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Robustness and evolvability are the main properties that account for the

stability and accessibility of phenotypes. They have been studied in a

number of computational genotype–phenotype maps. In this paper, we

study a metabolic genotype–phenotype map defined in toyLIFE, a multilevel

computational model that represents a simplified cellular biology. toyLIFE

includes several levels of phenotypic expression, from proteins to regulatory

networks to metabolism. Our results show that toyLIFE shares many simi-

larities with other seemingly unrelated computational genotype–phenotype

maps. Thus, toyLIFE shows a high degeneracy in the mapping from geno-

types to phenotypes, as well as a highly skewed distribution of phenotypic

abundances. The neutral networks associated with abundant phenotypes

are highly navigable, and common phenotypes are close to each other in gen-

otype space. All of these properties are remarkable, as toyLIFE is built on a

version of the HP protein-folding model that is neither robust nor evolvable:

phenotypes cannot be mutually accessed through point mutations. In

addition, both robustness and evolvability increase with the number of

genes in a genotype. Therefore, our results suggest that adding levels of com-

plexity to the mapping of genotypes to phenotypes and increasing genome

size enhances both these properties.
1. Introduction
Classical evolutionary models do not account for the robustness and evolvability

of phenotypes [1]. They thus fail to explain some evolutionary phenomena, such

as punctuated equilibria [2,3], constrained evolution [4] or the origins of novelty

[5,6]. In recent years, several research groups have tried to understand this impor-

tant question by studying computational mappings of molecular genotypes to

phenotypes. Some of these maps try to remain faithful to biological phenomena,

such as RNA secondary structure [7–14], protein secondary structure [15–20],

gene regulatory networks [21–24] and metabolic networks [25–28]. More abstract

models have also been developed, such as the polyomino [29–31] and toyLIFE

[32], as well as the Fibonacci map [33] and simple combinatorial maps [34,35].

The robustness and evolvability of phenotypes have also been recently studied

for the artificial life AVIDA system [36].

Even though all these models focus on different aspects of molecular biology,

all of them share some common properties. First, the mapping from genotype to

phenotype is highly degenerate: many genotypes encode the same phenotype.

Additionally, phenotype abundance (the number of genotypes encoding it) is
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not evenly distributed: most phenotypes are rare, while a few

of them are extremely abundant. The probability density func-

tion associated with phenotype abundance is a log-normal

distribution for a wide variety of models [14,34], although in

some cases it has been found to be a power law [33,34]. This

implies that rare phenotypes will not play a central role in evol-

ution: they are hard to find in a genotype space that is filled

with abundant phenotypes [12,14,37]. This degeneracy is

usually accompanied by the formation of neutral networks,

networks of genotypes encoding the same phenotype, in

which two genotypes are connected if they differ in one

point mutation—i.e. if the strings representing each genotype

differ in one letter [7,16,21,25,38]. The degree of a node in

such a neutral network—the number of neutral neighbours it

has—is called genotypic robustness. It is usually normalized

by the total number of neighbours in genotype space, and

thus represents the fraction of neighbours with the same pheno-

type [5]. Inside a particular neutral network, the degree

distribution is highly heterogeneous, but usually unimodal

[13,39]. Additionally, in RNA, the average degree of a neutral

network grows linearly with the logarithm of its abundance

[13]—this positive correlation is also observed in the polyomino

model [30], the HP model [31] and simple genotype–phenotype

maps [34], and is suggested by empirical data [40]. Neutral net-

works of abundant phenotypes percolate genotype space: they

contain genotypes that share almost no letters [5,7,21]. Conver-

sely, most abundant phenotypes are easily accessed from each

other: traversing a neutral network, many phenotypes can be

found at its boundary [5,21,25]. Moreover, abundant pheno-

types are typically found just a few mutations away from a

random genotype [5,9,30]—i.e. they are highly evolvable. This

means that these phenotypes are easily accessible from any

other phenotype, so that the search for new phenotypes

among abundant ones is a fast evolutionary process.

In [32], we presentedtoyLIFE, a multilevel model of a gen-

otype–phenotype map (see figure 1; electronic supplementary

material, §S1 for a summary of toyLIFE’s definition). toyLIFE

includes genes, proteins, regulatory networks and a simple

metabolism. Genes are binary strings of fixed length, divided

in two regions—a promoter and a coding region (figure 1a).

