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Widely developed for clinical screening, electrocardiogram (ECG) recordings

capture the cardiac electrical activity from the body surface. ECG analysis

can therefore be a crucial first step to help diagnose, understand and predict

cardiovascular disorders responsible for 30% of deaths worldwide. Compu-

tational techniques, and more specifically machine learning techniques and

computational modelling are powerful tools for classification, clustering and

simulation, and they have recently been applied to address the analysis of

medical data, especially ECG data. This review describes the computational

methods in use for ECG analysis, with a focus on machine learning and 3D

computer simulations, as well as their accuracy, clinical implications and

contributions to medical advances. The first section focuses on heartbeat

classification and the techniques developed to extract and classify abnormal

from regular beats. The second section focuses on patient diagnosis from

whole recordings, applied to different diseases. The third section presents

real-time diagnosis and applications to wearable devices. The fourth section

highlights the recent field of personalized ECG computer simulations and

their interpretation. Finally, the discussion section outlines the challenges

of ECG analysis and provides a critical assessment of the methods presen-

ted. The computational methods reported in this review are a strong asset for

medical discoveries and their translation to the clinical world may lead to

promising advances.
1. Introduction
Cardiovascular disorders are a major burden worldwide, causing 30% of the

deaths in the world according to the World Health Organization [1]. Therefore,

early detection of the patients at risk, and a better understanding of the disease

mechanisms are crucial to improve diagnosis and treatment. Widely used by

clinicians as a routine modality in hospitals, electrocardiogram (ECG) record-

ings capture the propagation of the electrical signal in the heart from the

body surface. Therefore, many cardiac structural or electrophysiological

abnormalities have a signature on the ECG and their identification can help

diagnose cardiac disorders. ECG recordings include different formats: Holter

ECGs record the electrical activity of the heart over longer periods of

time (several hours), whereas standard 12-lead ECGs provide information on

cardiac activity from 12 different perspectives (leads) over several heartbeats.

Manually studying large amounts of ECG data can be tedious and time-con-

suming. Therefore, there is a need for powerful computational methods to

maximize the information extracted from comprehensive ECG datasets [2].

The variety of ECG formats and their clinical applications also call for a diver-

sity of computational techniques to address this need.

In this review, we aim to describe the clinical applications and main machine

learning methods currently used for ECG analysis to enable heartbeat and patient

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2017.0821&domain=pdf&date_stamp=2018-01-10
mailto:aurore.lyon@cs.ox.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.3956569
https://dx.doi.org/10.6084/m9.figshare.c.3956569
http://orcid.org/
http://orcid.org/0000-0001-6019-7376


rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170821

2
classification, and advanced computer simulation to explain

cardiac ECG phenotypes. Although ECG signal processing

techniques have been described before [3], here we review how

machine learning methods have recently been used to automati-

cally learn the dataset structure in order to make predictions.

Learning can be supervised (training examples are given to the

algorithm which learns the dataset relationships before testing

them on unknown data), or unsupervised (the algorithm

learns the data structure by itself). Classification of heartbeats

[4–6] is probably the most developed application of machine

learning to the ECG. It focuses on the detection of abnormal, irre-

gular beats that may occur at unpredicted times and helps to

detect arrhythmias. Other studies focus on patient classification

[7–9], based on the overall behaviour of the ECG, to diagnose

specific diseases. In addition, with the development of wearable

devices and the need for real-time diagnosis, other challenges

such as speed or memory requirements have emerged, requiring

the adaptation of these methods for quick classification [10–12].

Analysing the ECG with machine learning methods is a pro-

mising approach but dealing with medical data for clinical

applications raises some additional challenges, such as the lack

of databases available for validation and the need to interpret

ECG abnormalities at the organ and cellular level. 3D computer

simulations are a powerful tool to address these issues.

They allow personalized simulations of the ECG, allowing

the interpretation of the ECG signals [13–15] as well as the

generation of synthetic data for training and validation purposes.
2. Heartbeat classification
A heartbeat is defined as the sequence of electrical events

happening in a whole cardiac cycle, from depolarization to

repolarization. For a normal beat in sinus rhythm it includes

the P wave, the QRS complex and the T wave. Heartbeat classi-

fication focuses on the automatic identification of beats of

different nature, and can be useful for detecting ectopic beats

or arrhythmic events. It is the most developed application of

machine learning methods to ECG analysis, mostly because

of the databases publically available for training and testing

such as the MIT-BIH [16], composed of 48 half-hour excerpts

of two-channel ambulatory ECG recordings and initially devel-

oped to evaluate arrhythmia detectors. Other databases are

also available and widely used to develop these techniques

such as those contained in Physionet’s Physiobank, INCART,

or the American Heart Association database [17] (table 1).

The objective, performance and validation of the studies

presented in the section below are summarized in table 2.

2.1. Clinical objectives and ECG data
The MIT-BIH arrhythmia database considers 15 heartbeat

classes, which have been also used in other studies [18]. Due

to this variety of heartbeat label sets, the classification objectives

of the different studies may be different, making their perform-

ances harder to compare. Some studies focus on binary

classification to distinguish between normal and abnormal

beats [26,46], normal and premature ventricular beats (PVBs)

[24,29] or normal and diseased beats [47]. Other works follow

the classification recommendations of labelling rules such as

the AAMI guidelines (normal, ventricular, supraventricular,

fusion of normal and ventricular, and unknown beats [5]). How-

ever, most of these techniques report their classification

performances in the same metrics, facilitating their comparison.
Accuracy (%) measures the amount of correctly classified

samples compared to the total number of samples classified.

Sensitivity (resp. specificity) (%), or true positive (resp. negative)

rate, measures the amount of positive (resp. negative) samples

correctly classified.

