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Epidemiologists commonly use the risk ratio to summarize the relationship

between a binary covariate and outcome, even when outcomes may be

dependent. Investigations of transmissible diseases in clusters—households,

villages or small groups—often report risk ratios. Epidemiologists have

warned that risk ratios may be misleading when outcomes are contagious,

but the nature of this error is poorly understood. In this study, we assess

the meaning of the risk ratio when outcomes are contagious. We provide a

mathematical definition of infectious disease transmission within clusters,

based on the canonical stochastic susceptible–infective model. From this

characterization, we define the individual-level ratio of instantaneous infec-

tion risks as the inferential target, and evaluate the properties of the risk ratio

as an approximation of this quantity. We exhibit analytically and by simu-

lation the circumstances under which the risk ratio implies an effect

whose direction is opposite that of the true effect of the covariate. In particu-

lar, the risk ratio can be greater than one even when the covariate reduces

both individual-level susceptibility to infection, and transmissibility once

infected. We explain these findings in the epidemiologic language of con-

founding and Simpson’s paradox, underscoring the pitfalls of failing to

account for transmission when outcomes are contagious.
1. Introduction
Risk ratios are often recommended for summarizing the relationship between a

covariate and an outcome in epidemiology [1–10]. They are simple and easy to

compute [11–13], and when outcomes may exhibit correlation within clusters,

‘robust’ standard errors are available [10,14]. Many researchers report risk ratios

in studies of infectious disease outcomes within clusters or communities of

interacting individuals, including studies of H1N1 influenza [15,16], Ebola

[17,18], leprosy [19] and varicella [20]. When the outcome is an infection indi-

cator, the covariate of interest may correspond to a preventive treatment like

vaccination, a risk factor like immune status or the presence of a co-morbid con-

dition, or a demographic characteristic like age, sex or socio-economic status.

Contagion within clusters may induce dependence in cluster members’ infection

outcomes [21], but the effect of a covariate under contagion may be complicated:

different values might alter an individual’s susceptibility to infection, or their

infectiousness once infected, or both [22–24].

Infectious disease epidemiologists have repeatedly warned that when out-

comes are contagious, simplistic summaries of risk may be misleading

[24–35]. Researchers have argued that bias can arise when analytical methods

do not separate the effects of a covariate on susceptibility to infection from

infectiousness once infected [24,29,36], or when individual-level variation in

exposure to infection is ignored [26,27,34,36–39]. Epidemiologists have

suggested that risk ratios may not always give a reasonable summary of indi-

vidual-level covariate effects. For example, risk ratios are often assumed to be

time-invariant, but they can change over time in both observational [40] and

experimental [41] studies. Likewise the risk ratio, as a measure of the effect of

a vaccine, depends on both the time at which outcomes are observed and the

population-level vaccine coverage [42]. However, epidemiologists have not
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explained how these issues are related, nor demonstrated

formally why the risk ratio may be an unsatisfactory measure

of association under contagion for empirical research on

infectious diseases. Prior work does not provide guidance

about the disease dynamics and study design features that

are most likely to give rise to profoundly biased estimates.

In this paper, we investigate the properties of the risk

ratio when outcomes are contagious within clusters, and

explain how these properties depend on the covariate of

interest and the epidemiologic features of disease trans-

mission. We first introduce a canonical definition of

infectious disease contagion, based on the widely used

susceptible–infective epidemic model [43,44]. This structural

description of disease transmission formalizes the epidemio-

logic intuition that a susceptible individual’s risk of infection

at a given time depends both on their own traits, and those of

their infectious contacts [36,39,45]. We define the inferential

target as the ratio of instantaneous individual-level risks

(hazards) of infection under a one-unit change in the value

of a covariate [28,34], and show that the risk ratio can be a

profoundly biased approximation of this quantity. For the

simplest setting of clusters of size two, we describe conditions

under which the risk ratio exhibits the most egregious form of

error, bias ‘across the null’, in which the direction of the esti-

mated effect is in error. Further analytic results and

simulations provide insight into the behaviour of the risk

ratio under contagion in clusters of larger size and in ran-

domized trials. These results provide the first formal

description of the pathological properties of the risk ratio

under common assumptions about contagion. Finally, we

explain these findings in the epidemiologic language of bias

induced by confounding.
2. Setting
Consider a collection of clusters (e.g. households, workplaces,