The coding region is translated into a sequence of 16 amino-

acids that folds on a 4 � 4 lattice, following the rules of the

HP protein-folding model [15–17] (figure 1a,d). Once folded,

we only distinguish proteins by their perimeter and folding

energy—note that this definition of folded protein is different

from other versions of the HP model. In toyLIFE, there are

2710 different proteins (electronic supplementary material,

figure S3), most of them obtained from more than one

sequence. However, there are no neutral mutations: every

change in a coding region will result (most of the time) in a

non-folding protein or (more rarely) in a different functional

protein. This is very different from what has been observed in

other versions of the HP model [17–20]. Proteins in toyLIFE

interact with each other to form dimers, and both proteins

and dimers regulate gene expression (figure 1c) and interact

with metabolites (figure 1b). The phenotype in toyLIFE can

be defined in multiple ways. Here, we will focus on a metabolic

definition of phenotype (figure 1e), similar to the one presented

in [25,41]: the set of metabolites that a genotype can metabolize

(electronic supplementary material, §S2). toyLIFE is, to our

knowledge, the only multilevel genotype–phenotype map

incorporating genetic dynamics, protein folding, regulatory

networks and metabolism.
In this paper, we investigate the characteristics of the meta-

bolic genotype–phenotype map of toyLIFE. First, we want to

assess if toyLIFE shares the properties of most computational

genotype–phenotype maps studied before. We will see that, in

spite of toyLIFE’s complexity, its properties are very similar to

many of these maps. Second, we wish to explore the robustness

and evolvability of this map. The regulatory and metabolic

functions of toyLIFE are built on a non-robust, non-evolvable

version of the HP model, in which proteins can hardly evolve

without going through non-folding intermediate steps. We

show in this article that both robustness and evolvability are

enhanced by the superposition of additional levels of organiz-

ation. Third, we will explore how robustness and evolvability

change when genome size is increased. We show that they

increase significantly, and that we can explain this tendency

in the light of toyLIFE’s details.
2. Degeneracy of the genotype – phenotype map
The size of genotype space in toyLIFE grows very quickly

with the number of genes in a genotype. Since a gene in

toyLIFE is a binary string of length 20, there are 220 different

genes. A genotype is formed by choosing g genes from

this set with replacement (the order of genes is irrelevant).

Hence, the number of genotypes with g genes is

gþ 220 � 1
g

� �
� 106g=g! (electronic supplementary material,

§S1). For g ¼ 2, this number is 5.5 � 1011, for g ¼ 3, it is 1.9 �
1017, and for larger values of g it keeps growing almost exponen-

tially. A complete exploration of these genotype spaces is well

beyond our computational possibilities in general. However,

using computational tricks, we have exhaustively analysed

the g ¼ 2 and g ¼ 3 cases—i.e. we have limited our study to

two-gene and three-gene genotypes.

We have restricted ourselves to studying those genotypes

that are able to catabolize at least one metabolite—these will

be called viable genotypes. The remaining (non-viable) geno-

types are unable to catabolize any metabolite. For g ¼ 2, there

are 1.1 � 109 viable genotypes, representing little more than

0.2% of all genotypes. For g ¼ 3, this number is 1.0 � 1015—

approximately 0.5% of all genotypes. In both cases, the

great majority of genotypes are unable to catabolize any

metabolite. But note that the space of viable genotypes is

still enormous.

Among these viable genotypes, many of them catabolize

exactly the same metabolites—they encode the same metabolic

phenotype. For g ¼ 2, there are only 775 different phenotypes,

corresponding to an average of 1.4 � 106 genotypes per pheno-

type. For g ¼ 3, there are 26 492 phenotypes, corresponding to

an average of 3.8 � 1010 genotypes per phenotype. In other

words, for both g ¼ 2 and g ¼ 3, the degeneracy of the geno-

type–phenotype map is huge. From now on, we will refer to

the set of phenotypes found for g ¼ 2 and g ¼ 3 as P2 and

P3, respectively.

The distribution of phenotype abundances is highly

skewed (figure 2a), similarly to what has been observed for

other genotype–phenotype maps. In both cases, the distri-

bution can be empirically fitted to a log-normal distribution.