Heartbeat classification can also be performed in record-

ings of different length, such as standard 12-lead ECGs,

lasting for several seconds, or Holter ECGs, recorded for sev-

eral hours. Longer recordings allow the analysis of the ECG

over time and the identification of time-dependent abnormal-

ities, such as changes in the beat morphologies with time or

changes in heart rate. In addition to the length of the record-

ing, the number of ECG leads may differ and various

methods are proposed to handle multi-channel data. Some

studies focus only on single lead data [48]. Others combine

features computed over several different leads in a single fea-

ture vector [18]. Another approach is to combine the output

of classifiers when applied over the different leads following

a voting approach. For example, in Zhang & Luo’s work [49],

the outputs of several support vector machine (SVM) classi-

fiers were merged based on the decision of each classifier.

2.2. Feature extraction and dimensionality reduction
Most machine learning classification techniques require the

definition of a feature vector to describe the ECG beat and the

training of a classifier. Each heartbeat is composed of multiple

waves describing different events of the cardiac cycle (P-

wave, QRS complex, T-wave) (figure 1). Morphological fea-

tures, such as slopes, peaks, amplitudes [18,54], describe the

shape of the ECG waveforms. They may be able to capture

changes in the heart rhythm, such as sinus rhythm versus fibril-

lation, in which the complexes exhibit different morphologies.

Some works focus on time interval features to characterize the

dynamics of ECG phenomena such as QRS duration, QT inter-

val or heart rate, defined as the number of beats per unit of time

[22,23,31,46,55]. Morphological features include the coefficients

of the Hermite transform, the wavelet transform or the discrete

cosine transform [29,32] that aim to model the ECG beat instead

of extracting features from the raw data. In most studies, a com-

bination of these features is used to characterize the ECG signal.

Other works such as Llamedo et al. [56] combine the signal’s

multiple channels before performing feature extraction. They

investigated several strategies such as combining features

from the wavelet transform (a time–frequency representation

of the signal by mathematical functions called wavelets) from

all the leads, computing the wavelet transform from the vecto-

cardiogram leads, or computing the features from the two first

principal component of the ECG leads’ principal component

analysis (PCA).

One of the challenges is that the ratio between the amount

of available training data and the number of extracted features

is too small, which may lead to overfitting. The number of

features must therefore be reduced for good generalization

and performance and two main techniques are usually used:

dimensionality reduction and feature selection. Dimensionality

reduction aims to reduce the size of the space in which the data

are represented by computing a reduced number of dimensions

that contain most of the information of the dataset. As many

features can be extracted from ECG signals, dimensionality

reduction algorithms are often performed before running the

classifier. Examples of dimensionality reduction techniques

include PCA (linear or nonlinear) [22] or linear discriminant

analysis [18]. Feature selection selects only a small subset of



Table 1. Summary table of the major databases used for classification of ECG signals.

database type of recordings
number of
recordings annotations

MIT-BIH Arrhythmiaa — 30-min excerpts

— 2-channel ambulatory ECG

— 360 Hz

48 beat-by-beat annotations for each beat

in each recording

(approx. 110 000 annotations)

QT databasea — 15-min. excerpts

— 2-channel ECG

— 250 Hz

105 — reference beat annotations

— segmentation of waveforms (for

30 to 100 normal beats per

recording)

American Heart Association

ventricular arrhythmiaa

— 2-channel excerpts

— analogue ambulatory ECG

— 250 Hz

80 for training—

75 for testing

— 8 classes of recordings (level of

ventricular ectopy)

— final 30 min annotated beat-by-

beat

INCARTa — 30-min ECG

— 12 leads

— 275 Hz

75 — 175 000 beat annotations

— 10 classes pathological diagnosis

UCI Machine Learning:

Arrhythmia dataset

— 279 attributes (age, sex, height, waveforms

description over 12 leads such as duration,

amplitudes, areas)

452 16 arrhythmia classes labelled

Long-Term-STa — between 21 and 24 h

— 2 or 3 ECG signals

— 250 Hz

86 — annotated ST episode

— QRS annotations

— ST level measures
aPhysioBank datasets [17] available at https://physionet.org/:
— gathers 60 databases (4TB) of physiological signals: cardiopulmonary, neural, other biomedical signals
— freely available
— healthy subjects and patients (sudden cardiac death, congestive heart failure, epilepsy, gait disorders, sleep apnoea, ageing)
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the most significant features in the classification. For this pur-

pose, some studies include an optimization step testing

different feature combinations (via an optimization algorithm

such as genetic algorithm or particle swarm optimization, or

statistical distribution analysis such as Gini’s index) and retriev-

ing only the relevant features for further analysis [20,22,57]. For

example, Mar et al. [58] performed classification between

normal, ventricular, premature ventricular and fusion beats

based on the idea of Llamedo & Martı́nez [4] to use the sequen-

tial forward floating search (SFFS) feature selection procedure.

This improved the classification accuracy of the multi-layer

perceptron (MLP) classifier from 79% using 71 features to

90% with only nine features.

Feature quality and robustness is a challenge as poor

quality features resulting from low quality delineators, filtering

or approximations may lead to low performance and general-

ization properties despite powerful classification algorithms.

Solutions to tackle this issue have been proposed such as in

Llamedo & Martı́nez [4]. In their study they introduced the

use of robust surrogates of typical features, using for example

directly the wavelet transform signal instead of the QRS

width to reduce the effect of delineation errors.

2.3. Machine learning methods for heartbeat
classification

In terms of heartbeat classification accuracy, all the machine

learning methods reported below present similar good
performances (approx. 95–99%). From the clinical viewpoint,

two important benefits can be highlighted. Firstly, the outcomes

of random forests and linear techniques, contrary to SVMs or

neural networks, are clinically interpretable, providing the

opportunity to discover new biomarkers and enhance their

importance in discriminating specific types of heartbeats. Sec-

ondly, neural network and Bayesian models may allow the

analysis of the ECG without any preprocessing of the signal,

which avoids the need for prior information on the biomarkers

and may help discover new knowledge.