villages), with ni subjects in cluster i. Let Yij(t) be the binary

indicator of infection for subject j in cluster i on or before time

t � 0. Let Ti be the time at which outcomes in cluster i are

observed and recorded by researchers. We consider a single

time-invariant binary covariate xij for subject j in cluster i.
The risk ratio is defined as

RR ¼
E[Yij(Ti) j xij ¼ 1]

E[Yij(Ti) j xij ¼ 0]
: ð2:1Þ

The risk ratio is implicitly a function of the observation time

Ti for each cluster i [46].

We describe a stochastic transmission model based on

the canonical susceptible–infective model of infectious dis-

ease contagion within clusters [36,39,43–45], then

characterize the hazard ratio corresponding to a one-unit

change in a covariate associated with susceptibility to dis-

ease. The susceptible–infective model captures the intuition

that the risk to a susceptible individual at a given time is

given heuristically by

risk of infection ¼ (susceptibility)� (force of infection),

ð2:2Þ

where ‘susceptibility’ is a function of the subject’s own

characteristics, and ‘force of infection’ summarizes the risk

transmitted by that subject’s infectious contacts, including

from outside of the cluster.
To formalize this risk, let tij be the minimum of the infec-

tion time of subject j in cluster i and the observation time Ti,

so that Yij(t) ¼ 0 for t�tij, and Yij(t) ¼ 1 for tij , t � Ti. A sub-

ject j in cluster i is called susceptible at time t if Yij(t) ¼ 0, and

infected if Yij(t) ¼ 1. Consider the possible sources of trans-

mission to a susceptible subject j in cluster i. First, j may

be infected by exposure to an exogenous source of infec-

tion (sometimes called the community force of infection if

clusters are households). Let te
ij be the waiting time for j to

be infected from this exogenous source, and let le
ij(t) be the

hazard of this event at time t. Second, suppose another sub-

ject k in cluster i becomes infected at a time tik [ [0, Ti), which

is defined similarly to tij as the minimum of the infection time

of subject k and cluster i observation time Ti. Suppose subject

j is not infected at time tik, Yij(tik) ¼ 0. Let tk
ij be the waiting

time (measured since tik) for k to transmit the infection to j,
and let lk

ij(t) be the hazard of this event at time t . tik. For

each cluster i and susceptible subject j, the total hazard

experienced by a susceptible individual j is the sum of

these hazards,

lij(t) ¼ le
ij(t)þ

Xni

k¼1

lk
ij(t)Yik(t): ð2:3Þ

The additive form of (2.3) arises because j experiences compet-
ing risks of infection: from the exogenous source, and from

each of their infectious contacts. Under this simple generative

process, subjects may not be re-infected.

We assume for simplicity that the hazards le
ij(t) and lk

ij(t)
are Cox-type models: each decomposes into the product of a

possibly time-varying force of infection and a function of cov-

ariates. Let le
ij(t) ¼ ai(t) exp [xijb], where ai(t) is the possibly

time-varying exogenous force of infection to cluster i, and b is

a susceptibility parameter corresponding to the binary covariate

x. Likewise, when t . tik, let lk
ij(t) ¼ vikj(t� tik) exp [xijbþ xikg]

where vikj(t 2 tik) is the possibly time-varying force of infection

from subject k to subject j in cluster i, and g is an infectiousness

parameter corresponding to the binary covariate x. Then the

total infection hazard to susceptible subject j in cluster i at

time t becomes

lij(t) ¼ exijb ai(t)þ
Xni

k¼1

Yik(t)vikj(t� tik) exikg

 !
: ð2:4Þ

The multiplicative relationship between susceptibility exp [xijb]

and the total force of infection in (2.4) mirrors the heuristic

description of infection risk given by (2.2). Figure 1 shows a

schematic depiction of the transmission model in a cluster of

size three. The risk of infection experienced by a susceptible sub-

ject j increases over time as individuals around j become

infected. Since a covariate x may, in general, alter infectiousness,

the magnitude of risk increase to j with every subsequent con-

tact, who become infected, depends on that individual’s

covariate.