We obtained the parameters empirically from the log-trans-

formed data, using maximum-likelihood. For both g ¼ 2 and

g ¼ 3, the rank distributions (electronic supplementary

material, figure S9) show a long tail, confirming that, indeed,
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Figure 1. Brief overview of toyLIFE. (a) The three basic building blocks of toyLIFE are toyNucleotides, toyAminoacids and toySugars. They can be hydro-
phobic (H, white) or polar (P, red), and their random polymers constitute toyGenes, toyProteins and toyMetabolites. The toyPolymerase is a special polymer that will
have specific regulatory functions. These polymers will interact between each other following an extension of the HP model, for which we have chosen the inter-
action energies EHH ¼ 2 2, EHP ¼ 2 0.3 and EPP ¼ 0 [17]. (b) Possible interactions between pairs of toyLIFE elements. toyGenes interact through their
promoter region with toyProteins (including the toyPolymerase and toyDimers); toyProteins can bind to form toyDimers, and interact with the toyPolymerase when
bound to a promoter; both toyProteins and toyDimers can bind a toyMetabolite at arbitrary regions along its sequence. (c) A toyGene is expressed (translated) when
the toyPolymerase binds to its promoter region. The sequence of Ps and Hs of the toyProtein will be exactly the same as that of the toyGene coding region. If a
toyProtein binds to the promoter region of a toyGene with a lower energy than the toyPolymerase does, it will displace the latter, and the toyGene will not be
expressed. This toyProtein acts as an inhibitor. The toyPolymerase does not bind to every promoter region. Thus, not all toyGenes are expressed constitutively.
However, some toyProteins will be able to bind to these promoter regions. If, once bound to the promoter, they bind to the toyPolymerase with their rightmost
side, the toyGene will be expressed, and these toyProteins act as activators. (d ) toyProteins fold on a 4 � 4 lattice, following a self-avoiding walk (SAW). For each
binary sequence of length 16, we fold it into every SAW and compute its folding energy, following the HP model. Then we choose the SAW that yields the minimum
folding energy. (e) Metabolism in toyLIFE. A toyDimer is bound to a toyMetabolite when a new toyProtein comes in. If the new toyProtein binds to one of the
two units of the toyDimer, forming a new toyDimer energetically more stable than the old one, the two toyProteins will unbind and break the toyMetabolite up
into two pieces. We say that the toyMetabolite has been catabolized. (Online version in colour.)
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while few phenotypes are very abundant, most of them are

rare. For g ¼ 3, this is especially striking, since 300 pheno-

types in P3 represent nearly 99% of all genotypes—

which means that the remaining 1% is distributed among

approximately 26 000 phenotypes.

All phenotypes in P2 are also found in P3: we can always

add a gene whose product does not fold into any protein to a

viable two-gene genotype. A pertinent question, therefore, is

how abundant the phenotypes belonging to P2 are in three-

gene genotype space. We find that phenotypes in P2 take

up 99.6% of genotypes in g ¼ 3 (electronic supplementary

material, §S4). This means that the 775 phenotypes in P2

dominate the space of phenotypes for g ¼ 3. Only special com-

binations of three proteins and three promoters will yield most

of the phenotypic diversity observed for g ¼ 3. The majority of
genotypes will be extensions of two-gene genotypes with a

third gene that does not interfere with their function.

We can re-compute the histogram in figure 2a(ii) taking

the 775 phenotypes from P2 as a separate set from the

remaining 25 717 phenotypes in P3 that are not in P2 (elec-

tronic supplementary material, §S4). This reveals that the

small bump observed in the right part of the distribution of

phenotypes in P3 (figure 2a) is due to the phenotypes in

P2. When we eliminate these phenotypes, the resulting distri-

bution is much closer to a log-normal. In a sense, it is as if

both sets were somehow independent: one is formed by

two-gene genotypes with a third, non-interfering gene, and

the other is formed by all combinations of three genes that

encode new phenotypes. This influence of P2 phenotypes

decays linearly when genotype size increases (electronic
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Figure 2. Neutral networks in toyLIFE. (a) The distribution of the number of genotypes per phenotype—phenotype abundance, S—for g ¼ 2 (S2, a(i))
follows a log-normal distribution, with probability density function f (x) ¼ (xs

ffiffiffiffiffiffi
2p
p

)�1 exp (� ( log x � m)2=2s2), where m is the mean and s is the standard
deviation of the normally distributed logarithm of the variable. Here m ¼ 4.742 and s ¼ 1.224, obtained using maximum-likelihood. For g ¼ 3, the distribution
of phenotype abundances (S3, a(ii)) is again very close to a log-normal distribution with m ¼ 5.604 and s ¼ 1.838. The log-normal fit is worse than in (a)
because there is a small bump in the right part of the distribution, where more abundant phenotypes are—due to the over representation of two-gene phenotypes
(see text). (b) Average degree of nodes (circles) in neutral networks (see electronic supplementary material, figure S12 for the degree distribution) versus gene
number g. The average degree kkl of a node grows linearly with gene number g, as kkl ¼ 2 27.6 þ 17.8 g (line). (c) Average robustness (circles) versus gene
number g. Robustness grows with gene number, and we can find a nonlinear relationship between both variables: kRl ¼ 0.895 2 1.392/g (line). (d ) There is a
nonlinear relationship between g and kd1l, the final distance that is reached in a random walk in which genotypes are forced to get away from the starting
genotype every step: kd1l ¼ 0.965 2 1.354/g (line). The circles represent kd1l. (e) There is a linear relationship between kd1l and the average robustness
of the genotypes as obtained in c, given by: kd1l ¼ 0.094 þ 0.972kRl (line), very close to the kd1l ¼ kRl fit. In all cases, the grey area encompasses
two standard deviations, and the fits in (b – e) were obtained using the least-squares method. (Online version in colour.)
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supplementary material, §S5), although they keep represent-