2.3.1. Linear and quadratic discriminants
De Chazal et al. [18] implemented linear discriminants (LD)

with weighted likelihood to classify 50 000 heartbeats in five

classes (normal, ventricular ectopic, supraventricular ectopic,

fusion of a normal and ventricular ectopic, or unknown beat

type) from 22 recordings of the MIT-BIH arrhythmia database

using QRS-based and time intervals features. The LD tech-

nique computes mean and covariance for the training data in

order to maximize the likelihood. Posterior probabilities are

then computed to output the final classification labelling.

Their study reached a sensitivity of 75.9% (positive predictivity

38.5%, false positive rate 4.7%) for supraventricular ectopic

beats, and a sensitivity of 77.7% (positive predictivity 81.9%,

false positive rate 1.2%) for ventricular ectopic beats (VEBs).

Similarly, another work by Llamedo & Martı́nez [4] used LD

and quadratic discriminants to perform the classification of

normal, ventricular and supraventricular beats. They extracted

https://physionet.org/:
https://physionet.org/:
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(a)

(b)

RR interval

P wave

T wave

R

Q

S

QRS duration

QRS amplitude

QT interval

PR interval

normal ECG ventricular ectopic beats

supraventricular ectopic beats second degree heart block type I arrhythmia

Figure 1. Example of data available for the analysis of ECG signals. (a) ECG waveforms (P, QRS and T waves) and standard features extracted from an ECG beat. The
RR interval is measured as the peak-to-peak interval between two consecutive QRS complexes, the PR interval is defined as the duration from the beginning of the P
wave to the beginning of the QRS complex, the QRS duration (or width) is the duration between the start and the end of the QRS complex, the QRS amplitude is
defined as the absolute value of the difference between the minimum and the maximum of the QRS complex, and the QT interval is measured as the time between
the beginning of the Q wave and the end of the T wave. (b) Examples of different ECG waveforms: normal ECG [50], ventricular ectopic beats [51], supraventricular
ectopic beats [52] and second degree heart block arrhythmia [53]. (Online version in colour.)
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features from the RR interval and characterized the mor-

phology of the ECG by discrete wavelet transform. A global

accuracy of 93% (84% sensitivity and 75% positive predictivity)

was achieved on the MIT-BIH arrhythmia database as well as

on the MIT-BIH supraventricular arrhythmia and INCART

databases. Similar work was conducted by Yeh et al. [19],

using LD for classification between normal and five different

classes of abnormal beats for arrhythmia diagnosis. Evaluated

on the recordings from the MIT-BIH database, their method

reported correct detection between 84.68% and 98.97% for

the five classes studied.

Some studies propose more elaborate ways of using these

classifiers that may lead to patient-specific techniques and

allow expert assistance. For example, de Chazal & Reilly [5]

proposed a patient-adaptable system in which a classifier is

trained to annotate the first beats of a recording, then checked

by a clinical expert. This patient-specific adaptation was then

added to a global classifier. This technique was shown to

increase the performance of the classifier by 10% (accuracy of

94%) for the classification of heartbeats according to the AAMI

classes. Another work by Llamedo & Martı́nez [59] also com-

bined a global classifier (linear discriminant analysis) and a

patient-specific step (an expectation–maximization clustering

algorithm). This led to an automatic patient-adaptable technique

which can also incorporate the input of a cardiologist (semi-

automatic) when the clustering requires guidance from expert

annotation because of interpatient variability.
2.3.2. Support vector machines
SVMs are very popular class of machine learning algorithms

because of their good classification and generalization proper-

ties. It is a supervised learning method which learns the best

separating hyperplane to maximize the margin between two

classes in the feature space (figure 2a). This decision boundary

is then used to classify unknown testing data [60]. SVM appli-

cation to ECG beat classification and its optimization have

been widely studied. For example, Ubeyli [6] applied SVM

with error output correction code to classify heartbeats from

four classes (normal, congestive heart failure, ventricular

tachyarrhythmia and atrial fibrillation (AF)) from the

Physionet database. Discrete wavelet transform was used to pre-

process the data and extract features. They reached an accuracy

of 98.61% (sensitivity of 98.89%) on a testing set of 360 beats.

SVM optimization techniques have been investigated to

improve the choice of features and parameters, reduce overfit-

ting and speed-up the classification. For example, Melgani &

Bazi [20] performed arrhythmia classification with SVM opti-

mized by particle swarm optimization (PSO). PSO reduced

the number of features from 303 to 46 and reached an overall

accuracy of 89.72% in detecting five heartbeat classes

(normal, atrial premature beat, ventricular premature beat,

right bundle branch block, left bundle branch block and

paced beat) from the MIT-BIH database. Another work by

Asl et al. [21] focused on the classification of heartbeats in

six classes for arrhythmia detection (normal, premature
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Figure 2. Main machine learning methods used for ECG classification. (a) Support vector machine binary classification by maximization of the margin m.
(b) Random forest classification using n decision trees. (c) Hidden Markov model with n states, transition matrix (ai,j) and emission matrix (bi,j). (d ) Neural network
with two hidden layers. (Online version in colour.)
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ventricular contraction (PVC), AF, sick sinus syndrome, ventri-

cular fibrillation and second degree heart block). They used

1367 ECG segments from the MIT-BIH database and designed

feature vectors based on heart rate variability. They reached

99.16% accuracy with discriminant analysis feature reduction

(15 to five features). In another study, Nasiri et al. [22] used

PCA and genetic algorithm to determine the best parameters

to tune the SVM algorithm and to perform feature reduction

to remove the features that may lower the accuracy. They

reached an accuracy of 93.46% for classifying between

normal, right and left bundle branch block, and paced beat

on the MIT-BIH arrhythmia database with genetic algorithm.