When xij ¼ x is constant across individuals, ai(t) ¼ 0, and

vikj(t 2 tik) ¼ v, the process becomes the standard continuous-

time Markov susceptible–infective model within clusters.

The formulation of the hazard of infection in (2.4) mirrors a

transmission model proposed for semi-parametric relative

risk regression [36]. The model captures temporal changes in

post-infection transmission via the functional form of vikj(t 2

tik), which can accommodate latency or other changes in infec-

tiousness over time.
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Figure 1. Schematic of hazards in the transmission model for a cluster of size three. Grey colour indicates x ¼ 1. Before the first infection, subject j experiences only
an exogenous (community) force of infection ai(t), because neither k nor l is infected. After k is infected, the hazard to j increases in proportion to the infectious-
ness of k, which is a function of xik ¼ 1. Likewise, after l is infected, the hazard to j increases in proportion to the infectiousness of l, with xil ¼ 0. Below, the sum
of hazards experienced by subject j is shown over time.

Table 1. Summary of parameters in the transmission model.

notation definition

ni size of cluster i

Ti observation time for cluster i

tij minimum of infection time of subject j in cluster i

and cluster i observation time Ti

xij covariate of interest, time-invariant

Yij(t) binary indicator of infection by time t

b susceptibility parameter for covariate x

g infectiousness parameter for covariate x

ai(t) exogenous force of infection, a function of time

vikj(t) force of infection from infectious k to susceptible j,

a function of time since infection of k
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The hazard ratio (HR) is the ratio of instantaneous risks

given by (2.4) under different values of the covariate x,

holding individual-level force of infection constant:

HR ¼
lij(t j xij ¼ 1)

lij(t j xij ¼ 0)
¼ eb: ð2:5Þ

The hazard ratio summarizes the individual-level association

between the covariate x and susceptibility to infection at time

t [28,34,46].

We emphasize that we do not treat the transmission

model characterized by (2.4) as an inferential model. We

have not specified the possibly time-varying hazards ai(t)

and vikj(t), nor showed that any feature of the process is

identified by a particular observation scenario. Instead, (2.4)

characterizes the transmission dynamics of infection by

which the observable data are assumed to be generated.

Table 1 summarizes the parameters that define this process.
It seems reasonable to expect the risk ratio given by (2.1)

for the binary variable x, as a marginal or population-level
measure of association, to be meaningful for assessment of

the ratio of conditional risks (2.5) experienced by an individual.

Since the hazard ratio (2.5) evaluated at a time t is time-

invariant, we might expect the risk ratio, as a cross-sectional

measure of association at time t, to provide similar evidence

about the relationship between x and the outcome. In particu-

lar, researchers may wish to avoid a particularly egregious

form of bias, in which the direction of the estimated effect is

opposite that of the true effect. For example, if x ¼ 1 is associ-

ated with reduced susceptibility to infection, we would like to

see that RR , 1. To make this notion more formal, we define a

general property that we would like the risk ratio to satisfy.

Definition 2.1. (Direction-unbiasedness of risk ratio.) If HR ,

1, then RR , 1, if HR ¼ 1, then RR ¼ 1, and if HR . 1, then

RR . 1.