ing more than 80% of genotype space for g � 13.
3. Neutral networks in toyLIFE
Robustness can be defined as R ¼ k=kmax, where k is the degree

of a node in a neutral network, and kmax ¼ 20g is the maximum

number of point-mutation neighbours. In other words, R is the

normalized degree of a node. We can sample genotypes for

different genotype sizes, represented by g (gene number),

and plot the histogram of values of R (electronic supplemen-

tary material, figure S12). All the resulting distributions are

unimodal, as has been observed in other genotype–phenotype

maps [5,13]. toyLIFE genotypes become more robust as g
increases. In fact, there is a linear relationship between g
and kkl, the average degree of a node in a neutral network

(figure 2b): kkl ¼ 2 27.6 þ 17.8g. But kRl ¼ kkl/20g, so we

obtain kRl�0.891 2 1.378/g, which is very close to the least-

squares fit kRl ¼ 0.895 2 1.392/g, shown in figure 2c. The

linear relationship between kkl and g with slope 17.8 indicates

that, on average, for every gene we add to a genotype, nearly 18

out of 20 new mutations will be neutral. This implies that kRl
saturates at a value close to 0.9 when g increases. This result

is consistent with the results of §2, which showed that newly

added genes rarely interfere with an existing phenotype.

These new genes can be viewed as ‘junk’ in the sense that

they do not have any effect on metabolic function and that

mutations in their sequence tend to be neutral. We will see
later on that junk genes are however important, in that they

enhance evolvability in toyLIFE genotypes.

Also, taking into account that P2 phenotypes dominate in

Pg for g � 13 (electronic supplementary material, §S5), we

can estimate that Sg�17.8gS2, so logSg�q þ glog17.8, where

q is a constant. Combining this result with the linear relation-

ship between g and kkl, we obtain for toyLIFE the linear

relationship between kkl and logS, that has been observed

previously for other models [13,30,31,34] (but see figure 3

for a direct verification of this relationship).

In other genotype–phenotype maps, neutral networks

tend to have one giant component [18], although this is not

always the case: too short RNA sequences form neutral net-

works that are highly disconnected [13]. Although network

analysis is almost impossible for g�3, as networks are enor-

mous, for g ¼ 2 we can perform network analyses on all 775

phenotypes exhaustively, and compute their connected com-

ponents (electronic supplementary material, §S7). We observe

that most phenotypes are distributed in highly fragmented

neutral networks: the genotypes encoding a given phenotype

form many disjoint connected components, which are typically

small. Abundant phenotypes tend to have a larger number of

connected components, and we can find a relatively good

power-law fit between the abundance of the phenotype S2

and the number of components C: C ¼ 0.25S0.7
2 (electronic sup-

plementary material, §S7). We also observe a huge variation in

the size of connected components in g ¼ 2: although more than

98% of connected components are smaller than 1000 nodes,

some of them reach up to approximately 107 nodes. The high
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fragmentation of neutral networks is due to the HP model that

underlies protein folding in toyLIFE: there are no neutral

mutations within proteins (electronic supplementary material,

§S1 and figure S3). Most mutations in a protein sequence yield

proteins that do not fold, and few mutations yield one func-

tional protein from another. Remember that each phenotype

is defined by a list of metabolites that a genotype is able to cat-

abolize. A given phenotype can be encoded by more than one

protein combination, which will be characterized by different

interactions and regulatory functions, but will catabolize

the same metabolites. When a phenotype is generated by

several protein combinations, it will be difficult to mutate

from one combination to another, and as a consequence these

combinations will usually be found in disjointed connected

components. In fact, the number of connected components

associated with a phenotype is positively correlated with the

number of protein combinations that generate it (electronic

supplementary material, §S7).