Similar applications of SVM algorithms to ECG beat classifi-

cation were implemented by Li et al. [61], Rabee & Barhumi

[62], or Mehta & Lingayat [48]

Methods based on SVM and optimized SVM therefore

reach high accuracies ranging from 90% to 99% in multi-

class classification. A drawback of SVM classification for

clinical applications is its lack of interpretability in order

to evaluate each feature’s influence and extract relevant

discriminant biomarkers.
2.3.3. Random forests
The random forest method [63] is an ensemble learning

technique combining the classification outputs of the decision

trees that compose the forest (figure 2b). A useful property of

random forests is their ability to rank the variables according to

their importance in the classification and therefore allow feature
selection to avoid overfitting. Ganeshkumar & Kumaraswamy

[23] investigated arrhythmia detection by identifying six heart-

beat classes (normal, PVC, paced, atrial premature beat, and

left and right bundle branch block) using random forest. They

reached an accuracy of 92.16% on 150 beats extracted from the

MIT-BIH database with 30 trees but their method was not

validated over an independent testing set. In a recent study,

Rahman et al. [8] compared the heartbeats of 12-lead ECG

from 1000 hypertrophic cardiomyopathy (HCM) patients to a

group of ischaemic and non-ischaemic cardiomyopathy

patients. Their implementation used a random forest algorithm

with 500 trees and 264 features (after feature selection) obtained

from ECG waveforms morphology and duration. They reached

an accuracy of 89% validated with fivefold cross validation.

Similar random forest classifiers for ECG classification were

developed by Sathish & Vimal [64], or Emanet [65].
2.3.4. Bayesian networks
Bayesian networks are probabilistic graphical models represen-

ting variables and their probabilistic relationships. Following

the successful application of Bayesian frameworks techniques

to ECG segmentation [66] and denoising [67], de Oliveira

et al. [24] introduced the first approach of ECG beat classi-

fication using Bayesian networks. Their work focused on

PVBs detection by the implementation of a Bayesian network

framework using channel fusion. They reached a sensitivity of

99.69% (positive predictivity 98.79%). Validation of their

method was performed by splitting the labelled heartbeats
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from the QT database into 75% as training set and 25% as test

set. Similarly, Oster et al. [45] developed a model-based filtering

approach using switching Kalman filters to classify ventricular

beats. In addition to the classification performance, their

approach presented the ability to detect unknown beat mor-

phologies. They reached an accuracy of 97.3% (positive

predictivity 99.96%) for ventricular beats classification on the

MIT-BIH and INCART databases.

A simple type of Bayesian networks are hidden Markov

models (HMM) which represent the system of study as a set

of hidden states and transition probabilities where the

sequence of hidden states is estimated from the observations

[68] (figure 2c). HMM do not require prior knowledge and

the estimation of the parameters is automated. This technique

is popular for sequence modelling and temporal pattern analy-

sis. Hence, several studies focus on the application of HMM to

ECG modelling and prediction. Coast et al. [25] investigated the

use of HMM for classification and modelling of normal and

VEBs from the American Heart Association database (six 30-

min ECG recordings). Each ECG waveform and duration was

represented by a HMM state. Their method reached a sensi-

tivity of 97.25% (specificity of 85.67% over 799 VEB beats).

Similarly, Koski [26] performed ECG segmentation and classi-

fication between normal and PVBs signals using HMM. They

estimated the ECG signal by broken line approximation. The

classifier was composed of 20 to 30 states. They reported an

accuracy of 100% on the very small testing set used (four test-

ing beats). Later, Andreao et al. [27] performed modelling and

classification of PVC beats using 59 recordings from the QT

database. They combined an HMM and a rule-based system

for beat identification (based on the beat prematurity and

enlarged QRS morphology criteria). They reached a sensitivity

of 99.79% (specificity of 99.96%) for PVB detection over the test-

ing set. Most of these techniques based on HMM also integrate

and estimate the parameters of the delineation of ECG wave-

forms in the model, avoiding the need for a separate

segmentation step.
2.3.5. Neural networks
In the last 15 years, neural networks [69] have been very popular

in ECG classification. In this family of machine learning algor-

ithms inspired by biological processes, the interconnected

neurons of the system learn the structure of the data from train-

ing examples (figure 2d). Neural networks are powerful for their

ability to detect patterns and extract data structure without

expert knowledge. An example of neural network application

to ECG heartbeat classification was presented by Niwas et al.
[28]. They implemented an artificial neural network (ANN)

trained on feature vectors composed of heartbeat intervals and

spectral entropy. They reached an accuracy of 99.02% in the

classification of testing heartbeats in 10 classes from the MIT-

BIH database. Similarly, Inan et al. [29] studied the detection of

PVC beats. They used morphological features derived from

the wavelet transform and time intervals features as input to a

feed-forward MLP neural network with a single hidden layer.

They obtained 96.82% accuracy for PVC beat classification on

22 ECG recordings from the MIT BIH database.

In another study, Ubeyli et al. [30] used a more complex

neural network architecture, recurrent neural networks

(RNN), which differ from standard ANN by the presence of

direct cycles in the neurons architecture. This allows the rep-

resentation of dynamic temporal processes. They trained the
RNN with Levenberg–Marquardt training algorithm and

eigenvector based features. They tackled the classification of

heartbeats in four classes on 720 heartbeats from the Physionet

database and reached an accuracy of 98.06%. Another study by

Lagerholm et al. [31] presented a clustering method for arrhyth-

mia over 48 recordings of the MIT-BIH database. They

preprocessed the signal with the Hermite transform which pro-

vided a better robustness to noise. The Hermite transform and

the RR interval defined the feature vector. They implemented

self-organizing networks (SON) to perform clustering in 25

groups and reach 1.5% of misclassification. SON also conserves

the neighbouring structure of the data, representing similar

clusters physically close on the map, and therefore facilitating

the interpretation of the results by the clinicians. Similarly,

Linh et al. [32] used the Hermite transform of QRS complexes

coupled to a TSK fuzzy network, an association of neural net-

work with logical rules, to classify six types of heart rhythms

(premature ventricular ectopic, left bundle branch block,

right bundle branch block, atrial premature beat, ventricular

flatter wave, and ventricular escape beat) for arrhythmia.

