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Abstract

Pulmonary hypertension (PH) complicates the care of patients with
chronic lung disease, such as idiopathic pulmonary fibrosis (IPF),
resulting in a significant increase inmorbidity andmortality. Disease
pathogenesis is orchestrated by unidentified myeloid-derived cells.
We used murine models of PH and pulmonary fibrosis to study the
role of circulating myeloid cells in disease pathogenesis and
prevention. We administered clodronate liposomes to bleomycin-
treated wild-type mice to induce pulmonary fibrosis and PH with a
resulting increase in circulating bone marrow–derived cells. We
discovered that a population of C-X-C motif chemokine receptor
(CXCR) 21myeloid-derived suppressor cells (MDSCs), granulocytic
subset (G-MDSC), is associated with severe PH in mice. Pulmonary
pressures worsened despite improvement in bleomycin-induced
pulmonary fibrosis. PH was attenuated by CXCR2 inhibition, with
antagonist SB 225002, through decreasing G-MDSC recruitment to
the lung. Molecular and cellular analysis of clinical patient samples
confirmed a role for elevated MDSCs in IPF and IPF with PH. These
data show that MDSCs play a key role in PH pathogenesis and that
G-MDSC trafficking to the lung, through chemokine receptorCXCR2,
increases development of PH in multiple murine models.

Furthermore, we demonstrate pathology similar to the preclinical
models in IPF with lung and blood samples from patients with PH,
suggesting a potential role for CXCR2 inhibitor use in this patient
population. These findings are significant, as there are currently
no approved disease-specific therapies for patients with PH
complicating IPF.
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Clinical Relevance

This study demonstrates for the first time that, in models of
pulmonary hypertension, myeloid-derived suppressor cell
trafficking to the lung, mediated by C-X-C motif chemokine
receptor 2, is increased. Furthermore, a C-X-C motif
chemokine receptor 2 antagonist inhibits granulocytic
myeloid-derived suppressor cell accumulation within the lung,
preventing development of PH.
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Annual healthcare resource utilization
for patients with idiopathic pulmonary
fibrosis (IPF) costs greater than $2 billion
dollars (1). Pulmonary hypertension (PH)
associated with IPF is the most frequent
comorbidity contributing to intensive use
of hospital and emergency room services by
this patient population (2, 3). Furthermore,
IPF complicated by PH is associated with
significant impairment in quality-of-life,
and a fourfold increase risk of death (4, 5),
compared with those patients with IPF
alone. Despite the poor prognosis, there are
currently no approved treatments for
secondary PH. Vasodilator therapies have
proven to be either unhelpful, or potentially
harmful, when administered to patients
with interstitial lung disease (6–8). Thus,
there is a substantial need for novel and
clinically translatable pharmacologic targets
in the field of pulmonary vascular biology.

Our group and others have defined a
role for myeloid-derived cells in the
pathogenesis of PH (9, 10). Although
the study of myeloid-derived cells in the
pathobiology of vascular lung disease is
still in its infancy, many groups have
demonstrated strong evidence implicating
leukocytes in the progression of PH (11, 12).
Although, a vast number of immune
effector cells are known to be involved in
aberrant pulmonary vascular injury and
repair (13–17), identification of a cellular
intermediate orchestrating the response of
these cells to inflammation and injury
repair has remained elusive. Such an
intermediary would prove to be a
potentially efficacious drug target.

Previously, we have demonstrated the
necessary role for chemokine receptors in
the coordination of pathogenic vascular
remodeling (18). Chemokine receptor C-X-C
motif chemokine receptor (CXCR) 2 is
an attractive focus for research in the field
of vascular immunobiology (19), as it
has been shown to be relevant to the
pathogenesis of both PH (20) and
pulmonary fibrosis (21). We therefore
investigated whether examining CXCR2 in
bleomycin-induced pulmonary fibrosis can
help in identifying which cellular effectors
are involved in PH development. We
discovered that a progenitor myeloid-cell
population, myeloid-derived suppressor
cells (MDSCs), is necessary for the
development of experimental PH,
coordinating the inflammatory milieu
contributing to pulmonary vascular
remodeling. Moreover, we demonstrate

that, by inhibiting CXCR2, pulmonary
vascular changes are attenuated, through a
decrease in pulmonary trafficking of a
specific MDSC subset. Together, these data
support analysis of CXCR2 inhibitors in
this disease entity without currently
available treatments.