We say that for a particular study design and values of par-

ameters in (2.4), the risk ratio is direction-unbiased if definition 2.1

holds. When definition 2.1 does not hold, we say that the risk

ratio exhibits ‘bias across the null’ because its direction is

opposite that of the true effect eb. Definition 2.1 is a relatively

weak requirement: it does not imply zero bias, nor monotoni-

city in the risk ratio as a function of the hazard ratio, nor

any particular functional relationship between the two.
3. Results
3.1. Clusters of size two
We first consider a simple parametric version of (2.4) with two-

person clusters and balanced covariate values for which a

variety of precise analytic results can be derived. This setting

is based on a two-person infectious disease contagion model

introduced previously [47–49], and serves to illustrate the

potential for the risk ratio to give a misleading summary of
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association under contagion. Clusters of size two appear in

empirical study designs, including HIV transmission in couples

[50,51], and mother-to-child transmission of Staphylococcus
aureus [52,53]. Consider the transmission model characterized

by (2.4), where each cluster i consists of exactly two subjects:

ni ¼ 2. Assume also that the covariate is balanced within the

cluster, subject 1 has xi1 ¼ 1 and subject 2 has xi2 ¼ 0; all subjects

are uninfected at baseline, Yij(0) ¼ 0; and follow-up time

is constant, Ti ¼ T for all i. Additionally, assume there is a

constant exogenous force of infection ai(t) ¼ a, and constant

within-cluster contagion vikj(t 2 tik) ¼ v per susceptible j and

infected k. The hazards of infection experienced by subjects 1

and 2 in cluster i become li1(t) ¼ exp (b)(aþ vYi2(t)) and

li2(t) ¼ aþ v exp (g)Yi1(t), respectively. The following results

establish the properties of the risk ratio as an approximation

to the hazard ratio in several relevant special cases. Unless other-

wise stated, we assumea . 0 andv . 0. Derivations and proofs

of all results are given in the electronic supplementary material.

Result 3.1. (No within-cluster contagion.) Suppose v ¼ 0. For

any T . 0, the risk ratio is direction-unbiased.

Thus when the outcome is not transmissible within

clusters, the risk ratio is direction-unbiased.

Define the ‘null’ hypothesis under the transmission

model as b ¼ 0, so that all subjects are equally susceptible

to infection.

Result 3.2. (Under the null.) Suppose b ¼ 0 and T . 0. Then

if g , 0, RR . 1; if g . 0, RR , 1; and if g ¼ 0, RR ¼ 1.

This result means that when the covariate does not affect sus-

ceptibility to infection, the direction of the risk ratio is entirely

determined by the infectiousness coefficient g. In particular,
when the covariate reduces infectiousness (g , 0)—as many

treatments do—the risk ratio can be greater than one.

Result 3.3. (Homogeneous infectiousness.) Suppose g ¼ 0.

For any T . 0, the risk ratio is direction-unbiased.

Therefore, if the covariate does not alter infectiousness,

direction-unbiasedness holds.

Result 3.4. (Bias across the null.) Suppose either b , 0 and

eg < min {e2b,eb þ (a=v)(eb � 1)} , orb . 0 and eg . max {e2b,

eb þ (a=v)(eb � 1)}. Then there exists t* . 0 such that for all

T . t*, the risk ratio is not direction-unbiased.

This result states that the risk ratio can be biased across

the null when b is non-zero. Figure 2 illustrates result 3.4.

Direction-unbiasedness under definition 2.1 does not

imply zero bias. Figure 3 shows log[RR] as a function of b

and g for several values of v/a. Under the transmission

model (2.4), any covariate can be represented by a point in

this two-dimensional (b, g) space, corresponding to its effects

on susceptibility and infectiousness. Other study design par-

ameters govern the behaviour of the risk ratio as a function of

b and g. The ratio v/a summarizes the relative contribution

of within-cluster transmission compared to transmission

from the community. To make results comparable in every

sub-figure, the observation time T is selected so that cumulat-

ive incidence at time T when b ¼ 0 and g ¼ 0 is held constant

at approximately 0.15. Figure 3a shows the magnitude of bias;