They reached 96% accuracy in detecting these heartbeat

classes, although no validation dataset is described in the

paper. In addition, their method was less sensitive to morpho-

logical variations of the ECG and handled heartbeat variability.

Another method implementing fuzzy techniques was devel-

oped by Ozbay et al. [33]. Their fuzzy clustering neural

network architecture achieved 99.9% accuracy in arrhythmia

detection (classifying normal beats, sinus bradycardia, ventri-

cular tachycardia, sinus arrhythmia, atrial premature

contraction, paced beats, right and left bundle branch block,

AF and atrial flutter) on 5342 segments from the MIT/BIH

database. Similar works on neural networks were conducted

by Jadhav et al. [70], Meau et al. [71], Dokur & Olmez [72] or

Das et al. [73].
3. ECG recording analysis for patient diagnosis,
monitoring and stratification

Rather than classifying heartbeats, some studies focus on diag-

nosing patients based on their ECG (as summarized in table 2).

Patient classification and diagnosis requires analysing the

ECG recordings as a whole (time changes, various beat mor-

phologies) rather than analysing a single isolated beat. The

machine learning methods described above can be adapted

to this task. Clinical applications include risk stratification or

disease monitoring, and these studies may be able to provide

insight into the structure of diseased populations thanks to

clustering techniques, highlight which biomarkers are signifi-

cant to distinguish between disorders, provide automatic

diagnosis (or semi-automatic, taking into account expert

input), and analyse ECG changes over time, which may be

tedious to perform visually. The paragraphs below highlight

some of the clinical areas that have benefited from the use of

these machine learning methods to patient classification.

3.1. Pro-arrhythmic ventricular diseases
Several works approach patient diagnosis by identifying

abnormal excerpts or events in the recordings. For example,

ischaemia is a disease condition normally manifested in ambu-

latory recordings by transient deviations of the ST segment

voltage. Therefore, the automatic identification of ST
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deviations due to ischaemia and due to non-ischaemic events

(such as or axis shifts, and heart rate or conduction changes)

has been widely investigated. In particular, Mincholé et al.
[34] automatically derived heart rate related depolarization

and repolarization indices to discriminate between ST-segment

changes due to ischaemia and non-ischaemic ST episodes due

to heart rate. They reached an accuracy of 87.5% on the LTST

database. They applied a multivariate discriminant analysis

using the Wilk’s lambda minimization as the criteria for

inclusion and removal of features.

On the same database, Faganeli & Jager [35] developed a

decision-tree based classification to distinguish between ischae-

mic and non-ischaemic heart rate-related ST-segment episodes.

They evaluated their performance by bootstrap method and

reached a sensitivity of 98.1% and specificity of 85.2% with fea-

tures from heart rate and Legendre orthonormal polynomial

coefficients. Another work by Bailón et al. [36] aimed at diag-

nosing coronary heart disease based on exercise ECG indexes.

They developed an automated method to extract repolarization,

depolarization and heart rate variability (HRV) indexes from

noisy exercise recordings. A multivariate discriminant analysis

then classified patients into two classes: ischaemic and low risk

patients based on independent set of indexes. HRV indexes

provided the best results with a sensitivity of 94% and speci-

ficity of 92% to classify 65 ischaemic and 40 low-risk cases.

Another disease condition investigated is Brugada syndrome,

which leads to a high risk of sudden cardiac death because of

episodes of ventricular fibrillation (VF) in patients with no

structural heart disease [74]. Kawazoe et al. [37] investigated

risk of VF in patients with Brugada syndrome thanks to a logis-

tic regression model, cross validated over a database of 143

patients (35 with VF, 108 without). Syncope episodes, R–J inter-

val in lead V1, QRS duration in lead V6, and Tpeak–Tend

dispersion were the best discriminating features identified

by logistic regression. They led to a sensitivity of 97.1% and a

specificity of 63.0% by leave-one-out cross validation.

The study by Rahman et al. [8], mentioned earlier, pre-

sented a patient classifier to detect patients affected by HCM

based on standard 12-lead ECG. They classified a patient as

HCM if the majority of the beats show HCM beat morphology.

Their dataset was composed of 221 HCM patients and 541 con-

trol (non-HCM patients, but with implemented cardiac

defibrillator). Two hundred and sixty-four standard ECG fea-

tures, such as time intervals and waveforms amplitude, were

extracted by feature selection (information gain criterion),

and used to perform SVM and random forest classifications

with fivefold cross validation. They reached similar perform-

ance results with the two classifiers, with a precision of 0.84

(0.89 sensitivity, 0.93 specificity).

Acharya et al. [40] were interested in diagnosing several

groups of cardiac disorders based on ECG signals: ischaemic

or dilated cardiomyopathy, complete heart block, sick sinus

syndrome, AF or ectopics, and normal beats. They developed

an ANN coupled with a fuzzy equivalence relation and

reached an accuracy of 85–95% using four heart rate variabil-

ity features. In another work, Zheng et al. [41] applied

convolutional neural network (CNN) to time-series classifi-

cation using a multi-channel technique. They aimed to

classify congestive heart failure from two-lead ECG of 15 sub-

jects by extracting sub-sequences of the signal. The model

learned features from the ECG throughout the layers of the

CNN and reached an accuracy of 94.7% for congestive heart

failure detection on this dataset.
3.2. Atrial fibrillation
AF is a condition investigated by many studies as its irregular

and repetitive episodes can lead to heart failure, stroke and

double the risk of mortality [75]. In Pourbabaee & Lucas [7],

time interval and morphological features were extracted from

the three main ECG waveforms (P wave, QRS and T wave) of

25 patients with paroxysmal AF episodes and 25 healthy sub-

jects from the 2001 Computers in Cardiology Challenge

database. The MLP implemented classified accurately 87% of

the testing dataset, and suggested the importance of QRS-

based features in the classification after testing the influence

of each set of features. Similarly in [38], Colloca et al. performed

detection of atrial fibrillation episodes via SVMs, evaluated on

the MIT-BIH database with a specificity of 99.72% on the test-

ing set. In another study by Asgari et al. [39], stationary wavelet

transform and SVM were designed to identify AF events with

sensitivity and specificity of 97.0% and 97.1% respectively.