Methods

Mice and Clodronate Depletion
All mice were wild type, on a C57BL/6
background, with equal numbers of male
and females, aged 12–16 weeks (Jackson
Laboratories). Myeloid cells were
stimulated through induction of chronic
macrophage apoptosis (22) with 100 ml
intraperitoneal liposomal clodronate 1 week
before either bleomycin or chronic hypoxia
exposure, and every 3 days thereafter.
Clodronate liposomes and control PBS

liposomes were generated as previously
described (23, 24). Animal experiments
were conducted in accordance with the
University of Florida (Gainesville, FL)
Institutional Animal Care and Use
Committee.

Bleomycin Model
Mice underwent intraperitoneal injection
with 0.018 U/g bleomycin (Thermo Fisher
Scientific) or vehicle twice weekly for
28 days (25, 26). Approximately 1 week after
the last injection, 33 days after initiation
of bleomycin, mice were harvested
for histology and hemodynamic
measurements.

CXCR2 Inhibition
The selective CXCR2 antagonist SB 225002
(1.5 mg/kg; Tocris Biosciences) or vehicle
(1% DMSO in PBS) was injected
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Figure 1. C-X-C motif chemokine receptor (CXCR) 2–expressing myeloid-derived cell expansion
in macrophage-depleted, bleomycin-treated mice. (A) CXCR2 expression, by in situ hybridization (ISH), in
the bone marrow (brown stain, open arrowheads) of mice that underwent 33-day intraperitoneal
bleomycin protocol with either PBS or clodronate (CL2MDP) liposome treatment. Scale bar: 100 mm,
magnification 360. (B) CXCR21 cells within the lung, analyzed by flow cytometry, (C) percentage gated
on CD451 cells. (D) CXCL1 protein expression, assessed by multiplex array in whole mouse lung. (E) ISH
of lung histology for CXCR2 expression (brown, solid arrowheads). Scale bar: 100 mm, magnification360
(n=12 per mouse group over course of three independent experiments). Results are plotted as the mean
(6SEM). *P, 0.05. Bleo = bleomycin; FSC = forward scatter; KC = CXCL1; Veh = vehicle.
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intraperitoneally daily in mice (27), at
initiation of the bleomycin protocol.
Injections occurred throughout the 33-day
bleomycin protocol.

Fibrosis Evaluation
Semiquantitative lung fibrosis scoring (28)
and hydroxyproline microplate assay were
performed, as previously described (29).

Hemodynamic Measurements
Invasive hemodynamic measurement was
conducted, as described in previous studies
(30). In brief, right ventricular (RV) systolic
pressure (mm Hg) was assessed by right
heart catheterization via the right internal
jugular vein in spontaneously breathing
anesthetized mice. Upon completion of the
measurements, blood was collected. The

heart was then excised with removal of
the atria, and the RV and left ventricle (LV)
plus septum were isolated for measurement
of the RV:LV1 S, as previously
described (31).

Histologic Analysis
Upon harvest, the left lobe of the lung was
inflated and placed in 10% formalin, as
previously described (32, 33), and the right
lobes were snap frozen in liquid nitrogen
for RNA and protein processing.
Immunostaining was performed for
a-smooth muscle actin to identify
muscularized pulmonary vessels, which
were then counted per high-powered field,
as previously described (34). Medial wall
thickness was assessed using an established
protocol (35). In situ hybridization for

CXCR2 was performed per manufacturer
instructions (Advanced Cell Diagnostics).

Antibodies and Flow Cytometry
All antibodies were used according to the
manufacturer’s recommended protocols.
Flow cytometry analyses were performed on a
BD LSR II or on FACSCalibur upgraded at
three lasers and eight colors (Cytek). Data were
analyzed using FlowJo software (Tree Star).

Proliferation Assay
T lymphocyte proliferation assay was
performed as previously described (36).