as the ratio v/a increases, the absolute value of the bias

becomes larger even in regions where direction-unbiasedness

holds. The electronic supplementary material provides a deri-

vation of an exact expression for log[RR] and similar plots for a

wider range of parameters a and v. As an approximation to
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the hazard ratio, the risk ratio is always biased unless b ¼ 0

and either v ¼ 0 or g ¼ 0 holds. For all other combinations

of parameters, whenever the risk ratio is not biased across

the null, it is biased towards the null hypothesis of b ¼ 0.
3.2. General clusters
The results derived above address performance of the risk

ratio in clusters of size two. However, most empirical cluster

cohort studies of infectious diseases involve variable cluster

sizes and a more complex design. Several factors may influ-

ence the behaviour of the risk ratio in empirical studies,

including epidemiologic features like the exogenous force of

infection ai(t), the force of contagion vikj(t), and aspects of

study design such as experimental assignment of the covari-

ate x, the duration and variability of observation time Ti,

cluster size distribution, or selection of clusters with or

without infected individuals at baseline.

Result 3.5. (No within-cluster contagion.) Suppose vikj(t) ¼ 0

for all t and xi ¼ (xi1, . . ., xini
) is independent of fai(t), ni, Tig.

Then the risk ratio is direction-unbiased.

Results 3.1 and 3.5 confirm the intuition that when there

is no within-cluster contagion, and the covariate is
independent of the force of infection and observation time,

the risk ratio is direction-unbiased.

Result 3.6. (Independent x.) Suppose the covariates xi ¼ (xi1,

. . ., xini
) are jointly independent and xi is independent of

fai(t), vikj(t), ni, Tig. Then the risk ratio is direction-unbiased.

Joint independence of within-cluster covariates guaran-

tees direction-unbiasedness for any parameter values.

The risk ratio is not generally direction-unbiased when

the joint distribution of xi is dependent. For example, bias

across the null may occur under two common randomization

schemes used in clinical trials: ‘block randomization’ within

clusters, when a fixed number of subjects per cluster have

x ¼ 1 with Pr (xi) ¼
�ni
ki

��1
1{
P

j xij ¼ ki}, and ‘cluster randomiz-

ation’ with xij¼ 1 for all j in some subset of clusters, and xij ¼ 0

for all j in the remaining subset. In general, when the joint

distribution of xi is not independent, or when there is hetero-

geneity in ni, ai(t), or vikj(t) across clusters, the risk ratio need

not be direction-unbiased, even when g ¼ 0. Dependence in xi

may occur in observational studies, where xi may be depen-

dent due to shared environment, genetic factors or other

forms of dependence within clusters. For example, an obser-

vational study of heterosexual partnerships might exhibit

dependence on a covariate for gender.



−4 −2 0 2 4

−4 −2 0 2 4

−4

−2

−
3

−
2

−
2.

5

−
1

−
1

−
2

−
3

−
3 −

1
−

2−
3.5

−
1.

5

−
0.

5

−
0.5

−
0.5

−
1.5

−
2.5 −2.5

−
1.

5

0

00

0.5 0.5 0.5

1 1 1

21.5 1.5
1.5

0

2

4

−4

−2

0

2

4

b b b

g

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

g

k = 1 k = 2 k = 3(a)

(b)

Figure 4. Risk ratio (log) and region of bias across the null as a function of true covariate effects b and g when cluster size is constant (ni ¼ 4 for all i) and
distribution of x is block randomized:

Pni
j¼1 xij ¼ k. Row (a) shows log[RR], and (b) shows the region of bias across the null (where log[RR] and b have opposite

signs). In all plots a ¼ 0.0001, v ¼ 0.01, N ¼ 500, Ti ¼ 450 and no subjects are infected at time zero.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170696

6

3.3. Simulation results
Analytical expressions for the bias of the risk ratio as an approxi-

mation to the hazard ratio are intractable in general. However,

simulations can provide further insight under particular epide-

miologic and study design parameters. In simulations, we vary

the distribution of covariates xi, cluster size ni, observation time

Ti, infected cluster members at baseline and values of force of

infection parametersa andv, which are assumed to be constant

over time and clusters. A comprehensive set of simulation

results and R code [54] for replicating the simulations appear

in the electronic supplementary material.