More detailed techniques for AF management and detection

can be found in [76].
3.3. Long-term patient monitoring
ECG analysis can also be used for long-term monitoring of

patients in clinical care, to detect abnormal rhythmic events

that may occur suddenly. For example in Kannathal et al. [9],

three degrees of disease severity (normal, abnormal, life threa-

tening) were predicted from the ECG of patients in an

intensive care unit (ICU) using ANNs (600 training patients,

200 testing patients). This reached an accuracy of 99% with

RBF (radial basis function) networks. Similarly in Zhang et al.
[12], a combination of genetic algorithm and SVM was used

to detect false critical arrhythmia alarms in ICUs with a true-

positive rate of 93% (true-negative rate of 94%).

In this context, an example of successful integration of com-

putational techniques in the clinical environment is the recent

collaboration between Microsoft and the Cleveland Clinic

[77], focused on the analysis of data from the ICU (clinical

data, medical records, etc.). They aimed to monitor and identify

high-risk patients, using machine learning and advanced data

analytics (Azure Machine Learning).
4. Real-time episode detection and wearable
devices

The integration of classification techniques in clinical settings

requires the detection of ECG abnormalities in real-time to be

used in the hospital environment at bedside, or on wear-

able devices. This involves the development of classification

algorithms with low complexity and low memory require-

ments, which add different challenges to these techniques

(summarized in table 2).
4.1. Real-time diagnosis
Real-time analysis and classification of ECG signals find clinical

applications in the detection of sudden abnormal heart rhythms

(more than in the diagnosis of long-term diseases), especially in

ICUs where the real-time monitoring of patients is crucial. In

addition, future progress could see memory networks learn to

predict severe events in real time, allowing clinicians to take

action before fatal arrhythmias occur.
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The standard machine learning methods presented earlier

may perform real-time classification if optimized to deal with

a large influx of incoming data. However, most of them require

the extraction of handcrafted features before classification. In

addition to the already mentioned risk of poor feature quality

due to inaccurate delineation of the ECG waves or an imprecise

extraction of ECG features, these methods may struggle to run

in real time. Recently, powerful tools have been developed in

the field of deep learning, helping real-time classification of

very complex signals by the design of more complex and

deep networks. Deep learning is a field of machine learning

in which several hidden layers of computation are added to

neural networks (learning algorithms inspired by biological

brain networks) in order to model more complex behaviours

and data structures. Popular applications of these techniques

are image recognition and generation, and speech and time-

series classification [78,79]. In Kiranyaz et al. [10], a 1D CNN

merged feature extraction and classification in one step to

develop a personalized patient classifier that can be used in

real time, once trained, to classify longer recordings, on wear-

able devices for instance. They reached an accuracy of 98.6%

(95% sensitivity, 98.1% specificity) on 24 test recordings of the

MIT-BIH database in classifying ventricular and supraventricu-

lar ectopic beats. Presented earlier, Zheng et al. [41] applied

CNNs to the classification of time-series data using a multi-

channel technique. One of their applications was the classifi-

cation of congestive heart failure in two-lead ECGs from 15

subjects by extracting sub-sequences of the signal. The model

learnt directly the features from these time series throughout

the layers of the CNN and reached an accuracy of 94.7% on

this dataset. In Chauhan & Vig [42], a deep long short-term

memory (LSTM) network was implemented to tackle the classi-

fication of various types of ECG beats (PVC, atrial premature

contraction, paced beats and ventricular couplet) from the

MIT-BIH database. An advantage of LSTM networks is their

ability to take a raw ECG signal as input without any preproces-

sing and automatically discover key features thanks to their

ability to ‘remember’ past events. In this study, the LSTM net-

work ran in a short amount of time once trained (testing time

of 0.5 s for a 20-min ECG signal on a 16 core CPU machine)

making it suitable for time-constrained applications like real-

time classification.
4.2. Application to wearable devices
Wearable devices for ECG monitoring have a key impact on the

recent effort to move the clinic to the home, especially in

the case of monitoring elderly patients or long-term diseases

(figure 3). Their development aims to reduce the costs for

prevention and monitoring, by freeing expert time and space

in clinics. Current technologies are progressing towards this

goal but challenges remain, such as portability (battery,

computational costs) or reliability of the abnormality detection.

Additional challenges arise for classification methods,

such as the need for rapid and real-time analysis of ECG sig-

nals to avoid the storage of large amounts of data, and the

ability to automatically handle noisy data, as wearable

devices may generate data more affected by movement,

noise or changes in heart rate than those generated in

standard clinical equipment.

Machine learning methods (presented in §2) must tackle

challenges of speed and memory requirements in order to be

embedded on these portable devices. In [43], a portable
device was designed to perform classification of normal

beats, atrial fibrillation, and myocardial ischaemia in real

time and with a sensitivity of 95.1% and specificity of 95.9%

using an SVM algorithm. Similarly, Leutheuser et al. [44], com-

pared several techniques for arrhythmia detection from ECG

signals on Android mobile devices evaluated on the MIT-

BIH databases and stressed the importance of balancing

computational costs and memory demand in the design of

such techniques. In 2010, Oresko et al. [11] implemented a

smartphone-based wearable platform to perform real-time

ECG acquisition and beat classification for cardiovascular

disorder detection. They based the classification step on the

design of a feed-forward MLP neural network and use the orig-

inal QRS morphological beat as input to the classifier. This

reduced the amount of preprocessing work and the method

reaches a prediction accuracy greater than 90% to detect right

bundle branch block, PVC, paced or normal beats.