Statistical Analysis
Statistical analysis was performed using
GraphPad Prism 6.0 (GraphPad Software
Inc.). Human data are presented as dot plots
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Figure 2. Infiltration of myeloid-derived suppressor cells (MDSCs) expressing CXCR2 into the lung in bleomycin treated mice with macrophage depletion. (A)
Representative flow plot, where CD11b1Ly6ChiLy6G- cells (highlighted in blue) represent monocytic MDSCs (Mo-MDSCs), and CD11b1Ly6CloLy6G1 cells
(highlighted in orange) represent granulocytic MDSCs (G-MDSCs). Gated on live singlet CD451 cells. (B) The absolute cell numbers of CD11b1 cells, determined
based on lung cellularity. (C) The absolute cell numbers of Mo-MDSC and G-MDSC of CD11b1 cells based on lung cellularity. (D) The percentage CXCR21 cells
of Mo-MDSC or G-MDSC cell population. (E) Percent arginase (Arg) 11 inducible nitric oxide synthase (iNOS)1 cells in Mo-MDSCs and G-MDSCs. (F) Whole-lung
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cytometry for dilution (n = 8 per mouse group experiment). Results are plotted as the mean (6SEM). *P, 0.05. Ly6 = lymphocyte antigen 6 complex.
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of median and interquartile range.
Data were compared using ANOVA with
Bonferroni post-test for multiple
comparisons or the nonparametric
two-tailed Mann-Whitney test, as
appropriate. Mouse data are expressed
as means (6SEM). As appropriate, groups
were compared by ANOVA; follow-up
comparisons between groups
were conducted using Student’s t test. A
P value of 0.05 or less was considered to
be significant. Please see the data
supplement for more details. Of note,
portions of this article have been
previously published in abstract form (37).

Results

CXCR2 Expression Is Increased in
Pulmonary Fibrosis
Mice do not naturally develop changes
consistent with either PH or IPF. However,
intraperitoneally administered bleomycin is a
validated model for study of immune cells
in pulmonary fibrosis (25), yielding a
significant and consistent degree of vascular
remodeling (9, 26). To this end, we treated
wild-type C57BL/6 mice with bleomycin
(0.018 U/g mouse) twice weekly for 4 weeks,
followed by a 5-day observation period,
before harvest and collection of tissue for

analysis. To determine the pulmonary
inflammatory response to an increase in the
number of circulating myeloid cells (38), we
concurrently dosed mice with twice-weekly
clodronate liposomes (100 mg/injection)
beginning 1 week before initiation of the
bleomycin treatment and continuing until
the day they were killed. Using these
techniques, we found that overall bone
marrow cellular CXCR2 expression was
increased in the clodronate liposome–treated
group compared with the PBS liposome
controls (Figure 1A). This staining
correlated with an increased percentage of
CXCR21 leukocytes, analyzed by flow
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Figure 3. Effect of G-MDSC accumulation on pulmonary hypertension (PH) and fibrosis. (A) Right ventricular (RV) systolic pressure (RVSP) was assessed
by invasive catheterization of the internal jugular vein on mice on Day 33 of the bleomycin protocol. (B) RV remodeling was assessed at time of death by RV
to left ventricle (LV) plus septum mass (RV:LV1S) percentage. (C) RVSP and (D) RV:LV1 S were assessed in mice treated with liposome preparations
beginning 1 week before, and continuing throughout, the chronic hypoxia protocol (FIO2

, 10% exposure for 28 d). (E and F) Pulmonary fibrosis was assessed
using modified Ashcroft (fibrosis) score, averaging 10 random high-powered fields of Masson trichrome–stained lung sections, at320 magnification. Magnification
310 and 320 (inset). Scale bars: 500 mm and 200 mm (inset). (G) Collagen content was determined using standard hydroxyproline assay (n=12 per mouse
group over course of three independent experiments). Results are plotted as the mean (6SEM). *P, 0.05. Hx = hypoxia; Nx = normoxia.
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cytometry (CD451 gate), from the lung of
clodronate/bleomycin–treated mice (Figures
1B and 1C). Finally, we found an increase in
whole-lung chemokine CXCL1 (the primary
murine CXCR2 ligand, assessed by multiplex
array; Figure 1D) in clodronate-treated
compared with PBS-treated bleomycin mice.
From these data, we concluded that
bleomycin and clodronate liposome
exposure plausibly increases in CXCR21 cell
trafficking to the lung.