Some properties of the two person-cluster case hold in

more complex scenarios. Figure 4 shows results for clusters

of size four and block randomized distribution of x, such

that each cluster has exactly k subjects with x ¼ 1, k ¼ 1, 2,

3. The behaviour of the bias in figure 4 mimics that of the

two-person cluster case. We demonstrated analytically in

result 3.5 that direction-unbiasedness under no within-cluster

contagion holds under independence of xi and cluster level

parameters ai(t), ni and Ti. The simulation shows that results

under constant cluster size and block randomized x are simi-

lar to those in the two-person cluster case for sufficiently

large observation times Ti.

It follows from result 3.6 that the risk ratio is direction-

unbiased under independent Bernoulli assignment of xi. In

practical intervention trials, many studies in small clusters

employ block or cluster randomization. Simulation results

show that both of these methods result in bias across the null

in a region of (b, g) space. Figure 4 shows that block randomized

distribution of xi can result in bias across the null when b and g

have the same sign and g is more extreme than b. Figure 5 illus-

trates cluster randomized distribution of xi, showing bias across

the null in regions where b and g have opposite sign.

When cluster size ni varies, bias patterns can change sub-

stantially with the nature of dependence in the distribution of

xi. Even under block randomization, the pattern of bias across

the null differs depending on allocation proportion, and

generally worsens with imbalance between Pr (xij ¼ 1) and
Pr (xij ¼ 0). Figure 6 illustrates bias across the null under vari-

able cluster sizes with exactly one subject per cluster having

x ¼ 1, and figure 7 shows balanced block randomized x under

variable cluster sizes. It is not necessary forg to be more extreme

than b, nor must these parameters have the same sign, to

observe bias across the null. While regions where the risk ratio

exhibits bias across the null become smaller in figure 7 com-

pared to figure 6, in both cases it is still present when g ¼ 0.

Thus, the desirable property of direction-unbiasedness under

homogeneous infectiousness (result 3.3 in two-person cluster

case) disappears when cluster sizes vary.

The duration of observation influences the size of the region

in (b, g) parameter space where the risk ratio exhibits direction

bias. Longer observation times increase the region of direction

bias under block randomized distribution of x and reduce the

size of this region under cluster randomized distribution of x.

When the distribution of x is jointly independent, the risk

ratio is always direction unbiased; however, increasing the

observation time increases the absolute value of the bias.

When observation time varies from cluster to cluster, the be-

haviour of the bias remains similar to the case where all

clusters are observed for the same duration, when all other

study design parameters are kept the same.

In real-world cohort studies of infectious disease out-

comes, researchers often select clusters (e.g. households)

based on infection outcomes detected at baseline (sometimes

called ‘index’ cases), especially for diseases with low overall

prevalence or community force of infection, and risk ratios

are computed at follow-up for cluster members susceptible

at baseline. Simulation results, given in the electronic sup-

plementary material, show that when subjects are infected at

baseline, resulting direction bias depends on the distribution

of x among infected and uninfected subjects at baseline.
4. Discussion
We have applied a standard and widely accepted measure

of association to outcomes generated by a canonical
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stochastic model of infectious disease contagion. Infectious dis-

ease epidemiologists have warned that simplistic summaries of

association can be misleading in the presence of contagion, but

none have explained formally how and why these summaries

depend on the susceptibility and infectiousness effects of the

covariate. The results presented here provide the first formal

evidence of the pathological properties of the risk ratio under

contagion. When the distribution of a covariate is dependent

within clusters and associated with both susceptibility to infec-

tion and transmissibility once infected, the risk ratio for that

covariate may imply an aggregate effect whose direction is

opposite that of its individual-level effect on susceptibility to
infection. This form of grossly misleading error may occur

even when the covariate effects on susceptibility (b) and infec-

tiousness (g) have the same sign. For example, a vaccine

might protect individuals who receive it from infection (b ,

0), and reduce their infectiousness (g , 0) if they become

infected. Clearly such a vaccine should be regarded as helpful,

but the risk ratio measured from a block-randomized trial could

show RR � 1.