For g�2, we can estimate the distribution of neutral net-

works in genotype space using neutral random walks:

starting at a randomly chosen genotype, we perform a mutation

on it. If the resulting mutant genotype belongs to the same neu-

tral network—if it encodes the same phenotype—the mutation

is accepted. The random walk continues when we mutate the

new genotype again. If the mutant genotype does not belong

to the neutral network, the mutation is rejected, and we try to

find a new neutral neighbour for the original genotype (this

process will not work if the starting genotype does not have

neutral neighbours, a rare case). We performed 1000 neutral

random walks of length 10 000 for genotype sizes g ¼ 2 to

g ¼ 5 (electronic supplementary material, figure S15). At each

time step t, we computed dH(g0, gt), the Hamming distance

(normalized number of different positions) between the original

genotype g0 and the genotype visited at time t, gt. dH(g0, gt) is a

random variable for each t, and so we can compute its average

and standard deviation (electronic supplementary material,

figure S15). If there were no restrictions to the nodes that can be

visited in a random walk, we would expect dH(g0, gt)! 0:5

when t! 1. In other words, if there are no restrictions, the cor-

relation between g0 and gt is lost when t grows, and the distance

between them tends to the value it would have, on average, if

we randomly picked two genotypes from the network. Thus,

the evolution of dH(g0, gt) is a good measure of the size and

extension of neutral networks in genotype space. For g ¼ 2,
kdH(g0, gt)l � 0.25 when t! 1, implying that networks do

not extend very far. Considering that the total genotype space

has diameter 40, this means that the average distance between

the initial genotype and the final one is close to 10. This is not

a very high value, and it is consistent with our previous analysis

showing that neutral networks in g ¼ 2 tend to be fragmented

and small. For g . 2, kdH(g0, gt)l � 0.4 when t! 1, which

implies that the fragmented networks of g ¼ 2 space are becom-

ing more connected as g grows, facilitating the navigability of

genotype space. This suggests that neutral networks for g . 2

span large fractions of genotype space, a result consistent

with other genotype–phenotype maps.

A different way to estimate the diameter of a neutral net-

work is to perform neutral random walks in which we force

dH(gt, gtþ1) . dH(gt21, gt). That is, in addition to imposing

that a mutation is neutral in order to accept it, we also require

it to increase the distance to the original genotype. More

specifically, the process is computed as follows. We randomly

choose a genotype, and perform mutations on it, increasing

the distance every time step, until this distance can increase

no longer—if, after a large number of trials, we cannot find

a neutral mutant that is farther apart from the original geno-

type, we stop the process. We will denote the final distance

obtained in such random walks by d1. For g ¼ 2 and g ¼ 3

we randomly sampled 10 000 genotypes, whereas for g ¼ 4

and g ¼ 5 we sampled 1000 genotypes (figure 2d; electronic

supplementary material, figure S16). Consistent with pre-

vious results, random walks did not get very far for g ¼ 2,

reaching an average final distance kd1l � 0.28. For g . 2,

the final distance d1 increases. This result confirms the pre-

vious observation that navigability in these genotype spaces

is enhanced. For g ¼ 3, kd1l is a little over 0.5, while for g ¼
4 and g ¼ 5 it reaches 0.6 and 0.7, respectively. In fact, the

growth of kd1l with g is very similar to the growth of kRl
obtained in figure 2c. In that case, we had kRl ¼ 0.895 2

1.392/g. Here, it is kd1l ¼ 0.965 2 1.354/g (figure 2d ). Unsur-

prisingly, the similarity of the fits implies a linear relationship

between kd1l and kRl: kd1l ¼ 0.094 þ 0.972kRl (figure 2e),

very close to the identity function. This result has several impli-

cations. First, as g grows, neutral networks are more and more

connected, and they span larger fractions of genotype space.

It is easier to get from one extreme of the genotype network

to the other without changing the phenotype. Secondly, this

increased connectivity is due to the increase in robustness:
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the robustness of a genotype is a good predictor for the size of

the connected component it belongs to. This can be easily

explained in light of our previous discussion on robustness.

Adding a new gene to a genotype will endow the latter with

an average of 18 new neutral mutations with which to explore

genotype space (figure 2b). Because the new gene will not inter-

fere with the phenotype with a high probability, it follows that

we can mutate most of its nucleotides, one by one, getting

farther away from the original genotype. In other words,

new genes in toyLIFE allow for increased navigability of gen-

otype space, because they are mostly junk genes. As we will

see later on, this property will have important consequences

for evolvability.

The fact that robustness is a good predictor for the size of

a genotype’s connected component can be combined with

the positive correlation between the logarithmic abundance

of a phenotype and the size of its largest connected com-

ponent (electronic supplementary material, §S7) to deduce

the linear relationship between the logarithm of phenotype

abundance and phenotypic robustness, giving yet another

heuristic argument for this relationship. We now turn to

compute it explicitly.

Phenotypic robustness is defined as the average of geno-

typic robustness for all genotypes encoding a phenotype Pi,

that is

RPi ¼
1

jPij
X
g[Pi

Rg,

where jPij is the number of genotypes encoding Pi. For g ¼ 2

and g ¼ 3 we sampled 107 genotypes and computed their

robustness. We then assigned each genotype to its correspond-

ing phenotype and averaged the values of robustness for all

genotypes encoding each phenotype. Note that this procedure

samples abundant phenotypes more often. For g ¼ 2, we find a

good fit to a linear relationship between the logarithm of

phenotype abundance and estimated phenotypic robustness

(figure 3a). For g ¼ 3, we identified those phenotypes belong-

ing to P2 (being the most abundant, they were sampled the
most) in green, and the rest in blue (figure 3b). The figure

shows separate relationships between the logarithm of pheno-

type abundance and phenotypic robustness. The two sets of

phenotypes cluster in two different groups, confirming once

more the idea that these two sets are qualitatively different.