To gain insight into effector cell
distribution, we examined lung histology
for localization of CXCR2. Although the
chemokine receptor was onlymildly expressed
in bleomycin- and PBS-treated mouse
sections, there was a substantial increase in the
number of CXCR21 cells in the clodronate
groups (Figure 1E). Strikingly, CXCR2 was
expressed most strongly around pulmonary
vessels. These data suggest that CXCR2-
expressing cells may help coordinate
pulmonary vascular inflammatory changes.

Granulocytic MDSC Trafficking Is
Increased in Pulmonary Fibrosis
CXCR2 can decorate many different
populations of myeloid cells, such as mature
neutrophils and MDSCs. MDSCs, however,
are known to play a role in not only
pulmonary bleomycin-induced injury (39),

but infectious/inflammatory lung disease as
well (40, 41). Broadly, MDSCs can be
divided into subpopulations either
morphologically or phenotypically,
morphologically similar to monocytes
(monocytic MDSC [Mo-MDSC],
CD11b1Ly6ChiLy6G2) or granulocytes
(granulocytic MDSC [G-MDSC],
CD11b1Ly6CloLy6G1). Of note, chronic
administration of clodronate liposomes has
previously been shown to increase tissue
levels of MDSCs in models of chronic
inflammatory stimulation (42, 43). Because
G-MDSCs express high levels of CXCR2
(44, 45), we next sought to evaluate these
cells in lungs of bleomycin-clodronate mice.
As expected, clodronate and bleomycin
administration resulted in an increase in
whole-lung CD11b1 cells (Figures 2A and
2B). Of these cells, G-MDSCs, but not Mo-
MDSCs, were increased in the bleomycin-
and clodronate-treated groups compared
with bleomycin and PBS liposome controls
(Figure 2C). In addition, percentage of
CXCR21 cells was nearly 80-fold higher in
G-MDSCs analyzed from mice treated with
both bleomycin and clodronate liposome
compared with those with bleomycin
and PBS control (Figure 2D). These data
support our hypothesis that G-MDSC
accumulation within the lung is

associated with increased CXCR2
expression.

G-MDSCs Accumulated in the
Fibrotic Lung Express Arginase 1 and
Inducible Nitric Oxide Synthase
MDSCs mediate tumor cell immune escape
through arginine substrate sequestration
and metabolism, via dual expression of
arginase (Arg) 1 and inducible nitric
oxide synthase (iNOS) (46). Expression
of these enzymes by MDSCs in PH is
unknown. Therefore, we analyzed the
MDSC subpopulations for Arg11iNOS1

expression. We found that G-MDSCs
from bleomycin-treated mice expressed
higher levels of Arg1 and iNOS than the
vehicle-treated controls (see Figure E1A in
the data supplement; Figure 2E). We
next demonstrated whole-lung
increase in Arg activity (Figure 2F) in
bleomycin-clodronate–treated animals,
consistent with the flow data, although
nonspecific for Arg1. Finally, we confirmed
isolated MDSC’s immune suppressive
capability in a T cell suppression assay (36).
Consistent with the enzymatic
expression data, we found that
MDSCs, isolated from bleomycin and
clodronate liposome–treated mice
spleen, functionally suppressed in vitro
T cell growth (Figure 2G). Importantly,
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spleen-derived MDSCs grossly reflected
the same CXCR2, Arg1, and iNOS
expression pattern as that of those
analyzed from the lung of treated
animals (Figures E1B and E1C).
Finally, whole-lung expression of
G-MDSC–associated growth factors, such
as vascular endothelial growth factor
and granulocyte-colony–stimulating
factor, and remodeling protein matrix
metallopeptidase 9, were increased
in bleomycin and clodronate
liposome–treated animals, compared with
appropriate controls (Figures E1D
and E1E). Together, these data
support that MDSC trafficking to the lung
is increased, and that these cells
retain functional immunosuppressive
function.

