
lymphocytes

eosinophils

phosphorus

total
bilirubin

clotting
time

neutrophils

IL-6

albumin

IL-12

KC

creatinine

basophils

CD8 + CD4 +
T lymp.

CD5–
B lymp.

activated
helper

T lymp.

cytotoxic
T lymp.

c h r o n i c A R e x p o s u r e

3 0
   

d a y s   w
 a r f a r i n

CD5+
B lymp.platelets

natural
killer cells

t h e r a p e u t i c w
a r f

a

r
i

n

Figure 3. A Venn diagram illustration of significant health parameters that overlap with published rodent and human laboratory studies, as well as the novel
parameters discovered in the bobcat population. See electronic supplementary material, table S8 for citations.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20172533

7

effects of ARs, while also incorporating the urban environmental

conditions. We found that exposure to urbanization and ARs is

associated with health parameter anomalies that range from

subtle responses (i.e. 10% decrease in neutrophil fractions) to
more pronounced associations with potential clinical impli-

cations (i.e. 50% elevated KC and lymphocytes). We posit that,

cumulatively, these health parameter changes may increase

bobcat vulnerability to environmental stressors such as
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opportunistic notoedric mange. Our findings reveal a complex

response to sublethal toxicosis, and underscore the harmful

toxic effects associated with urbanization for natural popu-

lations at the urban–wildland interface.

We focused on a free-ranging, non-model organism to

evaluate the immunotoxic effects of urbanization and ARs.

While the immunotoxic effects of ARs were our primary inter-

est, we also more broadly characterized the immunotoxic

effects of urban proximity for three reasons: (i) it is impossible

when studying free-ranging animals to control for every toxic

component of the urban edge; (ii) analyses that rely on AR

exposure in live-captured animals using blood vastly underes-

timate the true pervasiveness of AR exposure [19]; and (iii) we

previously found that exposure to different individual AR

compounds, the concentrations of compounds detected and

exposure to multiple compounds (an indicator of repeat

exposure events and thus likely chronic exposure) were

strongly correlated with the percentage developed area in

buffer zones [19]. Clotting times, the most frequent method

of AR detection in controlled veterinary settings (e.g. [22]),

were not prolonged in AR-exposed bobcats, confirming the dif-

ficulty of assessing AR exposure using conventional methods.

We therefore conclude that the use of both blood residues and

percentage urbanization more robustly evaluates the effects of

AR exposure and including of chronic exposure, the latter

being immeasurable without frequent sampling of the same

individuals. Further, our random forest analyses suggest that

the strength and characteristics of the physiological response

itself may be more informative for identifying individuals

who are truly AR-exposed in cases where blood tests fail to

detect ARs.

Bobcats, like domestic cats [18], seem tolerant to the vitamin

K antagonistic effects of ARs, as indicated by the normal clot-

ting times in AR-exposed bobcats. However, this tolerance

may lead to chronic sublethal exposure that influences other

physiological parameters. Our findings related to AR impacts

in free-ranging bobcats are remarkably consistent with other

published studies (figure 3). Humans and laboratory rodents

show simultaneous immunostimulatory and immunosuppres-

sive effects of anticoagulants, such as increased lymphocyte,

IL-12 and IL-6 activity, and decreased TNF-a and neutrophils.

We document similar immune responses, but also novel sys-

temic effects of AR exposure. These AR-induced changes

were in a wide-range of immune parameters associated with

responses to allergens (eosinophils and basophils), tumours

and viral infections (CD4 þ CD8 þ T lymphocytes), and novel

pathogens (helper T lymphocytes). Because the immune

response is energetically costly, and non-target immune acti-

vation may impair organismal function, fitness may be

reduced by regular immune stimulation [51–53]. Thus, under-

standing the role of ARs in regulating immunity is essential to

the conservation of wild populations.

Bobcats living on the urban edge where they are chronically

exposed to ARs may also experience persistent immune and

organ perturbations. Chronic activation of immune function

can lead to immune exhaustion, characterized by the dysfunc-

tion and depletion of immune cells [54,55]. This kind of

activation increases susceptibility to opportunistic infections,

accelerates disease progression, and even causes disease itself

[54–56]. In a hallmark example, the mechanism by which

human immunodeficiency virus infection causes acquired

immunodeficiency is chronic immune activation that depletes

helper T lymphocytes with time, and thus causes an erosion
of immune function [57]. Within our study system, the associ-

ation between AR exposure and immune discord may explain

the mechanism linking chronic AR exposure to susceptibility to

notoedric mange, which has precipitated regional declines in

bobcat populations and decimated our focal population

[17,20]. Similar cascading effects could occur in other species

where ARs cause sublethal effects.

Given the observed immune system effects, the dearth of

evidence of clinical disease related to any pathogens other

than mange is surprising. However, when challenged with

pathogens, the early activation of specific immune cells and

proteins determines the rate of disease progression and out-

come [58,59]. Although little is known about immune

pathways associated with notoedric mange, the secretion of

specific cytokines during early-stage infection is pivotal to dis-

ease progression in humans infected with the closely related

mite, Sarcoptes scabiei. If helper T lymphocytes secrete IFN-g

and IL-2 in response to infection, the infection is overcome.

However, if those same helper T lymphocytes secrete other

cytokines IL-4, IL-5 and IL-13 [58], an uncontrolled response

occurs. The broad-spectrum immune activation that we observe

in AR-exposed bobcats may compromise the ability to mount

specific immune responses to certain pathogens such as N. cati.
Bobcats may also encounter this mite more regularly than

other pathogens. In general, we have found low levels of

exposure (low seropositivity) to other common feline patho-

gens [24]. However, N. cati is present on other species in

the ecosystem including rabbits and ground squirrels [60],

and rabbits are the predominant prey item of bobcats in the

study area [61]. In our study area overall, bobcats may

simply be at risk of infection from N. cati more than from

other pathogens, and if ARs increase their vulnerability

to the pathogen, urban bobcats would be more likely to

succumb to infection.

Exposure of non-target wildlife to ARs is increasingly

recognized as a global conservation issue [16]. Within the

bobcat population, we have also shown that AR exposure

can begin during prenatal development, and persist for the

duration of an individual’s life [19]. While we have rarely

documented direct AR toxicity mortality in bobcats (n ¼ 2

over a 20-year period), AR toxicity was the second leading

cause of death in coyotes over a 9-year study in SMMNRA

[5]. These contrasting mortality findings show that toxicants

produce myriad effects that differentially influence species

within ecosystems. Toxicant exposure can indirectly have

fatal impacts, even if it is not a source of direct mortality.

Our analyses suggest that sublethal toxicant exposure may

indirectly cause mortality by severely weakening the

immune system in a free-ranging carnivore, and thus mitiga-

tion of the effects of mange will require reduction of ARs at

the urban–wildlands interface. While evaluating the sublethal

effects of toxicants on the health of free-ranging animals that

may experience a lifetime of poisoning is difficult and com-

plex, our findings of measurable and consequential sublethal

effect of ARs in a wild population imply that environmental

agencies must re-evaluate the harm these toxicants pose to

wild species and the ecosystems they inhabit.
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