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A main goal of mathematical and computational oncology is to develop

quantitative tools to determine the most effective therapies for each individual

patient. This involves predicting the right drug to be administered at the right

time and at the right dose. Such an approach is known as precision medicine.

Mathematical modelling can play an invaluable role in the development of

such therapeutic strategies, since it allows for relatively fast, efficient and

inexpensive simulations of a large number of treatment schedules in order

to find the most effective. This review is a survey of mathematical models

that explicitly take into account the spatial architecture of three-dimensional

tumours and address tumour development, progression and response to treat-

ments. In particular, we discuss models of epithelial acini, multicellular

spheroids, normal and tumour spheroids and organoids, and multi-

component tissues. Our intent is to showcase how these in silico models can

be applied to patient-specific data to assess which therapeutic strategies will

be the most efficient. We also present the concept of virtual clinical trials

that integrate standard-of-care patient data, medical imaging, organ-on-chip

experiments and computational models to determine personalized medical

treatment strategies.
1. Introduction
In the last decade, an increased understanding has developed around the notion

that cancer is not a single disease. While all cancers manifest themselves as an

uncontrolled growth of abnormal cells, they are actually distinct neoplastic dis-

orders that possess different genetic and epigenetic alterations, underlying

molecular mechanisms, histopathologies and clinical outcomes [1,2]. Such a het-

erogeneous family of diseases should be treated with therapies that are tailored to

the features of particular tumours. With this goal in mind, the term ‘precision

medicine’ was created to describe a healthcare model that focuses on developing

effective treatments based on patients’ genetic, molecular and environmental

factors [3]. This does not imply developing unique medical treatments for each

individual person, but stratifying patients based on the predicted response to

or risk of a given therapy. With respect to cancer treatment, the goal is to match

each patient with the most accurate and effective treatment, without the need

to create pharmaceuticals for each individual tumour. Recently, several research

groups have discussed this concept in the context of melanoma, lung, breast

and gastrointestinal tumours [4,5], as well as biomarker development, analyses

of histomorphology and epigenomics [6,7].

Tumours undergo dynamic spatio-temporal changes, both during their pro-

gression and in response to therapies. Tumour clonal composition may change, if

the drug-sensitive cells are killed; cellular phenotypes and features can evolve,
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contributing to high heterogeneity; and the tumour microenvir-

onment can be altered, resulting in the emergence of specific

tumour niches. Because of this inevitable tumour plasticity,

therapeutic strategies should be adaptable enough to address

the emerging targets rather than using a one-size-fits-all

approach. Adjusting treatment schedules to the responding

tumour is the foundation of the adaptive therapy concept [8,9].

The idea behind such therapies is to use mathematical modelling

and computer simulations to examine which administration

schedules predict the most promising therapeutic responses.

In recent years, there has been enormous progress in the

development of novel experimental cultures that can mimic

the structure and function of living tissues and so can more faith-

fully represent tumour behaviour under treatment. In addition

to typical two-dimensional (2D) cultures, in which cells are

grown in monolayers covered by a medium with dissolved

nutrients and drugs, more realistic three-dimensional (3D) cul-

tures of multicellular spheroids have been developed [10,11].

In these models, the cells are grown embedded within hydrogels

that mimic the extracellular matrix (ECM) and provide struc-

tural support and microenvironmental context. This enables

intracellular signalling and cell differentiation similar to that

observed in vivo. As a result, the non-transformed epithelial

cells can undergo epithelial polarization, creating hollow spheri-

cal acini with a shell of epithelial cells enclosing the inner lumen.

These cultures serve as an experimental model of normal organ

development. Various non-tumorigenic cell lines have been

grown as hollow acini, including those originating from the

breast [12], kidney [13], lung [14], pancreas [15] or prostate

[16]. Such 3D cultures have also been used to examine changes

in both the growth and morphology of non-tumorigenic cells

in altered microenvironments [17,18], to delineate the onco-

genetic mechanisms of mutated cells [19,20] and to test the

response of tumour cells to various treatments [21,22].

Self-organizing epithelial acini were among the first 3D

in vitro cultures where individual cells were able to develop

the structure and function (to some extent) of the organ from

which they were derived. Other organoid cultures include

branching morphogenesis of mammary [23] or salivary [24]

glands, and the development of multi-layered multi-lineage

cysts [25], cortical polarized tissues [26] and interstitial crypts

[27]. Additionally, several 3D co-culture systems have been

developed that allow for investigation of how the different

types of cells interact with one another. These include co-cul-

tures of tumour cells with cancer-associated fibroblasts,

which show that cells’ mechanical collaboration results in

tumour cells’ migration, led by fibroblasts [28]. These 3D

co-cultures of tumour cells, endothelial cells and fibroblasts

allow for mimicking of the tumour microenvironment and

testing its response to chemo- and radiotherapy as a whole

complex system [21]. In addition to 3D cell cultures with

immortalized cell lines, patient-derived tumour organoid cul-

tures have recently been established as personalized models

for precision medicine [29,30].

In this review, we first discuss a variety of mathematical

models that are in silico analogues of 3D experimental cultures,

such as normal epithelia, tumour spheroids and organoids.

They mimic the progression of tumour development from

normal tissues to invasive tumours. We also present models

that go beyond the in vitro cultures and recreate conditions

characteristic of tumour tissues. These models form an

excellent base for applications to precision medicine and person-

alized oncology. This is a very active area of research, and thus it
would be impossible to discuss all modelling achievements.

Therefore, our main focus is on recent papers, published in

the last 10 years. We also restricted our review to models

(discrete, continuous and hybrid) that trace both the spatial

and temporal dynamics of tumour cells, though we did not

limit our review to any certain tumour type. Models that act

on the cell population level or simplify tumour morphology

and reduce dimensionality of the modelling problem often

neglect intratumoral and intercellular heterogeneity and will

not be discussed in this review. Our overarching goal is to pre-

sent quantitative frameworks that complement experimental

approaches and can be incorporated into the precision medicine

pipeline. The review is organized as follows. The first five

sections show the current state of adequate mathematical mod-

elling, and the next two suggest which research areas would

enhance applications of in silico models to precision medicine.

In §2, we discuss the mathematical modelling of acinar

structures and their mutants. In §3, we present computational

models of tumour multicellular spheroids. Section 4 is devoted

to in silico simulations of epithelial tissues and pre-invasive

tumours. Section 5 focuses on mathematical models of vascular-

ized tumours and angiogenesis. In §6, we present models of

tumour response to anti-cancer therapies. In §7, we recommend

areas of active biomedical research that should be incorporated

into mathematical models of tumours. Section 8 offers a dis-

cussion of organ-on-chip approaches, which are emerging

experimental tools for precision medicine research. We conclude

in §9 with a discussion on integrating all mathematical, compu-

tational and experimental approaches when using the virtual

clinical trials concept in order to predict the most effective treat-

ments for patients’ tumours with specific characteristics. In the

future, such methods can play a supportive role in personalized

medical care.
2. Mathematical models of epithelial acini
Epithelial acini, the stable 3D spherical structures composed of a

shell of tightly packed epithelial cells enclosing a hollow lumen,

are in vitro experimental models of epithelial ducts and cysts.