Phenotypes belonging to P2 are much more robust, as a

result of them having one spare junk gene.
4. Robustness and position in genotype
Instead of considering the degree of a node in a neutral net-

work, we can focus on the neutrality of a given position of

the genotype. A genotype formed by g genes can be thought

of as a binary string of length 20g—remember that genes in

toyLIFE have 20 nucleotides, the first four forming the promo-

ter region and the remaining 16 constituting the coding region.

For a given sequence, the position i ¼ 1, . . ., 20g can either be

neutral or not—that is, when we mutate that position, we can

get a new genotype with the same phenotype or not. We can

thus define the random variable

ri ¼
1 if i is a neutral position,
0 otherwise.

�

Because ri is a random variable, we can sample it and estimate

its mean. Differences between positions may yield insights into

the details of the genotype–phenotype correspondence in

toyLIFE—i.e. some positions may always be neutral, or

always constrained. This is what we have done in figure 4,

for genotype sizes g ¼ 2 to g ¼ 5. We sampled 107 genotypes

for g ¼ 2 and g ¼ 3, and 103 genotypes for g ¼ 4 and g ¼ 5,

and computed ri for every i ¼ 1, . . ., 20g and every genotype.

The order of genes does not matter in toyLIFE by construc-

tion—implying kril ¼ kriþ20hl, for any h ¼ 0, 1, . . ., g 2 1—so

we are interested in the values of robustness for each gene.

This is why in figure 4 we only show the average values kril
for 0 � i , 20. Note that promoter regions tend to be more

robust than coding regions. This is partly due to the lack of

robustness in the version of the HP model that underlies
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protein folding in toyLIFE (electronic supplementary

material, §S1 and figure S3). However, note that the superposi-

tion of regulatory and metabolic levels of the phenotype makes

the average robustness of coding regions grow, in spite of the

non-robust protein folding model. For g ¼ 4 and g ¼ 5, the

average robustness in these regions reaches values as high as

0.5 (remember that these genotypes tend to have junk genes

that increase overall robustness as g grows).

Inside the promoter region, which only affects gene regu-

lation, the first position is particularly robust. This means

that the regulatory changes it induces have no phenotypic

effect at the metabolic level. This may be due to two reasons:

either changes in the first position of the promoter region do

not affect the regulatory function—the temporal pattern of

gene expression determined by the interactions among pro-

teins—or changes in the regulatory function rarely alter the

metabolic phenotype. We performed the following simple

test of these hypotheses. For each position in the promoter

region, we sampled 104 genotypes of size g ¼ 3. We then

mutated that position and computed the new regulatory func-

tion and the new metabolic phenotype. From all 104 mutations

in the first position, 40% were neutral in both the regulatory

and the metabolic sense, 54% affected the regulatory function

but did not affect the metabolic phenotype, and the remaining

6% changed both—this means that the robustness for the first

position in this sample was 94%. For the rest of the positions,

27% of the mutations did not alter either the regulatory func-

tion or the metabolic phenotype, 32% changed regulation but

not metabolism and 41% changed both. This corresponds to

a robustness of 59%, consistent with what we observed in

figure 4. In other words, for the first position only 9% of the

mutations that affected regulation had any effect on the meta-

bolic phenotype. In addition, 40% of mutations did not affect

the regulatory function at all. For the rest of the positions, how-

ever, the number of mutations that altered regulation, 73%, was
higher. Among these, roughly 55% had an effect on phenotype

as well. So both reasons posited above are at work: not only is

the number of mutations affecting regulatory function lower in

the first position of the promoter region, but also when these

mutations do alter the regulatory function, they rarely

change the phenotype.

The lower robustness of coding regions, compared to

promoter regions, is correlated with a higher evolvability,

as will be discussed in the next Section.
5. Accessibility and evolvability
So far, we have limited our discussion of the properties of the

genotype–phenotype map in toyLIFE to the abundance of

phenotypes and the organization of their neutral networks,

without paying any attention to the connections between

different phenotypes. In this section, we will focus on the

latter question, which amounts to studying evolvability, or

how accessible phenotypes are.