CXCR2-Expressing G-MDSCs Are
Associated with Development of PH
in Absence of Pulmonary Fibrosis
Clodronate liposomes administered in
models of pulmonary vascular disease (47)
have variable effects (48). Similar
heterogeneity in response to clodronate
treatment is described in the pulmonary
fibrosis literature (23), dependent mainly
upon early or late administration relative to
bleomycin exposure (49). We therefore
sought to define in the bleomycin model,
administered either clodronate or PBS
liposomes, the PH and fibrosis phenotype.
We subsequently found a large increase in
PH without evidence of RV hypertrophy by
RV to LV plus septal mass ratio (RV:LV1
S; %) in mice treated with bleomycin and
clodronate (Figures 3A and 3B). In

addition, we demonstrated the same
physiologic findings in chronic hypoxia (FIO2

10% exposure, at normal atmospheric
pressure, for 4 wk) induced PH (Figures 3C
and 3D). Pulmonary vascular pressures were
increased, despite a marked decrease in
parenchymal fibrosis, as assessed by fibrosis
score (Figures 3E and 3F) and measurement
of collagen content (Figure 3G). From these
findings, we conclude that, despite an
improvement in pulmonary fibrosis, PH is
worsened, associated with MDSC trafficking
into the lung.

G-MDSC–associated Vascular
Remodeling Contributes to PH
MDSCs accelerate angiogenesis, metastasis,
and vascular injury and repair (50, 51).
Therefore, we examined lung sections from

Nl IPF IPF
+ PH

0

10

20

30

40

50

P
la

sm
a 

IL
8 

(C
X

C
L8

; p
g/

m
L)

*

*

A

Nl IPF IPF
+ PH

0

100

200

300

400

Lu
ng

 C
X

C
L1

(G
ro

-α
/K

C
; p

g/
m

g)

*

*

B

Nl IPF IPF
+ PH

0

20000

40000

60000

Lu
ng

 IL
8 

(C
X

C
L8

; p
g/

m
g)

*

*

C

G-MDSC Mo-MDSC

20

0

40

60

P
er

ce
nt

ag
e 

of
 H

LA
-D

R
–

C
D

33
+
C

D
11

b+
 C

el
ls

 (
%

)

Normal

IPF

*
ED

HLA-DR

MDSC

C
D

33

CD11b

C
D

14

CD15

Mo

G

IP
F

N
orm

al

5.7

39.0

13.2

16.4

Figure 5. CXCR2 signaling and circulating G-MDSCs in patients with, or at risk for development of, PH associated with idiopathic pulmonary fibrosis (IPF).
(A) Plasma IL-8 (or CXCL8) from normal (Nl; n = 10) control subjects and patients with IPF with (n = 4) and without (n = 10) PH, as analyzed by multiplex
array. (B) Whole-lung tissue CXCL1 and (C) IL-8, evaluated by multiplex array, from samples from Nl patients (n = 10), patients with IPF alone (n = 13),
and patients with IPF with PH (n = 6). (D) Representative flow plots for determination of CD11b1CD331HLA-DR2CD142CD151 cells (human G-MDSC)
and CD11b1CD331HLA-DR2CD141 cells (human Mo-MDSC) from the peripheral blood of patients with IPF (n = 5) versus healthy control subjects
(n = 11). Boxes represent the interquartile range, and the horizontal lines are the medians. *P, 0.05. HLA-DR = human leukocyte antigen–antigen D related.
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Figure 6. Effect of CXCR2 inhibition on PH, vascular remodeling, and G-MDSC accumulation within the lung. (A) RVSP was assessed in mice treated with
bleomycin, CL2MDP liposomes, and CXCR2 inhibitor SB 225002. (B) RV remodeling was assessed at time of death, by RV:LV1 S percentage. (C)
Complete and partially muscularized vessels were counted from 10 microscopic fields, and the ratio was calculated. (D) Medial wall thickness of
pulmonary vessels was assessed by averaging from 10 random high-powered fields. (E) a-SMA IHC staining of lung sections from treated mice. Scale
bars: 500 mm (310) and 100 mm (340). (F) In situ hybridization lung histology for CXCR2 expression. Scale bar: 100 mm, magnification 360. (G)
Representative plots of Mo-MDSCs (blue highlight) and G-MDSCs (orange highlight) from whole lungs in treated mice. (H) Representative plots (gated on total
MDSCs, given low levels of cellularity in G-MDSC population) of whole-lung Arg1iNOS1 cells (purple highlight). (I) The percentage Mo-MDSC and G-MDSC of
CD11b1 cells. (J) The percentage Arg1iNOS1 cells of total MDSCs (n=6 per mouse group experiment). Results are plotted as the mean (6SEM). *P,0.05.
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the clodronate- and bleomycin-treated mice
for evidence of vascular remodeling by
pulmonary vessel muscularization counts
(52). Though number of muscularized
pulmonary vessels was similar between
PBS- and clodronate liposome–treated
bleomycin-exposed mice (data not shown),
complete (circumferential) muscularization
was nearly ninefold higher in the
clodronate group. These changes were
associated with an increase in medial wall
thickness by greater than 10% (Figures
4A–4C). These data support a contributory
role of G-MDSCs, expressing CXCR2, in
vascular remodeling that leads to PH.