Experimentally, they are used to investigate how individual

cells can self-arrange into complex 3D morphologies and to

identify specific mechanisms that would prevent tumour

origination. The important area of current research is the exam-

ination of whether anti-cancer treatments induce changes in the

normal acinar structure and function, with the goal of designing

therapies that will not harm normal tissues.

Various mathematical models have been used to test the

rules for cell self-arrangement into epithelial acini. Grant et al.
[31] used a 2D hexagonal cellular automaton (CA) model to

represent a central cross-section through a growing epithelial

acinus. The authors specified a minimal set of axioms that

govern the behaviour of each individual cell based on the

host cell state and the contents of the neighbouring automaton

cells. This accounted for cell–cell interactions, if the neigh-

bouring automaton cell was occupied by another cell,

or cell–microenvironment interactions, if the neighbouring

automaton cell was empty. The computational procedure

reproduced several experimentally relevant cellular systems,

including normal hollow cysts, inverted cysts and pre-cancerous

lesions. This model has been subsequently extended to simu-

late alveolar morphogenesis and quantitatively compare the

simulated results with in vitro studies on alveolar AT II cell



(e) ( f )

(b)(a) (c)

(d )

(i)

(k) (l)( j)

(g) (h)

y x
z

Figure 1. Snapshots from simulations of normal organoids, multicellular spheroids and early tumour development. (a) A multi-lumen MDCK cyst analogue simu-
lated using the Potts model, from [34]. (b) A 2D cross-sectional view of the MCF10A in silico acinus modelled using the hexagonal CA model, from [35]. (c) An
MCF10A acinus simulated by the IBCell model, from [36]. (d ) An analogue of the NSCLC spheroid with a necrotic core simulated with Voronoi tessellation-based CA,
from [37]. (e) An invasive (fingered) spheroid modelled with the 3D Potts model, from [38]. ( f ) A stem cell-generated spheroid simulated with the CA model, from
[39]. (g) An off-lattice agent-based model reproducing metabolite distribution inside the spheroid, from [40]. (h) Off-lattice agent-based model of spheroids exposed
to the cell-cycle inhibitors, from [41]. (i) An agent-based hybrid model of a spheroid exposed to radiation, from [42]. ( j ) Micropapillary pattern of DCIS simulated
with the IBCell model, from [43]. (k) DCIS with calcification simulated with an off-lattice agent-based model, from [44]. (l) Organization of stem cells in the
intestinal crypt modelled using an off-lattice agent-based approach, from [45]. All images reprinted with permission.
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cultures [32]. This model was also used to investigate dynamic

changes in cell phenotypes, including cell polarization,

depolarization and anoikis, in computational analogues of

the experimental Madin–Darby canine kidney (MDCK) cysts

[32,33]. Such an integrated system yielded a way to formulate

and test plausible hypotheses of in vitro cellular and phenotype

dynamics based on computational axioms and axiom-

to-phenotype mapping. The authors further extended this

approach to explicitly include cell shape by using the cellular

Potts model, in which each cell is composed of several grid

points [34] (figure 1a). Computational analysis of the orien-

tation of cell division showed that acinar structures were

sensitive to alterations in the axis of cell division that, in certain

cases, resulted in aberrant morphologies.

Tang et al. [35] proposed a full 3D hexagonal CA model of

acini development and validated it with experimental data

from breast acini derived from the MCF10A non-tumorigenic

cell line (figure 1b). The authors constructed phenotypic tran-

sition maps between normal and aberrant morphologies and

identified the morphological stability conditions for preserving

acinus-like topology. The model was subsequently employed to
simulate the growth of MCF10A cells that overexpressed the

AKT-1 gene. These simulations showed that controlling the

rates of proliferating and apoptotic cells was not sufficient to

reproduce the sizes and morphologies of experimental

MCF10A-AKT-1 spheroids and that additional communication

between the mutated cells and the ECM had to be included in

the model to reproduce the development of mutated structures.

Rejniak [46] achieved a microscopic view on cell–cell and

cell–ECM interactions during acini formation with a math-

ematical model of deformable cells equipped with a set of

membrane pseudo-receptors. In this model, the extrinsic cues,

either from other cells or from the ECM, alter the expression

of cell membrane receptors. The receptor signature (defined

as a proportion of receptors engaged in cell–cell adhesion,

growth, death, cell–ECM adhesion or apical markers) deter-

mines whether the host cell will remain quiescent or initiate a

process of proliferation, epithelial polarization or apoptosis.

The individual cells were able to generate various mor-

phologies corresponding with different receptor signature

proportions, and the inspection of the whole threshold par-

ameter space, known as Morphocharts [47,48], allowed for
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identification of the necessary and sufficient conditions for cell

self-arrangement into stable hollow epithelial acini [49,50]. This

model, named IBCell (after ‘immersed boundary model of the

cell’), was calibrated to the experimental MCF10A cell cultures

and then used to delineate the molecular differences between

this non-tumorigenic cell line and the MCF10A-HER2 mutant

cells [36] (figure 1c). In addition to the known differences in

cell proliferation and apoptosis between mutant and non-

tumorigenic cells, computer simulations indicated that HER2

cells might lose negative feedback from auto-secreted ECM pro-

teins, which were responsible for the stabilization of acinar

morphologies in the MCF10A cells. That was confirmed exper-

imentally by the differential expression of laminin proteins

around the perimeters of both kinds of structures [51].
 Interface
15:20170703
3. Mathematical models of tumour multicellular
spheroids

In silico models of 3D tumour masses, usually called multicel-

lular tumour spheroid (MCS) models, represent the initial

phases of avascular tumour development or the formation of

(micro)-metastases. When compared with 2D monolayer

models, MCS models more accurately recapitulate the

dynamics of tumour growth, complex cell–cell and cell–

ECM interactions, tumour heterogeneity and intratumoral

drug penetration. Therefore, they are able to more accurately

predict how tumour masses respond to treatments than the

2D monolayer models. Radszuweit et al. [52] performed a com-

parative analysis between the growth kinetics of 2D

monolayers and that of 3D spheroids via a CA single-cell,

coarse-grained model together with an analytical model that

only considered cell division and migration (i.e. it neglected

other processes, such as mutations or apoptosis). The mapping

between 2D and 3D results supported observations that the

more accurate spatial predictions of population growth are

achieved when using 3D modelling approaches. The simu-

lated results were compared with in vitro and in vivo
experiments with murine embryonic fibroblasts (NIH3T3).

The development of spatially diverse regions—a necrotic

core, a ring of quiescent cells and a viable rim of rapidly prolif-

erating cells—that is characteristic of large MCSs has been

simulated using various modelling approaches, such as con-

tinuous models [53,54], CAs [55] or the immersed boundary

IBCell model [56]. In particular, Piotrowska & Angus [57] mod-

elled the impact of metabolites on necrotic core formation

using a many-cell CA model, in which each automaton site

can harbour several tumour cells. The authors calibrated their

model to the mammary carcinoma EMT6/Ro cell line and

discussed nutrient-dependent inefficiency in the production

of necrosis caused by hydrogen ion metabolites. Jagiella et al.
[37] used 3D agents defined by an unstructured lattice to

model cells surrounded by local concentrations of nutrients

and ECM. The authors presented the impact of metabolites

excreted by dying cells (growth inhibitor) on the development

of a necrotic core and compared the in silico results with non-

small-cell lung cancer (NSCLC) 3D cell cultures (figure 1d ).