The neutral networks of different phenotypes tend to be

highly interwoven in most computational genotype–pheno-

type maps, so that connections between them are very

common. The Vienna RNA group described a property of

RNA neutral networks called shape space covering [7,9]. It

implies that one can find most common phenotypes a few

mutations away from any given genotype. We checked for

the existence of this property intoyLIFE. We sampled 100 gen-

otypes for g ¼ 2 and g ¼ 3 and computed the phenotypes of all

neighbours at distances 1 to 8. We observed how many of the

300 most common phenotypes appeared in this set of neigh-

bours. The results are shown in figure 5a,b. For both g ¼ 2

and g ¼ 3 and most sampled genotypes, the number of pheno-

types discovered after eight mutations was close to 300. This

implies that toyLIFE also shares the shape space covering
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property: most phenotypes are just a few mutations away from

any given phenotype. Observe, however, that for g ¼ 2 this

means a higher relative distance compared with g ¼ 3—

remember that the diameter of this network is 40—and that

the number of phenotypes discovered at that distance is

lower by comparison.

Shape space covering means that phenotypes are easily

accessible from each other through a few number of mutations.

A relevant detail in the metabolic genotype–phenotype map in

toyLIFE is that this accessibility is due only to mutations in

proteins. If we mutate only the promoters, the number of

visited phenotypes is never larger than 2, regardless of the dis-

tance. For g ¼ 2, we can give a clear explanation to this

peculiarity: of the 135 318 pairs of proteins that yield a meta-

bolic function, only 16 yield two different metabolic

phenotypes when combined with different promoters. The

rest are able to generate only one phenotype. Changing only

the promoters will not affect the metabolic function, and will

not help in finding new phenotypes. This is consistent with

the high robustness of the promoter region.

Another way to study evolvability is to compute the con-

nections between different phenotypes directly. We say that

two phenotypes are connected if at least two genotypes from

each phenotype are one point mutation away from each

other. We can then create a network of phenotypes, whose

nodes will be the phenotypes themselves, and the edges the

connections between them. This network of phenotypes is

undirected and weighted—the weight of an edge between

two phenotypes is the sum of all point mutations connecting

two genotypes encoding each phenotype. This network

admits self-loops, whose weight is twice the number of edges

connecting genotypes encoding a single phenotype—in other

words, it is the sum of the degrees of all the nodes encoding

that phenotype, which is proportional to the phenotype’s

robustness. For g ¼ 2, where we can compute the whole net-

work of genotypes with their corresponding phenotypes, we

can build this phenotype network exhaustively. The network

is formed by a giant component that includes 767 phenotypes.

We also find six additional tiny components, five of them with

just one phenotype and the remaining one with three pheno-

types (electronic supplementary material, §S9). Thus, for g ¼
2, some phenotypes will be unreachable by point mutations

from other phenotypes. For g ¼ 3, we cannot build the pheno-

type network exhaustively, but resorting to a numerical

approximation using random walks (electronic supplementary

material, §S9), we can estimate the network of connections

between the 775 phenotypes in P2—in order to study how

the addition of one gene alters the connections between these

phenotypes. The results show that all phenotypes in P2 now

belong to one giant component (electronic supplementary

material, §S9). The number of connections between pheno-

types has greatly increased as well. This is again due to the

additional junk genes. They do not only increase robustness,

but also allow for increased connections between phenotypes.

This increased connectivity can also be measured in an

alternative way. In previous work [5], evolvability has been

estimated as the number of new phenotypes discovered in a

neutral random walk along a neutral network. In figure 5c,d,

we have performed such an analysis for 10 000 genotypes for

g ¼ 2 and g ¼ 3. The results show that evolvability is much

higher for g ¼ 3. While the number of discovered phenotypes

almost stops growing for g ¼ 2, it grows quickly in g ¼ 3,

and to a much higher value than for g ¼ 2. Again, this is
due to the higher average number of connections between

phenotypes for g ¼ 3 (electronic supplementary material, §S9).
6. Discussion and conclusion
Throughout this article, we have explored the properties of

the metabolic genotype–phenotype map in toyLIFE. This

map is highly degenerate, with many more genotypes than

phenotypes, and large neutral networks traversing genotype

space. The distribution of phenotype abundances is very het-

erogeneous, and more abundant phenotypes tend to be more

robust. Common phenotypes are easily accessed from each

other, and large neutral networks allow for a fast exploration

of phenotype space.

All of these properties have been described in other geno-

type–phenotype maps [7–31,33,34]. This is somewhat

striking, given that the genotype–phenotype map in toyLIFE

is more complex than the rest of these models. It is the only

model that incorporates intermediate levels of phenotypic

expression: genes are first translated into proteins, which fold

and interact with each other, generating complex regulatory

networks that will determine the metabolic capacities of a gen-

otype. And yet the main properties shared by the rest of

genotype–phenotype maps appear here as well.