An additional challenge for remote monitoring is the hand-

ling of unknown beat morphologies that the algorithm may

encounter that could lead to false alarms. These should be

reduced as much as possible on wearable devices when the

patient is at home to avoid unnecessary alarming messages,

or in the ICU to optimize the nurses’ time. Mentioned earlier,

Oster et al. [45] tackled this issue by implementing switching

Kalman filters with an additional X-factor mode to account

for unseen beat morphologies. The analysis of the quality of

these unknown beats confirmed that 639 out of 954 (approx.

2/3) of these beats were of poor or medium quality and

should therefore be discarded for monitoring and diagnosis.

Additional examples of such methods can be found in the

electronic supplementary material.

AliveCor [81] is a striking example of success in translating

these computational methods to the clinic. The wearable tech-

nology is integrated in a smartphone application and records

ECG and blood pressure data from patients. These measure-

ments are then analysed with a machine learning algorithm

to help detect AF. AliveCor received clearance from the Food

and Drug Administration [82]. It is now widely used in the

clinic for ECG monitoring. A further collaboration with the

Mayo Clinic plans to develop the technology to discover

hidden physiological signals from ECG data [83].
5. ECG computer simulations
One of the main challenges emerging from the summary of the

classification studies presented earlier is the generalization to

larger and different databases. Indeed, a limited number of

databases and recordings are available for testing and vali-

dation, which may explain the limited number of heartbeat

types and cardiac conditions investigated by these studies.

Very few works actually explore the generalization perform-

ance of their techniques to other databases as in Llamedo &

Martı́nez [4] who reported and tackled this issue by evaluating

their method over three different databases to prove good

generalization properties. The 3D computer simulations tech-

niques presented in this section may be very helpful in

addressing this problem given their ability to generate syn-

thetic data that could then be used as validation datasets for

the classification studies. In addition, computer simulations

using anatomically-based multiscale models of the electrical

activity of the heart can help to interpret ECG findings from

machine learning studies. Computer modelling studies can
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therefore find clinical applications in both the generation of

synthetic ECG data and the interpretation of ECG abnormal-

ities by linking structural or electrophysiological changes to

ECG abnormalities. The drive towards personalized simu-

lations also provides a unique opportunity for research, and

clinical benefit is directly seen in therapy testing, and reduction

of invasive techniques.

In 2013, Sovilj et al. [84] presented simulations of the

ECG using an ellipsoid 3D model of a heart embedded in a

torso. They show the effect of simulated myocardial infarc-

tions at various locations on ECG changes, specifically in

the ST segment. Another study by Bacharova et al. [85]

used computer simulations to investigate the influence of

left ventricular (LV) mass on QRS, and specifically increased

QRS amplitude, in the context of LV hypertrophy. In a more
recent work, Bacharova et al. [86] investigated the effect of

slow ventricular activation on the QRS complex and

showed how alteration of electrical properties may mimic

ECG morphologies associated with anatomical abnormalities.

These approaches have the benefit of speed and low memory

requirements, but they do not take into account a realistic

anatomy of the heart.

Simulations using image-based anatomical models have

also been used extensively to investigate the ionic and struc-

tural basis of ECG (figure 4). Substantial work by Potse and

colleagues has used several approaches for investigations of

the underlying basis of ECG changes in disease, from ST

elevation in ischaemia to personalized models of heart failure

patients [88–90]. Furthermore, in [91], Chen et al. used an

MRI-based computer simulation model from patients with
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acute myocardial infarction to show that instabilities in the

QT interval may predict ventricular tachycardia onset.

Similarly, Wilhelms et al. [92] applied realistic detailed 3D

computer simulations to better understand the mechanisms

underlying shifts in the ECG ST segment in acute cardiac

ischaemia.

The simulation of the ECG through 3D computer simu-

lations also finds applications in understanding the effect

of drugs on the ECG [15,93]. Sebastian et al. [94] investigated

the effect of dofetilide, a drug affecting the IKr current on a

patient-specific model simulating the pseudo-ECG. They

observed a prolongation of the QT interval of 100 ms with

a total IKr block, in line with a prolongation of the APD90

in cardiac cells. Zemzemi et al. [15] investigated the influ-

ence of drugs on the ECG signal using 3D computer

simulations, allowing drug testing in silico rather than in
vivo. They simulated channel conductance block for the

hERG and fast sodium channels and observed QT pro-

longation for 50% hERG block (6%) as well as QRS and

QT prolongation for 50% fast sodium current block (12%

and 5% respectively).

Another work by Cardone-Noott et al. [13] investiga-

ted the effect of changes in conductivities on the ECG

morphology and how the variability in the activation

sequence relates to changes in QRS biomarkers, by designing
a 3D simulation pipeline with a human volumetric mesh and

activation model based on the cellular O’Hara–Rudy model.

Phenomenological approaches to modelling and simu-

lation of electrical propagation have also been proposed

using fast algorithms based on graph based theory [95,96].

This may facilitate both simulations of the ECG as well as

parameter inference from the ECG, from clinical datasets,

by taking into account parameter uncertainty such as in

Wallman et al. [97] and Konukoglu et al. [98].

In addition, abnormalities in human atrial electrophysi-

ology and their consequences on ECG patterns have also been

investigated building on substantial work on multiscale model-

ling of atrial dynamics. Geometrical atria models have been

described and simple models represent the shape of the atria

as a 2D or 3D folded sheet [99,100]. As in the case of ventricular

models, these simple models are not derived from realistic

imaging data but are based on a series of assumptions. The

characteristics of the tissue can be easily modelled such as

homogeneous tissue, anisotropy [100], etc., and these simple

models allow the investigation of essential questions regarding

atria behaviour such as the anatomy. Vigmond et al. [100] for

example showed the importance of superior vena cava and pul-

monary vein openings in rotors by using a model of the atria

built with two spheres containing holes as anatomical elements.