The emergent MCS structure was investigated as a function

of cell metabolism under nutrient-rich and nutrient-poor

growth conditions and lactate-dependent cell death.

Meyer-Hermann [58] modelled cell invasive movement

within and migration out of the MCS via the agent-based Delau-

nay–Voronoi hybrid model (the Delaunay Object Dynamics)
with cells represented by weighted dynamic vertices. Exploita-

tion of model parameters defining cell elastic properties showed

that cell shapes are directly linked to the overall pattern of

tumour cell invasion. In this model, the adaptable internal cel-

lular structures affected the MCS features and the collective

behaviour of individual cells in tumours or lymphoid tissue.

The formation of finger-like invasive tumour cohorts arising

from MCS was modelled by Anderson et al. [59] using three dis-

tinct mathematical models (a hybrid CA, an evolutionary CA

and the immersed boundary framework) to examine the

impact of nutrient availability as a driving force for tumour

cell invasion. The three models independently concluded that

tumour invasion might be due to tumour cells’ interactions

with their microenvironment and results from cancer cells

adapting to selective microenvironmental pressures.

The necessity of incorporating tumour heterogeneity and

subclonal populations has been approached through discretiza-

tion of cellular components, which in turn allows for cell–cell

and cell–ECM interactions. Poplawski et al. [38] compared the

development of smooth (non-invasive) and fingered (invasive,

figure 1e) boundaries of avascular tumours using a 3D cellular

Potts model. Two morphology-related parameters were incor-

porated, diffusion limitation and tumour tissue–ECM surface

tension, and the authors showed that the sensitivity of 3D

tumour fingered morphology to tumour–ECM surface tension

increases with the size of the diffusion-limitation parameter.

These results are in agreement with experimental observations,

where tumour spheroids embedded in a 3D collagen matrix in

hypoxic conditions developed a branched tubular structure yet

remained unbranched in normoxic conditions. Lorenzo et al.
[60] used the phase-field method to account for the transform-

ation of healthy cells to cancer cells and diffusion–reaction

equations incorporating nutrient consumption and prostate-

specific antigen (PSA) production to reproduce the growth pat-

terns of prostate tumours. The authors used isogeometric

analysis with B-spline or T-spline functions to reproduce the fin-

gered growth of shape-unstable prostate spheroids in two and

three dimensions. These computations indicated that tumour

fingering minimizes the distance from inner cells to external

nutrients, contributing to cancer survival and further

development.

Enderling [61] used the CA model to investigate the link

between tumour morphology and the fractions of cancer stem

cells to non-stem cells. These two cancer cell subpopulations

differ in four traits: cell proliferative capacity, probability of

symmetric versus asymmetric divisions, migration potential

and spontaneous cell death. By varying these traits, the model

was able to generate various tumour morphologies, from

large spherical clusters to a collection of smaller tumour

nodules (self-metastases). The identification of the fraction of

cancer stem cells has an important consequence for effective

tumour treatment. If tumour survival were dependent on a

small subpopulation of cancer stem cells, then therapies target-

ing this cell population would provide an effective therapeutic

treatment. The same modelling approach was used in [39] to

investigate tumour cellular heterogeneity and the heterogeneity

of the cancer stem cell population (figure 1f ), as judged from

cells harvested in simulated core needle biopsies. The authors

concluded that less than 10% of the phenotypic heterogeneity

of the total tumour population could be observed in the

biopsies, including cases when cancer stem cells with low

tumorigenic potential may be isolated within aggressive

tumours. These simulations showed that single biopsy data
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may suggest treatment approaches that are not effective in

eliminating the tumour as a whole.

For the sake of minimizing the computational cost of agent-

based models, the inclusion of tumour microenvironment

(nutrients, drugs, ECM density) often relied on continuous

representation for exogenous factors (that is, the models were

hybrid [62]). More recent development of advanced 3D off-lat-

tice individual-based hybrid models includes a highly efficient

model by Cytowski & Szymanska [63], wherein the authors

simulated large systems (109 cells) by taking advantage of effi-

cient algorithms and high-performance computing. Kim et al.
[64] combined continuum descriptions for tumour regions of

stable density (such as the necrotic core) and discrete agent-

based descriptions for tumour regions with highly proliferat-

ing cells. With this model, the authors very efficiently

addressed the impact of the environment on tumour cell popu-

lation growth and adaptation to the multi-layered structure

and on the role of the nutrient supply (glucose and oxygen)

in the development of the necrotic core. Milotti & Chignola

[40] developed an off-lattice agent-based model with Delaunay

triangulation to represent cell shapes and used it to simulate

pre-vascular solid tumour growth below the diagnostic detec-

tion limit (figure 1g). The model quantified the main metabolic

pathways, growth, proliferation and death dynamics of

tumour cells and reproduced biochemical and mechanical

cell–cell and cell–environment interactions. These simulations

showed complex internal flows of nutrients and movements

of cells that cannot be observed experimentally. These predic-

tions provide novel clues as to tumour development and

potential therapies.

In silico MCS frameworks have been used to model various

anti-cancer treatments and combination therapies. Kim et al.
[41] used an off-lattice agent-based model to investigate

combined therapies with cell-cycle checkpoint inhibitors. The

authors considered cyclin-dependent kinases (CDKs), which

are crucial in the regulation of cell-cycle progression and so rep-

resent attractive targets in anti-cancer therapy. The simulated

results showed that, since CDK inhibitors may halt cell-cycle

progression at different checkpoints, the emerging MCS struc-

ture (tight versus dispersed colonies) had a strong impact on

drugs’ efficacy (figure 1h). Kempf et al. [42,65] addressed the

important aspects of radiotherapy-induced local oxygen fluc-

tuations within the MCS with an agent-based Delaunay–

Voronoi hybrid model (figure 1i). The authors proposed a

method by which an image-guided tool could improve treat-

ment schedules and oxygenation monitoring. Angus &

Piotrowska [66] simulated multi-dose radiotherapy protocols

with a 2D many-cell CA model calibrated to 18 treatment pro-

tocols from the experimental literature. This model reproduced

irradiation responses to multiple stimulations and predicted

that inter-fraction timing variations within one fractional

dose might significantly and cost-effectively enhance clinical

treatment efficacy. An alternative study by Gao et al. [67]

used the cellular Potts model to simulate the irradiation of glio-

blastomas and radioresistance of both cancer stem cells and

cancer cells. These simulations revealed that, in order to

match experimental observations, the fractionated radiation

treatment must induce a shift from asymmetric to symmetric

divisions of glioma stem cells. Karolak et al. [68] addressed

immunotherapeutic interactions in the MCS co-culture of mel-

anoma cells and T cells with a 3D off-lattice agent-based model.

This study predicted the necessary ratio of T cells to tumour

cells to eradicate the tumour cell spheroid.
4. Mathematical models of epithelial tissues
and early tumour development

The hallmarks of early tumour development are upregulated

proliferation and cell non-responsiveness to signals that control

normal tissue homeostasis. This results in the uncontrolled

growth of tumour cells. However, initial tumour development

is confined to and often restricted by the host tissue mor-

phology. For example, tumours that arise from epithelial

tissues initially repopulate the ductal and lobular lumens,

leading to ductal carcinoma in situ (DCIS) in breast ducts,

prostatic intraepithelial neoplasia in prostate glands or

polyps in colonic crypts.