Our findings apply to many other traditional measures of

association between a covariate and outcome under conta-

gion. For example, the odds ratio (OR) always indicates the

same effect direction as the risk ratio. That is, if RR , 1
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then OR , 1, and if RR . 1 then OR . 1. Therefore, the odds

ratio can be expected to exhibit bias across the null under con-

tagion whenever the risk ratio does. Likewise, the risk

difference, attributable risk, and some measures of vaccine

efficacy will suffer from direction bias under precisely the

same conditions as the risk ratio.

Characterizing the bias of the risk ratio as an approxi-

mation to the susceptibility effect of a covariate gives clues

about the performance of the risk ratio in a variety of empiri-

cal settings. Under the transmission model described by (2.4),

the effect of any covariate x can be represented by a point in

the two-dimensional (b, g) space shown in figures 3–7

according to its true effect on susceptibility (b) and infectious-

ness (g). In particular, when x ¼ 1 denotes treatment or

vaccination intended to reduce both susceptibility and infec-

tiousness, we would expect its effect to be localized in the

lower left quadrant of this space. For example, challenge

studies have demonstrated the protective effect of influenza

vaccine against infection (b , 0), and against infectiousness

via reduction in viral shedding (g , 0) [55]. We have

shown that the risk ratio describing vaccine effect may be

biased across the null in this setting (i.e. RR . 1 even

though the vaccine protects against susceptibility and infec-

tiousness). The likelihood of such egregious bias depends

on disease parameters a and v, and may be more likely to

arise when using a block randomization study design. As

another example, antiretroviral drugs may be given to

people at risk for HIV infection as ‘pre-exposure prophylaxis’

to reduce susceptibility to HIV infection (b , 0) [56]. But anti-

retroviral HIV drugs also reduce viral load, and hence

diminish infectiousness of people living with HIV (g , 0)

[57]. Susceptibility and infectiousness effect sizes of antiretro-

virals are quite large, which could make it less likely that the

risk ratio would exhibit direction bias in this setting.

When x is a variable associated with an increased risk of

infection, it may be localized in the upper right quadrant of

the (b, g) covariate effect space. For example, a history of injec-

tion drug use is a risk factor for both acquiring (b . 0) and
transmitting (g . 0) HIV and hepatitis C infections [58], and

the risk ratio may be biased across the null under some study

designs, particularly block randomization, in this setting. The

region in the (b, g) space where risk factors exhibit direction

bias is generally larger than that for protective covariates con-

ditional on the study design and duration of observation.

Finally, a covariate may have differential effects on

susceptibility and infectiousness. It may, for instance, increase

susceptibility to infection, but reduce infectiousness, placing it

in the lower right quadrant of the (b, g) space. For example,

HIV infection may increase susceptibility to tuberculosis infec-

tion and clinical disease (b . 0) [59]. At the same time, studies

have shown that people with tuberculosis co-infected with

HIV may be less infectious than HIV-negative individuals

(g , 0) [60]. We have shown in simulation that when all subjects

in the cluster have the same value of a covariate (e.g. under clus-

ter randomization), the risk ratio may be biased across the null in

the regions of the (b, g) space where the signs of b and g are

opposite. Bias across the null also occurs under some block ran-

domized designs when cluster sizes vary.