PH Associated with IPF Parallels
Preclinical Studies
We next sought to understand if an MDSC
populationwas present in patients with disease.
Unlike mice, in humans, the major ligands
for CXCR2 are CXCL8 (also known as IL-8)
and, to a lesser extent, CXCL1 (36). CXCL8 has
previously been linked to the pathogenesis of
both IPF (53) and PH (54, 55). Therefore, we
first tested plasma samples, from the
National Institutes of Health Lung Tissue
Research Consortium cohort, and found a
significantly higher level of CXCL8 in
patients with IPF and PH compared with
normal control subjects or patients with
IPF alone (Figure 5A). Levels of CXCL1
and CXCL8 in lung homogenates from the
samples from patient with IPF and PH were
likewise elevated compared with disease
control samples from patient with IPF
alone (Figures 5B and 5C).

To explore whether patients with IPF
have a greater circulating amount of
G-MDSCs compared with nondisease control

subjects, we prospectively recruited both
normal control subjects (n = 11) and patients
with a diagnosis of IPF (n = 5) from the
University of Florida Pulmonary Interstitial
Lung Disease Clinic (Gainesville, FL) (patient
characteristics, Table E1). All patients that
carried a diagnosis of IPF were on antifibrotic
therapy (single or dual agent), though none
were currently on vasodilator therapy. The
peripheral blood G-MDSC population in
patients with IPF was double that of normal
control subjects (Figures 5D and 5E; median
and interquartile range presented), with no
significant difference noted in Mo-MDSCs.
These data demonstrate that the chemokine
axis shown to be essential for MDSC
recruitment in murine PH development is
also active in patients with IPF and PH, and
the specific G-MDSC population is at least
elevated in patients with IPF versus healthy
control subjects.

PH Is Prevented through Blockade of
G-MDSC Trafficking to the Lung by
CXCR2 Inhibitor
Previously, CXCR2 inhibition has been
shown to be important in experimental
development of both PH (19, 20) and
pulmonary fibrosis (56), although a
mechanism remains unspecified. Because
CXCR21 G-MDSCs are abundant and
strongly associated with PH, we
hypothesized that blocking CXCR2 could
prevent G-MDSC recruitment and attenuate
the phenotype. Therefore, we chose to study
antagonism of CXCR2 in the bleomycin-
clodronate model of PH through use of
small molecular inhibitor, SB 225002 (daily
intraperitoneal injection of 1.5 mg/kg
mouse), initiated at the start of the

bleomycin protocol. In mice administered
SB 225002, PH was completely attenuated
with resolution of pulmonary vessel
muscularization to that of a normal wild-
type control (Figures 6A–6E), with complete
absence of perivascular CXCR2 expression
(Figure 6F). CXCR1 expression was
unchanged in SB 225002-treated mice
compared with controls (Figure E3A).
Consistent with the literature (21), the
percentage of granulocytes in the lung, after
treatment with CXCR2 inhibitor actually
trended toward being higher compared with
control mice, arguing that neutrophil
depletion in the model does not account for
the phenotype (Figure E3B). The lack of
CXCR2 expression within the lung and the
resolution of the pulmonary vascular
phenotype correlated directly with decreased
infiltration of G-MDSCs (Figure 6G), and a
corresponding increase in Mo-MDSCs in
mice given SB 225002, clodronate liposome,
and bleomycin compared with controls. In
the complete MDSC population, dual-
positive Arg11iNOS1 cell populations were
nearly absent in mice given SB 225002 in the
bleomycin and clodronate liposome group
(Figures 6H–6J), suggesting a comprehensive
decrease in functional capability of these
cells. These results demonstrate that
CXCR2-mediated recruitment of G-MDSCs
is necessary for development of PH.