Several mathematical models addressed the initiation and

early progression of ductal carcinomas. Rejniak & Dillon [43]

investigated properties of tumour cells that enable the emer-

gence of various forms of DCIS, including solid, cribriform,

tufts or micropapillary patterns observed in breast and prostate

pre-invasive ducts (figure 1j ). Using two deformable cell

models based on the immersed boundary method [46,69],

they predicted the tumours’ aggressiveness and invasive

potential by classifying them with respect to their proliferative

index and distortion of the axis of cell division. The authors

compared both features with the properties of epithelial

homeostatic maintenance in normal epithelial cells. Similar

DCIS patterns were modelled by Norton et al. [70] via an

agent-based model to represent both the epithelial and myoe-

pithelial cells that form the normal breast duct. The authors

took into consideration the mechanical effects of intra-ductal

pressure and myoepithelial contraction, as well as cellular pro-

liferation, apoptosis, adhesion and polarization, to delineate

mechanisms of DCIS progression. Boghaert et al. [71] used the

principles of the cellular Potts model to examine the relative

rates of cell proliferation and apoptosis that governed which

of the four morphologies (micropapillary, cribriform, solid

and comedo) would emerge. All of these models reproduced

DCIS histologies observed in cross-sections of the epithelial

ducts. Macklin and co-workers. [44,72] considered a longitudi-

nal section through the breast duct to investigate the

emergence of the necrotic core microstructure and intraductal

calcification (figure 1k). This agent-based model represented

cells as particles with phenotypes determined by genomic-/

proteomic- and microenvironment-dependent stochastic pro-

cesses. Cell motion and interactions between individual cells

and interactions between cells and the basement membrane

were modelled using the balance of biomechanical forces. This

model predicted that necrotic cell lysis can act as biomechanical

stress relief, leading to linear DCIS growth. The authors also pro-

vided a method for patient-specific calibration of the model

based on clinical histopathology data to validate model predic-

tions. Butner et al. [73] used a similar longitudinal morphology

of the breast duct to simulate growth and elongation of the duct

terminal end buds (TEBs) with a hybrid hexagonal CA model.

The authors studied the role of cellular differentiation pathways,

such as endocrine and paracrine signalling, in the development

of mammary glands, and they showed that the distribution of

cellular phenotypes within the TEBs was highly heterogeneous,

allowing for significant plasticity in phenotypic distributions

while maintaining biologically relevant growth behaviour.

The colon crypt is another epithelial tissue that has been

extensively modelled; van Leeuwen et al. [74,75] developed a

multi-scale model combining ordinary differential equations

(ODEs) describing the intracellular signalling pathways with
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an off-lattice agent-based model with Voronoi tessellation to

represent individual epithelial cells and their shapes. The

authors used this model to investigate the role of the Wnt-b-

catenin pathway in maintaining the structure of the epithelial

crypts, as well as tissue morphology alterations that resulted

from mutations most commonly observed in human colorectal

cancer. The 3D version of this model was used to compare two

hypotheses of monoclonal conversion in the colon crypts: the

asymmetric division of stem cells or microenvironmental sig-

nalling cues [76]. This model was used to simulate Delta-

Notch distribution in the cells forming the villi of small intes-

tines [77], and to investigate active and passive migration of

cells in the crypts [78]. A similar 3D model was also used to

simulate spatio-temporal organization of stem cells within

the interstitial crypt and address stem cell competition

within this tissue [45,79] (figure 1l ). The model predicted

that the epithelial tissue could fully recover even after elimin-

ation of a subpopulation of functional stem cells, which

challenged the current view of colorectal crypt stem-cell-

dependent organization. Bravo & Axelrod [80] proposed

another model of a virtual colon crypt based on the CA con-

cept to simulate cell dynamics and cell type plasticity in

normal crypts and in tumours under different therapy proto-

cols. The model was calibrated with measurements of

human biopsy specimens and verified by its ability to repro-

duce the experimentally observed monoclonal conversion by

neutral drift and formation of adenomas as well as by the

robust ability of crypts to recover from perturbation by

cytotoxic agents.
5. Mathematical models of vascularized tumours
and angiogenesis

A major step in the transition from an avascular benign tumour

to an invasive and metastatic one is the recruitment of vessels

from the surrounding tissues (a process of angiogenesis) and

the development of a vascular network. This de novo vascular-

ization enables more sufficient transport of nutrients to the

tumour, which leads to rapid outgrowth of tumour tissue,

tumour cell extravasation to the bloodstream and metastatic

spread to distant organs.

Several mathematical models have been proposed to

address the process of angiogenesis and the complexity of the

vascular network formation. Bentley and co-workers [81,82]

modelled the early stages of new vessel growth (the formation

of vessel sprouts, figure 2a) using the cellular Potts model inte-

grated with laboratory experiments. The authors simulated

endothelial cell rearrangement on the tips of the growing vascu-

lar sprouts and identified that differential adhesion dynamics

between endothelial cells regulated by Notch/vascular endo-

thelial growth factor receptor (VEGFR) signalling led to

competition for the tip-cell position. This model also demon-

strated that the rate of tip-cell selection determined the length

of sprout extension and regulated the topology of the vascular

network. Bauer et al. [93] also used the cellular Potts framework

to model vascular branching in response to both tumour-

secreted pro-angiogenic factors and endothelial cell inter-

actions with the surrounding ECM. The authors showed that

differences in the matrix binding affinity of vascular endothelial

growth factor (VEGF) isoforms resulted in vastly different

capillary morphologies. Merks and co-workers [94,95]

addressed the formation of more complex vascular networks
by coupling the cellular Potts model with chemo-mechanical

interactions between endothelial cells and the ECM. Systematic

exploration of cell migratory responses to the gradients of an

autocrine secreted diffusible chemoattractant allowed for pre-

dicting the complexity of the generated vascular network

topologies. These studies also included the role of ECM remo-

delling and mechanical properties in vascular sprouting.

Perfahl et al. [83] used an off-lattice agent-based model to rep-

resent individual endothelial cells and the mechanical forces

between them. This study showed that the degree of branching

and the network density depend on whether the parent vessel

was stretched or compressed; new sprouts were formed when

the parent vessel was highly compressed. The computationally

generated vascular networks showed a good qualitative

comparison with experimental results (figure 2b).

The complex topology of tumour vasculature leads to

irregular distribution of nutrients within the tumour tissue

and non-uniform penetration of the tumour tissue by drug

molecules. Secomb et al. [84,96] used the Green’s function

method to model time-dependent solute transport through

the microvascular network with realistic geometries and

solute transvascular exchange, diffusion and wash-out within

the tumour tissue. The authors investigated the structural

adaptation of tumour vasculature and its pruning in response

to haemodynamic and metabolic stimuli as well as spatial pat-

terns and frequency distributions of both oxygen and VEGF

concentrations around vascular networks of distinct topologies

(figure 2c). Welter and co-workers [87,97] modelled the com-

plex hierarchical tree-like vascular structures via a hybrid

model combining a discrete triangular grid-based vascular net-

work and a continuous description of a homogeneous medium

representing host or tumour cells. The authors investigated the

relation between the morphology of tumour vasculature and

the intra- and extravascular transport characteristics of blood

flow, oxygen distribution, interstitial fluid pressure and drug

delivery efficiency.