The bias of the risk ratio as an approximation to the

hazard ratio (2.5) can be readily understood in terms of con-

cepts already familiar to epidemiologists [9]. When the

covariate x is dependent within clusters, other subjects’ cov-

ariate values can be regarded as a common cause of both a

given subject’s covariate value (via dependence), and that

subject’s outcome (via contagion). Omitting or failing to con-

dition on this common cause can result in bias. In other

words, the relationship between an individual’s covariate x
and their infection outcome is subject to confounding [9,61],

and bias across the null in this scenario is an example of

Simpson’s paradox [62–65].

The risk ratio is a valid statistical estimand: it summarizes

the marginal association between x and infection. However, if

investigators are interested in the causal direct (i.e. suscepti-

bility) effect of treatment on the person who receives it

[24,28], the risk ratio may give a very misleading estimate

of this quantity. One striking consequence of result 3.4 is
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that bias across the null can occur even when subjects are the

same except for their value of x (exchangeable) and treatment

(i.e. x ¼ 1) is randomized and balanced within each cluster.

The primary factor driving these results is contagion; bias

across the null can occur even in the absence of unmodelled

within-cluster heterogeneity, imbalance in covariate values,

or heterogeneity in contact patterns [27].

Whether severe bias occurs in a particular empirical

investigation depends on the epidemiologic features (i.e.

ai(t), vikj(t)) of the disease under study, the distribution of

cluster size ni and observation time Ti, and the distribution

of x within clusters. Recently, researchers have called for

more comprehensive simulation models to assist in the

design of intervention studies for infectious disease outcomes

[66]. Simulations such as those presented here may give

insight into the anticipated properties of effect measures

like the risk ratio under realistic models of infectious disease

transmission. When a disease is only weakly contagious

within clusters or when within-cluster transmissibility is

less than the exogenous force of infection, bias across the

null may be less likely to occur. This may be the situation

in many cohort studies of infectious diseases. Based on

result 3.6, researchers who wish to report the naive risk

ratio may avoid direction bias when they can ensure that

treatment assignment has independent Bernoulli distribution.

The use of the risk ratio may also be justified in observational

studies in which covariates of interest are independent or

only weakly dependent within clusters. In a wide variety of

empirical dependence settings in which infection is only

weakly contagious, the risk ratio may be a reasonable estima-

tor of the ratio of instantaneous risks. However, in studies of

highly contagious outcomes (e.g. Ebola) in which v/a is

large and the protective effect of the intervention is weak,

the risk ratio may exhibit direction bias under some designs.

Our analysis is subject to several limitations. First, we

have focused primarily on the conditions under which the

risk ratio can exhibit the most misleading form of bias—

bias across the null. But even when direction-unbiasedness

holds, the risk ratio is almost always a biased approximation

of the covariate effect on susceptibility [27,28,31,34,67]. When

the magnitude of an estimated risk ratio is important for

decision-making, a more detailed study of bias may be war-

ranted. Second, the transmission model in this analysis is

represented by a standard stochastic susceptible–infective

model with subject-specific covariates and an exogenous
force of infection. This setting provides a simple generative

model that incorporates features of infectious disease conta-

gion relevant to the properties of the risk ratio. However,

this model does not capture several important aspects of

infectious disease dynamics, including recovery, removal,

re-infection or multiple infections. Further investigation is

necessary to determine properties of the risk ratio under

more complex assumptions about disease dynamics.

Finally, the purpose of this work is to explain why the risk

ratio may not be a satisfactory measure of association for epide-

miologic studies of infectious disease outcomes. We have not

addressed correction of the risk ratio, nor proposed alternative

strategies for estimating the hazard ratio. Fortunately, epide-

miologists have developed deterministic and stochastic

models of infectious disease transmission in groups that take

exposure to infection into account [37,43,44]. Several researchers

have developed inferential approaches that capture infectious

disease transmission dynamics and permit adjustment for indi-

vidual-level factors [36,37,68–70]. Some analyses of contagious

outcomes adjust for variables that may be correlated with

exposure to infectiousness [71–74]. It remains an open question

whether standard regression adjustment using a summary of

infection outcomes of other individuals can deliver risk ratio

estimates that are direction-unbiased.
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