However, despite being very useful because of their simplicity,
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these models do not possess the anatomical details that would

be obtained with imaging data.

As in ventricular models, another type of model therefore

emerged, using imaging data (from MRI or CT scans) [101–

103], including realistic anatomical elements of the whole

atria, such as sinoatrial node, left and right atrium appen-

dage, Bachmann bundle, etc. [104].

As in [105], these models allow the simulation of the body

surface ECG in normal and arrhythmic cases to investigate P

wave abnormalities in the ECG and their correlation with

atrial fibrillation dynamics and propensity.

Computer simulation models of whole ventricles and atria

therefore allow the modelling of the electrical propagation

throughout the heart from ionic dynamics to the ECG. ECG

computer simulations pipelines are powerful tools to provide

a deeper understanding of the impact of cardiac diseases and

treatments on the ECG. Furthermore, with advances in high

performance computing and development of fast simulation

methods, they can bring the generation of synthetic ECG

data under various conditions, to improve training of machine

learning classifiers and the development of new ECG features.
6. Discussion
The electrocardiogram is cheap, non-invasive and widely used

in clinical practice. As a recording of the body surface electrical

activity, it provides information about heart rhythm abnormal-

ities and helps detect diseases. However, visual inspection of

the ECG provides discrete clinically interpreted features

which cannot objectively capture the diversity of ECG abnorm-

alities and morphologies. This is why computational methods

are required, as they can make sense of multivariate complex

datasets and detect differences that might be challenging

for the human eye. However, analysing ECG data presents

many challenges. Indeed, most large clinical studies still

record ECG on paper print-outs, requiring manual digitization

before computational techniques can be applied. Digital ECG

clinical acquisition is still to be implanted in many hospitals.

In addition, many ECG databases are not publicly available,

gather low numbers of patients, and require extensive signal

preprocessing techniques to denoise the recordings for

computational analysis. As a consequence, most studies in

the literature and reviewed here focus on large, publicly avail-

able databases of ECG recordings. Some of these databases

such as the widely used MIT-BIH were originally analogue

ECG recordings on tapes that were then digitized. Some

frequency-domain artefacts were identified, although they

should not pose problems for beat classification or wave

delineation [106]. Many methods are trained and tested on

the same databases, despite ensuring separated training and

testing sets, which may limit the generalization of these

techniques to different clinical databases or other cardiac dis-

orders. Availability of large clinical ECG datasets is therefore

required for technical developments in machine learning

application to ECG analysis and classification.

These challenges will also apply to other recording tech-

niques such as body surface mapping (BSM) which samples

multiple points around the chest to provide a more detailed

mapping of the body surface electrical activity than the stan-

dard 12-lead ECG. It has been shown to be more accurate

than the ECG in detecting transient episodes like myocardial

ischaemia [107]. It is a rich source of data but is, by far, less
commonly used and accessible than standard ECG. Intra-

cardiac recordings also present an alternative to measure

the electrical activity in the heart, but they are invasive, and

could therefore not be obtained for large numbers of patients,

thus showing less interest for its analysis with machine

learning techniques.

The clinical integration of these techniques also presents

limitations. First, the gold standard for electrocardiographic

abnormality detection remains expert annotations, and there

is no reference dataset to compare all these studies, limiting

the analysis of their performances for clinical use. However,

the use of these techniques provides automaticity and consist-

ency in the analysis of large datasets, which are needed more

and more when manual classification cannot be performed.

More importantly, the benefit of computer techniques goes

beyond these classification tasks where computational

methods try to reproduce expert judgement, and can help

uncover new knowledge and discover new biomarkers by

unravelling structures in the data that were unknown before.

The recent interest in computational ECG analysis is twofold.

For the computational field, the challenge and diversity offered

by ECG recordings provide a rich environment to develop new

methods. From the clinical perspective, these methods provide

a new horizon on how ECGs can be analysed, developing

novel biomarkers to diagnose cardiac diseases. Progress in this

field is recent, which explains why several studies investigate

the behaviours of different machine learning methods on ECG

data. The fact that the ECG signal can be analysed by so many

techniques actually provides a wide range of options depending

on the goal and requirements of the study. These techniques were

recently introduced in the clinical environment, and growing

interest has been shown from the clinical field [2,108]. However,

translating novel techniques to the clinic requires both technol-

ogy developments and also addressing practical challenges

such as regulation approval, and inclusion in clinical protocols,

which require intersectorial collaborations [109]. The novel

approaches for ECG analysis reviewed here, in synergy with

other modalities such as intracardiac electrical recordings or ima-

ging techniques, have the potential to improve patient risk

stratification and precision medicine.

7. Conclusion
This review shows that computational techniques have been

widely developed to analyse ECG signals and are strong

candidates to help clinical advances by providing a better

understanding of medical challenges. Machine learning

techniques provide accurate and automatic classifications of

heartbeats to detect arrhythmias or unexpected changes in

heart morphology. They also help in automatic disease diagno-

sis, monitoring and stratification by handling long ECG

recordings for which visual and manual inspections can be

tedious and time consuming. Their adaptability to real-time

requirements and embedding on wearable devices ensures

an efficient and reliable monitoring of the ECG activity in

hospital settings or at home. Finally, 3D computer simulations

are powerful tools to interpret the ECG and they may soon

become invaluable by generating large datasets of synthetic

data for the training of machine learning classifiers. Despite

the many challenges they face and the novelty of their introduc-

tion to clinical practice, these computational methods are

becoming a powerful tool for medical advances and their inte-

gration in clinical settings should help improve patient care.
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