A transition from avascular to vascularized tumours that

included angiogenesis and vessel remodelling was modelled

by Wcislo et al. [98] with an off-lattice agent-based model

with semi-harmonic central forces simulating mechanical

resistance, coupled with reaction–diffusion equations to

describe changes in the levels of both oxygen and tumour

angiogenic factor. This study explained the mechanisms

of inward cell motion in avascular tumours, stabilization of

tumour growth by external pressure and trapping of healthy

cells by the invading cohorts of tumour cells. Shirinifard et al.
[85] used a 3D multi-scale cellular Potts model to computation-

ally investigate patterns of vascular remodelling due to tumour

outgrowth (figure 2d). The authors observed that avascular

tumours grew along the nearest blood vessel before initiating

the processes of angiogenesis and anastomosis (formation of

closed loops by growing capillaries). The interplay between

healthy and tumour cells during the angiogenesis process

was addressed by Perfahl et al. [99] with a CA model coupled

with a system of ODEs describing the concentrations of various

intracellular proteins. This model was also used for simulations

initiated with the experimentally derived vascular network

to predict the patterns of possible vascular remodelling.

Stéphanou and co-workers [86,100] relied on realistic murine

vascular topologies for calibration of a hybrid CA model of

tumour-induced angiogenesis (figure 2e). The authors

observed that tumour dormancy was a potential consequence

of the intense vascular changes in the host tissue. The vascular
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Figure 2. Snapshots from simulations of angiogenesis, vascularized tumour growth and tumour treatments. (a) Cellular Potts model of the vessel sprout formation,
from [82]. (b) Off-lattice agent-based model of the vascular network formation and branching, from [83]. (c) Structural adaptation of tumour vasculature in response
to external factors modelled as a network composed of straight vascular segments, from [84]. (d ) Three-dimensional cellular Potts model studying vascular
remodelling during the tumour growth, from [85]. (e) A hybrid CA model of tumour-induced angiogenesis and growth within a digitized vasculature, from [86].
( f ) Heterogeneous CA vascular network, from [87]. (g) Distribution of a blood-borne drug simulated with the hybrid model of discrete vasculature, continuous
tumour mass and drug kinetics, from [88]. (h) The Krogh cylinder model of the vasculature and the CA model of the tumour simulating treatment with an angio-
genesis inhibitor, from [89]. (i) Tumour response to HAP treatment simulated with the regularized Stokeslets method, from [90]. ( j ) ECM degradation by
chemotactic glioma simulated by a continuous model, from [64]. (k) Glioma spread within the 3D brain architecture modelled using the continuous model,
from [91]. (l) Tumour oxygenation predicted by the 2D hybrid CA model, from [92]. All images reprinted with permission.
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changes in the larger vessels affected the efficiency of oxygen

delivery in the vascular network and, in consequence, kept

tumour cells mostly in a non-proliferative hypoxic state.

Caiazzo & Ramis-Conde [101] investigated the effects of

hypoxia on the changes in glioblastoma cellular architecture

and the development of pseudo-palisade patterns with a

hybrid off-lattice agent-based model. This study showed that

heterogeneity in cellular response to hypoxia was a crucial

factor in pseudo-palisade formation, and that the selective pro-

cesses based on the metabolic switch were responsible for

tumour outgrowth and invasion.
6. Mathematical models of anti-cancer therapies
Since cancer is a complex systemic disease that evolves in

response to treatment and can adapt to changing environ-

mental conditions, it is difficult to predict which anti-cancer

treatments or treatment combinations will be the most effective

for a given patient’s tumour. Mathematical modelling provides

tools to test different therapeutic strategies to determine the

most efficient protocols that will administer the right treatment

at the right time and in the right dose. All major types of anti-

cancer treatments—chemo-, radiation- and immunotherapies,
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as well as their combinations—have been modelled using

spatially explicit mathematical frameworks.

One major impediment to successful chemotherapy is an

inefficient penetration of drug molecules through the tumour

tissue. If drug molecules do not reach the tumour cells in suffi-

cient quantities, the drugs will fail to eradicate these cells.

Several barriers to drug penetration were investigated by math-

ematical models. Rejniak et al. [102] modelled the role of

tumour tissue architecture on drug diffusive and advective

interstitial transport with the regularized Stokeslets method.

The authors showed that, if both modes of transport contribute

to drug movement equally (that is, the Péclet number has a

moderate value), the depth of tissue penetration by the drug

molecules strongly depends on tissue architecture. Therefore,

histology samples, routinely collected in the clinic during diag-

nostic biopsies, may help to predict how well a given drug

will penetrate a tumour. Boujelben et al. [103] used magnetic

resonance imaging (MRI) from a rodent brain to define a 3D

vascular network as a source of the drug in a continuous diffu-

sion–reaction mathematical model. The authors investigated

how physiological parameters of blood flow rates, vessel

permeability and tissue diffusion interact nonlinearly in drug

delivery to gliomas. Targeted therapeutics have been devel-

oped to reduce systemic drug toxicity. The novelty of

targeted drugs or imaging agents is that their molecules bind

to the specific cell membrane receptors expressed on tumour

cells but not on normal cells. Karolak and co-workers

[51,104] used an off-lattice agent-based model defined by a

digitized tumour tissue histology to explore the optimal

design of targeted agents that will ensure maximal efficacy

for a given patient’s tumour. The authors observed that

agents that have moderate affinity but are quickly released

from the vasculature bound to the cell-surface receptors with

similar efficacy to high-affinity molecules released at a slower

rate. These predictions may help in designing chemical com-

pounds of preferable properties to ensure the maximal effect

in tumours with given receptor expression levels. Another

class of therapeutic agents that allow for controlled release

of drug cocktails is nanoparticles. Curtis and co-workers

[88,105] investigated nanoparticle efficiency by employing

a hybrid model with a discrete vasculature, continuous

description of tumour mass and drug kinetics governed by dif-

fusion–reaction equations. The authors showed that, although

nanoparticles of larger diameter could deliver higher drug con-

centrations within the tumour tissue, these were outperformed

by small nanoparticles that were more uniformly distributed

within the tumour tissue and thus were more efficient, despite

their low drug loading (figure 2g).

Since vascularized tumours are a prerequisite to tumour

invasion and metastasis, drugs that target tumour vasculature

are promising anti-cancer treatments. Gevertz [89,106] mod-

elled angiogenesis inhibitors and vascular disrupting agents

in brain tumours with a CA model to represent the cells, a

Krogh cylinder model to represent the vasculature and a

continuous description of growth factors and both drugs’ con-

centrations (figure 2h). This model showed that the treatment

combination can exert less antitumour activity than a stand-

alone angiogenesis inhibitor treatment. Using a simulated

annealing algorithm, the model identified that a pulsed treat-

ment strategy minimized the number of active tumour cells

remaining after two cycles of angiogenesis inhibitor treatment.

Furthermore, three or four rounds of optimal therapy adminis-

tration yielded permanent growth inhibition of the simulated
tumours. The effects of combining antiangiogenic agents and

cytotoxic nanoparticles on normalization of leaky tumour

vessels and efficacy in control of tumour size were modelled

by Yonucu et al. [107] using the continuous partial differential

equation model that took into account tumour growth, angio-

genesis and interstitial fluid pressure. The authors observed

differences in drug extravasation that depended on the sche-

duling of combined therapy with increased overall effects

when the therapy was administered concurrently.