Two particular results stand out. The first is the log-normal

distribution of phenotype abundances, which has also been

observed in RNA [14] and predicted for simple combinatorial

genotype–phenotype maps [34]. The second is the positive cor-

relation between phenotypic robustness and the logarithm of

phenotype abundance, which has also been described before

[13,30,31,34]. The fact that these two relationships (as well as

other phenomena, such as shape space covering) are so wide-

spread points to a general property of these maps, which

must be related to combinatorics and network theory. Previous

work [34] has shown that, when the abundance of a phenotype

can be inferred from the genotype sequence in simple geno-

type–phenotype maps, we can use combinatorial arguments

to explain the appearance of a log-normal distribution and

the linear relationship between phenotypic robustness and

the logarithm of phenotype abundance. These arguments

would explain the presence of these properties in the case of

RNA, but do not seem to be easily translatable to toyLIFE.

We need to devote more efforts into understanding this

seemingly general property of genotype–phenotype maps.

The high robustness and evolvability of the metabolic phe-

notype in toyLIFE, particularly when genome size increases,

is remarkable because our model is built on a particularly non-

robust, non-evolvable version of the HP protein-folding

model. Proteins in toyLIFE are sequences of 16 amino-acids

that fold on a 4 � 4 lattice. One protein is defined by its perimeter

and its folding energy: this is a very different definition of

protein than the one used in most versions of the HP model

[15–20], which define a protein by its folded structure. As we

have already mentioned, there are no neutral networks in the

protein space intoyLIFE, and evolvability is very limited. How-

ever, when these proteins are paired to interact with each other,

generating regulatory networks and performing metabolic func-

tions, the resulting genotypes are robust and evolvable. So it

would seem that adding levels of expression to a phenotype

enhances both robustness and evolvability. This hypothesis

could be tested, for instance, byadding another level of complex-

ity to the phenotype intoyLIFE and checking how both of these
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properties are changed. If there is indeed a relationship between

complexity and both robustness and evolvability, this result

would suggest that more complex genotype–phenotype maps

could have an evolutionary advantage.

Alternatively, we could change the folding process in

toyLIFE and allow for promiscuous proteins—proteins that

can fold in different shapes with the same energy [42]. This

would increase connectivity in protein space and would

affect the levels of robustness and evolvability at the meta-

bolic level. Determining the extent of this change would

give us some insight into the relationship between different

levels of phenotypic expression.

On a related note, our results show that adding genes to

toyLIFE genotypes increases both robustness and evolvabil-

ity. Neutral networks of two-gene genotypes are not very

navigable, reaching only a small portion of genotype space,

and connecting with a small number of adjacent phenotypes.

However, adding a new gene to the genotype changes every-

thing: now phenotypes are easily accessed from each other

and neutral networks span genotype space. Robustness, as

we haven seen, keeps growing with genome size. The expla-

nation behind this fact is that most of the new genes will not

alter the metabolic phenotype, and will act as junk genes.

However, they can mutate without restriction, enhancing

the navigability of a neutral network. Increased navigability

allows for increased connectivity between phenotypes, thus

enhancing evolvability [43]. In other words, junk genes have

creative potential, in the sense that they allow populations to

explore a given neutral network, and then encounter new,

unexplored phenotypes. This is interesting because it extends

the usefulness of redundancy in complex genomes [44,45] to

include seemingly inert elements, whose only function is to

increase robustness and evolvability. It is also reminiscent of

the abundance of introns and non-coding DNA in eukaryotic

genomes [46]: if this non-functional DNA also enhances

robustness and evolvability in living cells, this would suggest

new arguments for the maintenance of junk DNA.
Finally, the appearance of junk genes is possibly a result

of the fact that interactions in toyLIFE are limited to be pair-

wise. There are neither trimers nor tetramers in toyLIFE,

only dimeric proteins. Only one protein or dimer can interact

with a metabolite at a given moment, and so on. As a conse-

quence, when a new gene is added to a two-gene genotype

that performs a metabolic function, it will have little potential

to create new functions. In fact, one would expect the oppo-

site: that adding a new gene would disrupt the existing

interactions, thus yielding a non-viable metabolic phenotype.

However, this is not what we observe. When adding new

genes to two-gene genotypes, most genotypes keep their

original function. We will need to perform a more detailed

exploration of this phenomenon in order to clarify the reasons

behind it.

As a final comment, note that we have not defined fitness

for toyLIFE. Previous work [47] suggests that the fitness land-

scape appearing from complex genotype–phenotype maps is

highly rugged and constrains evolutionary paths. Further

work with toyLIFE should explore possible definitions of

fitness and their corresponding fitness landscapes.
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