A different class of treatments has been developed to target

cells in the areas of low oxygen levels (hypoxia) that emerge in

large, poorly vascularized tumours. To eradicate tumour cells

in these areas, hypoxia-activated pro-drugs (HAPs) were

designed such that the cytotoxic compounds can only be

released when the oxygen level is very low. Mathematical

models explored how to effectively use HAPs. Foehrenbacher

et al. [108] used a Green’s function approach to calculate

tumour response to this treatment and the 3D spatial and longi-

tudinal gradients of oxygen and drug concentrations. The

authors showed that, to increase HAPs’ antitumour activity,

the rates of effector stability and pro-drug activation should

be optimized. Wojtkowiak et al. [90] presented an integrated

in vitro– in vivo– in silico study that used metabolic profiling

to improve HAP activity by combining it with short-term

hypoxia sensitizers (figure 2i). The authors showed that

acute increases in tumour hypoxia can be beneficial for improv-

ing the clinical efficacy of HAPs, but the timing and order

of administration of each of the therapeutics must be tightly

coordinated due to the short half-life of HAPs.

Clinically, the development of drug resistance is a signifi-

cant impediment in cancer treatment. Investigating how

resistance arises and how to overcome it is crucial for cancer

biology and mathematical oncology modelling. The emergence

of drug-induced resistance in tumour cells in response to drug

and oxygen gradients that can dynamically change over the

course of treatment was modelled using an off-lattice hybrid

agent-based model [109,110]. The authors identified the resist-

ance-prone regions in the tumour tissue, such as hypoxic

niches and tissue sanctuaries, in which tumour cells can

survive either by repairing the damage or by increasing their

tolerance to drug-induced damage. The authors also showed

that heterogeneous microenvironmental factors, rather than

cells’ clonal heritage, may drive drug-induced resistance.

Lindsay et al. [111] developed a stochastic model to explore a

spectrum of treatment regimens combining a HAP and cyto-

toxic drugs. The authors found that the combined therapies

delayed tumour resistance longer than any monotherapy

schedule and that sequentially alternating single doses of

each drug led to minimal tumour burden and maximal

reduction in the probability of developing resistance.

Most anti-cancer drugs are administered by intravenous

injection; however, other alternative routes may be more effec-

tive. Kanigel Winner et al. [112] compared intravenous

injections and intraperitoneal infusions for ovarian cancers

using a cellular Potts framework. This model revealed that

intraperitoneal infusion is the superior route for smaller,

avascular tumours. Larger tumours will benefit from both

delivery routes combined. Kim et al. [64] investigated how a

direct post-surgery injection of the chemoattractant into the

tumour resection site can reduce the spread of glioblastoma

cells. The authors used a hybrid model combining the off-lattice

agent-based framework with the continuous description of the

tumour microenvironment, and ODEs for intracellular
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signalling. The model predicted that cell migration towards the

chemoattractant depends on the balance between random

and chemotactic motility in addition to oxygen and glucose

availability (figure 2j).
Radiation therapy is another standard anti-cancer treatment

for numerous kinds of tumours. A 3D mathematical model that

combined the full 3D brain architecture and continuous diffu-

sion–reaction equations has been used to simulate radiation

treatment in glioblastomas [92,113] (figure 2k). The authors

quantified the effects of regional resistance to radiation as an

effect of heterogeneous intratumoral hypoxia, and they

showed how tumour-specific models can aid in the construc-

tion of effective treatment protocols. Scott et al. [93] modelled

the variations in oxygen tension that regulate tumour response

to radiation therapy with a 2D hybrid CA model (figure 2l ). The

authors showed that, for relatively low vessel density, radiation

efficacy is decreased when vessels are more homogeneously

distributed, and the opposite is true when vessel organization

is normalized. Powathil et al. [114,115] modelled a combination

of radiation and chemotherapy by coupling the ODEs for

the cell cycle, the diffusion–reaction equations for oxygen and

drug kinetics, and the agent-based models to represent

cells and vessels. This multi-scale model predicted optimal

patient-specific multi-modality treatment protocols.

In addition to classical chemo- and radiotherapy, there is

growing interest in the development and optimization of

immunotherapy protocols. Owen et al. [116] developed a math-

ematical model of engineered macrophages that target tumour

cells in hypoxic regions, combining a many-cell CA framework

with diffusion–reaction equations for oxygen, growth factors

and therapeutics. Model simulations predicted a synergistic

effect of combining conventional and macrophage-based

therapies; however, the efficacy of this combined treatment

was the greatest when the macrophage-based therapy was

administered shortly before or concurrently with chemo-

therapy. Leonard et al. [117] proposed a mathematical model

simulating how macrophages can deliver a nanodrug to meta-

static lesions in the liver, combining the level-set method to

represent the evolving tumour, discrete representation of the

tumour vasculature and diffusion–reactions equations for

drug and metabolites dynamics, integrating it with laboratory

experiments. The model predicted the macrophage and the

encapsulated nanodrug concentrations needed inside the

lesion to achieve growth inhibition. The use of preventative

vaccinations to stimulate cytotoxic T lymphocytes (CTLs) to

improve their immunotherapeutic capabilities was modelled

by Kim & Lee [118] using a combination of agent-based mod-

elling and delay differential equations. The authors showed

that a pool of 3% of anti-cancer memory CTLs could eliminate

a developing tumour before it reaches an average size of 1000

cells, and a pool of only 1% of CTLs could eradicate a growing

tumour of diameter of 0.35 mm.
7. Areas for inclusion in mathematical modelling
of precision medicine

This review covers a variety of mathematical models of cancer

that vary as far as which details of the tumour cells are included,

the number of cells the model can handle, the complexity of the

tumour microenvironment, and the computational costs of each

model. We included examples of lattice-based CA models, lat-

tice-free particle models, multi-grid cellular Potts models and
deformable viscoelastic cells, as well as continuous population

dynamic models. The fact that so many different models are

currently used to address cancer-related problems means that

each of them has some advantages (thus being used in some

cases) and disadvantages (thus other models being used in

other cases). The interested reader is referred to other publi-

cations [119–122] for more details on different mathematical

frameworks and the differences between them. However,

these models’ applicability to precision medicine would benefit

from the inclusion of some of the intracellular-, cellular- and

intercellular-scale phenomena that we identified in this section.

Although these biological processes take place on different

spatial and time scales, they overlap functionally. Likewise,

the scalability transformations between multiple resolution

scales of the mathematical models offer prospects for improve-

ments, though this process is more challenging in practice.

Therefore, building up multi-scale links requires collaborations

between multiple interdisciplinary groups in order to effec-

tively collect the data for integration and design experiments

to validate predictions.

7.1. Structural biology
Advancements in structural biology deliver a high-resolution

view of various biomolecules, such as protein systems (from

enzymes to receptors to transcription factors), nucleic acid poly-

mers (RNA or DNA), lipid membranes or small molecules.

An atomistic representation of these structures provides a

unique opportunity to investigate personalized local inter-

actions and conformational dynamics, which drive the early

stages of the majority of biological processes. This approach

allows for translation of the effects of clinically identified

point mutations or sequence variations in oncogenic transform-

ations and signalling. The identified cross-correlations between

biological scales can reveal how protein folding, protein–ligand

binding, protein–DNA recognition, DNA sequence variations,

epigenetic modifications or DNA damage drive early signalling

events in cancer development. Furthermore, multi-scale com-

putational approaches could be a valuable tool in estimating

the emergence of cellular heterogeneity and phenotypic diver-

sity [123]. The conformational dynamics of biological systems

on the atomistic level has the potential to inform the next

steps in the mathematical modelling scheme, but this topic

remains unexplored. This is due to several limitations, primarily

the large size of the systems, computational costs and short time

scales involved. Various approaches can overcome the limit-

ations related to the nano- to millisecond time scales of early

events in many biological processes, such as enhanced sampling

methods with free energy calculations [124], the support of mas-

sively parallel supercomputers [125] or coarse-graining models

[126,127]. This allows for the investigation of larger systems and

global conformational phenomena [126,127], which could be

further translated to cellular networks.

7.2. Cancer genomics
Targeting of a single DNA base or amino acid resolution is the

highest level of detail concerning the human genome, and is

extremely suitable for personalized studies. The subsequent

potential conformational studies of the genetic material pro-

vide the opportunity to speculate about systems’ behaviour,

response to treatment and drug effectiveness in relation to

an individual patient. The correctness of this approach has

been demonstrated with next-generation sequencing (NGS)
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methods, which successfully support tumour molecular pro-

filing and clinical decisions in personalized treatment

through multi-variate analyses [128]. These detailed interpret-

ative tools allow for the identification of abnormalities in gene

expression, epigenetic control, signalling pathways, bio-

markers and cancer progression [129]. The NGS of a tumour

before and after treatment provides different mutation

profiles, which may further benefit clinical decisions. For

example, the extracted quantitative data on point mutations

may support atomistic computer simulations, but the various

expression levels can investigate inter- and intracellular inter-

actions, signalling pathways and networks. Details about the

protein levels or germline and somatic mutations used in per-

sonalized cancer care [130] and data interpretation [131]

provide input for the modelling of cancer cellular phenotypes

and subclonal diversity. This, in turn, renders the single cell a

bridging unit between intrinsic and extrinsic signals from

gene expression to interactions including cells and stroma. It

is therefore necessary to incorporate genomic information into

all resolution levels of mathematical modelling of organoids

and tumour tissues, although this requires effort, in order to

address the heterogeneity and dynamics of personalized

tumour evolution and treatment.
7.3. Cell mechanobiology
While cancer may be manifested by genetic changes, the mech-

anical interactions between individual cells and between the

cells and their microenvironment are the factual demon-

strations of cancer becoming malignant, invasive and

metastatic. The malignant cells exert forces on other cells to

compete for space, physically detach from the tumour mass

and migrate through the ECM. All of these activities require

the coordination of biological and mechanical processes.

Normal cells develop specialized connections with other cells

(cadherins) and with the external microenvironment (integ-

rins) that provide mechanical attachment and transmit forces.

These mechanical signals sensed by the cell result in the acti-

vation of intracellular biochemical signalling pathways (a

process called mechanotransduction) that, in turn, regulate

cellular behaviour [132]. All cellular life processes in non-

malignant cells (death, proliferation, differentiation) must be

tightly controlled and coordinated to enable tissue turnover

and preserve tissue homeostasis [133]. However, the disrup-

tion of normal tissue architecture is one of the initial steps in

cancer progression. The early pre-invasive forms of breast

cancer are characterized by filled ductal lumens and ductal dis-

organization (DCIS) [134]. It has also been shown that changes

in the ECM structure and its stiffness and mechanics can pro-

mote or suppress the formation of malignant multicellular

spheroids in 3D cell cultures [135]. Thus, microscopic changes

in cell or ECM mechanics can deregulate molecular mechan-

isms of mechanotransduction. The physical basis for early

epithelial cancers can be a product of either an altered force bal-

ance on the cellular or tissue levels or a perturbed cellular

response to mechanical stimuli [136]. However, the mechanism

by which such physical forces and mechanical stimuli contrib-

ute to cellular decision-making is still not fully understood.

Mathematical models that incorporate various mechanical

aspects can play a fundamental role in delineating the role of

mechanobiology in cancer initiation and progression [137,138].
7.4. Medical imaging
Imaging approaches in oncology have long supported early

cancer detection (mammography), diagnosis (pathology)

and monitoring of treatment response (tomography or

magnetic resonance). The need for more accurate and faster

analyses of these images led to the development of the

fields of digital pathology and radiomics, which aim for

high-throughput automatic evaluation of clinical imaging,

such as histopathology, microscopy, MRI, computed tomogra-

phy (CT) or positron emission tomography (PET). Current

advances include protocols to reconstruct the spatial 3D archi-

tectures of DCIS from 2D histology images stained with

haematoxylin and eosin (H&E) [139] and multi-tiered

content-based image algorithms for classification of tumour

grades [140]. Histology samples and digital microscopy

analyses were also used to evaluate the differences between

distinct regions of interest within the same tumour [141].

Such approaches allow for the assessment of tumour pheno-

typic features and tumour microenvironment landscapes at

different levels of resolution [142]. Certain automated tools

(BioSig3D [143] or AMIDA [144]) were developed for high-

throughput screening of fluorescent images of MCSs. While

histology and microscopy images provide invaluable infor-

mation about individual cells, both rely on tissue or cell

fixing and staining and do not allow for monitoring of the

same cells or tissue regions over time. In contrast, radiological

images do not require invasive surgical procedures and enable

longitudinal observation of the changes in tumour progression

or the response to treatment during the therapy. Additionally,

these radiological images are not merely pictures: they rep-

resent a rich source of often underutilized data [145,146].

Current advances in the analysis of these clinical images

include high-throughput quantification methods (radiomics)

of a large number of imaging features from MRI, CT and

PET/CT images to develop prognostic signatures that predict

tumour phenotype, correlate with treatment outcomes [147]

and distinguish between different predictive tumour geno-

types [148]. These methods can identify tumour subregions,

called habitats, with differential imaging characteristics

(tissue perfusion and vascular permeability) that correlate

with tumour aggressiveness [149]. Other methods include

the use of diffusion magnetic resonance imaging (dMRI) to

analyse brain fibre orientation and dispersion with parametric

spherical deconvolution methods [150,151]. This enhances our

knowledge of potential routes of glioma cell spread along the

ECM fibres. Dynamic contrast-enhanced magnetic resonance

imaging (DCE-MRI) of breast cancer patients was also used

for pharmacokinetic studies predicting tumour response to

neoadjuvant chemotherapy [152,153]. DCE-MRI was used

to identify quantitative pharmacokinetic parameters that

correlate with patients’ outcomes.

While the above efforts highlight recent improvements

and novel techniques for linking medical imaging data to micro-

environmental, phenotypic or genomic features, the images

show only a one-time snapshot of the tumour state. Mathemat-

ical models provide the means to visualize and analyse tumour

dynamic changes, thereby adding dynamics to the static

imaging data. Several models described in this review used

medical images for computational simulations (histology, MRI

or PET images). However, a broader use of such data would

improve the accuracy, validation and predictions of mathemat-

ical models. For example, the association of pre-treatment MRI
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images with a reaction–diffusion model defined on an anatomi-

cally accurate human brain phantom allowed for predictions of

the untreated survival of a cohort of glioblastoma patients and

their stratification based on the predicted tumour aggressive-

ness [154]. Patient-specific MRI data taken before and after the

first cycle of neoadjuvant therapy in patients with breast

cancer were coupled with a biomechanistic mathematical

model to predict whether a patient would achieve a complete

pathological response [155]. PET/CT imaging data from

patients with head and neck carcinoma were used to inform a

dynamic voxel-based model that predicted radiation therapy

response under uniform and non-uniform tumour tissue oxy-

genation patterns [156]. PET/CT scans from patients with

pancreatic tumours were used to predict tumour growth

dynamics with a model using an elastic-growth decomposition

technique to represent possible deformations of the pancreas

[157]. Dynamic, spatio-temporal mathematical oncology

models should therefore combine different types of imaging

techniques at various resolution and time scales, and incorpor-

ate data from landscape pathology, genomics, fibre analysis and

radiomics habitats at various stages of tumour development

and treatment. With achievement of these prospects, the clinical

use of mathematical modelling would become more effective for

personalized surgery by guiding and defining tumour margins,

for designing personalized schedules of treatment combina-

tions, for predicting treatment efficacy and for developing

methods to overcome resistance.
8. Organ-on-chip platform as an experimental
model for testing personalized responses
to therapy

All of the mathematical models described in the previous sec-

tions are computational analogues of either in vitro or in vivo
experimental models. These experimental systems have been

developed progressively to delineate various aspects of tumor-

igenesis and tumour response to therapies. They range in

complexity from examinations of single cells, to 3D cell model

systems, to organotypic cultures, to explant models, to in vivo
animal models [158–160]. The in vitro experiments are well con-

trolled, but they represent only one organ as opposed to the

systemic response to the treatment. In contrast, for animal exper-

imentation, the difficulty lies in controlling the complexity of the

systemic response, so large numbers of animals must be used to

gain statistical significance. The organ-on-chip microfluidic

devices may be able to combine the best of both approaches.

Current advances and successes in microfluidic systems have

led to their widespread use in biological applications. The use

of microfluidics in cell and tissue cultures offers significant

advantages over traditional Petri dish approaches, as this main-

tains the cell-to-fluid ratio close to physiological levels, reducing

dilution of metabolites, hormones, and autocrine and paracrine

signals [161]. Additionally, microfluidics can provide a wide

range of physical and chemical stimuli through precise control

of the shear stresses and flow switching [162,163]. Unlike

animal model systems, most microfluidic devices are fabricated

from optically transparent materials that permit visualization of

various cellular processes (sometimes in real time) through

bright field and fluorescent imaging [164,165]. The choice

of softer fabrication materials offers further control of such

mechanical stresses as tension or compression.
At the forefront of tissue engineering, disease modelling

and human organ construct development is a new class

of microfabricated microfluidic tissue bioreactors, termed

organ-on-chip bioreactors. These microphysiological systems

are capable of maintaining live cultures for weeks and even

months and can replicate complex organ environments, includ-

ing 3D multicellular organ structures, nutrient supply and

waste removal, oxygenation states, interstitial flows and a var-

iety of microenvironmental gradients [163,165]. These systems

are composed of individually addressable micro-compartments

to permit precise regulation of a specific organ layer or tissue

area and individualized tissue perfusion [166,167]. As such,

they hold promise as attractive platforms for future drug devel-

opment. Tumour biology, for example, can be explored within a

more realistic organ environment containing human primary or

derived cells and tissues that are held under relevant chemical

and physical conditions, thus providing realistic scenarios

of drug delivery and penetration into tissue [160,168]. To

date, there are multiple organs-on-chips in different states of

development, including cardiovascular, liver, blood–brain

barrier, mammary, intestine and skin bioreactors [167,169].

The future goal is to link together these miniaturized organ sys-

tems to monitor ‘whole body’ responses to tumour spread

or antitumour therapeutics, to address questions of drug

metabolism and off-target effects, or to optimize and individu-

ally tailor treatment regimens for cancer patients. The first steps

in this direction have already been taken [170,171]. Individual

or interconnected organs-on-chips will also serve as a quick

test platform for parametrization of functional processes

that bridges the gap between the initial computer model

development and its subsequent fine-tuning.
9. Discussion and outlook
Mathematical modelling and computational systems biology

have already proven to be useful tools for integrating vast

amounts of diverse data into a coherent, multi-scale description

of cancer, for dissecting complex interactions between different

cancer components, and for revealing the intricate mechanisms

behind tumour initiation, progression and metastatic spread

[172,173]. Mathematical methods, by their nature, can simul-

taneously handle multiple variables that describe different

elements of the whole cancer system. These can be applied to

represent various tumour features, intercellular interactions

and a wide range of treatment combinations and schedules

in order to optimize anti-cancer therapy [174,175]. When

calibrated with patients’ data and tested with validated

experimental models, these relatively fast and inexpensive

mathematical oncology methods could be used to design effec-

tive therapeutic strategies for each individual patient in the

form of patient-specific virtual clinical trials (figure 3). We envi-

sion that this protocol will include the collection of various data

during the tumour diagnosis (figure 3a) and evaluation of these

data by pathologists, radiologists and hospital laboratories

(figure 3b). These data will also be quantitatively analysed

using biostatistics, bioinformatics and various ‘-omics’ (proteo-

mics, genomics, metabolomics, pathomics, etc.) approaches

(figure 3c). Subsequently, the specific mathematical models

will be calibrated and used to perform an extensive set of simu-

lations to probe the pharmacokinetics and pharmacodynamics

relationships of the available anti-cancer agents in order to find

their synergistic combinations, and to design the most efficient
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Figure 3. Schematics of Virtual Clinical Trials. (a) Collection of standard-of-care data in the clinic. (b) Data evaluation for diagnostic purposes. (c) Quantitative data
profiling, screening and analysis. (d ) Design, calibration and simulations of mathematical models. (e) Experimental testing and treatment validation with an organ-
on-chip platform. ( f ) Supportive tool for clinical decision-making based on mathematical and organ-on-chip predictions. (g) Collection of longitudinal data for
treatment monitoring. (c – g) Treatment adaptation by repeating the analysis, mathematical and experimental predictions, and treatment monitoring processes.
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administration protocols (figure 3d). The most promising

treatment schedules will be tested using the organ-on-chip bio-

reactors (figure 3e). The hope is that, in the future, this approach

will serve as a supportive tool for decision-making in the clinic

(figure 3f ). When additional data are collected (figure 3g) and

analysed (figure 3c) to monitor the effectiveness of the therapy,

these data can be incorporated into the computational model

(figure 3d) and tested in the organ-on-chip bioreactor

(figure 3e) to adjust the treatment in the clinic (figure 3f). This

process can be repeated and the therapy can be adapted accord-

ing to tumour response. Currently, there are a handful of

mathematical models that propose to use similar concepts

[176–180] and show potential for designing the most efficient

combination therapies, the most effective therapy schedules

and an optimal toxicity–efficacy balance. They also promise

to be useful in selecting those patients who are most likely

to benefit from a given therapy. Therefore, when virtual clinical

trials are incorporated into routine patient care they will give

clinicians additional tools for making decisions to improve a

patient’s quality of life and control the tumour’s spread. Since
computational simulations can be individualized to the proper-

ties of a particular tumour, such approaches are a step towards

precision medicine and personalized care.
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