Altogether, our data implicate
G-MDSCs in the pathophysiology of PH
(with the proposed mechanism summarized
in Figure 7). Identification of these cells
offers a translatable and therapeutic option to
improve patient outcomes by targeting the
CXCR2-positive subset of MDSCs. Though
our work demonstrates utility in only
prophylaxis against development of PH—as
opposed to treatment of existing
vasculopathy—we have demonstrated a
plausible biologic mechanism for disease,
laying the groundwork for performance of a
clinical trial of CXCR2 inhibitors in this patient
population without any current therapies.

Discussion

We present data that show that G-MDSCs
expressing CXCR2 can cause PH in amodel of
pulmonary fibrosis, despite improvement in
parenchymal lung disease. Functional and
expression analysis showed that MDSCs
retained immunosuppressive capabilities in
these models. In addition, we demonstrate
human pathology consistent with the
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preclinical studies in patients with IPF. Finally,
the murine pulmonary vascular disease is
completely attenuated by antagonizing
CXCR2-mediated trafficking of G-MDSCs.

MDSCs evolved as a response to
inflammatory stimuli, likely to minimize
collateral tissue damage inflicted during the
immune response to infection. However,
in the setting of chronic inflammatory
stimulus, this same cell population can
induce a state of immune senescence,
facilitating unchecked aberrant cellular
proliferation (57, 58). This malignant
effect has fostered development of
MDSC-inhibiting strategies, including
agents directed at cell deactivation
(phosphodiesterase-5 inhibitors [59]),
differentiation (all-trans retinoic acid [60]),
and multikinase inhibitors (61),
which block cell development. Acting
in a synergistic fashion with novel
immunotherapeutic agents directed against,
for example, programmed cell death
protein 1 (36), CXCR2 inhibitors have
shown promising results in impeding
MDSC movement and function.
Importantly, CXCR2 antagonists are
currently being studied in patients with
severe chronic obstructive pulmonary
disease, having been proven to be both safe
and efficacious in phase II clinical trials
(62). Our study provides solid preclinical
evidence for further study of CXCR2

inhibitors in prevention, and potentially
treatment, of PH associated with IPF.

Circulating MDSCs are upregulated in
children with PH (63), and in patients with
IPF (64). In patients with IPF,
CD331CD11b1 cells, consistent with an
MDSC expression pattern, are found within
the fibrotic niche of fibrotic lung sections.
Given these data and our own, it is
intriguing to speculate on the use of MDSC
subpopulations in identifying patients for
either clinical trial enrollment, or,
eventually, as informing therapeutic
intervention decisions.

Although our work does not define the
downstream mechanism of MDSC-mediated
pulmonary vascular changes, inferences for
future studies can be drawn from the
demonstrated immune suppression data,
specifically pertaining to arginine substrate
utilization. Arginine metabolism coordinated
by MDSCs through the enzymes, Arg1 and
iNOS, plays many important roles in the
immune suppression capability of MDSCs.
Arg1 in particular leads to dysfunction of
T cells through blocking the main signaling
component of the T cell receptor, while
simultaneously producing increased amounts
of proline necessary for collagen formation
(65). Related to malignant stroma fibrotic
remodeling, G-MDSCs are the primary
source of Arg1 in tumor-bearing hosts,
acting as the major basis of extracellular
arginine depletion (66).

A limitation of our study is that it is
underpowered to detect a difference in the
MDSC population within our samples from
patients with IPF. In future studies with
larger patient recruitment, attention will be
paid to appropriate age and tobacco
smoke exposure matching between healthy
control subjects and patients with disease.
Likewise, it is worth noting that, in the
aforementioned study of MDSCs in patients
with IPF, the authors described an opposite
finding from our own limited report.
Specifically, the group noted that, in their
patients with IPF, Mo-MDSCs were
elevated, whereas G-MDSCs were
unchanged compared with control subjects
(64). This discrepancy in MDSC
subpopulations may have been due to a
number factors, including differences in
flow cytometric analysis, or the fact that all
of our patients with IPF were receiving
concurrent antifibrotic therapies. The
tyrosine kinase inhibitor family of
therapeutics, of which the drug, nintedanib,
is currently approved for treatment of
interstitial lung disease, are known to
alter maturation and function of MDSCs,
resulting in multiple cytotoxic T cell
changes. Given that G-MDSCs function
predominantly as an antigen-specific
T lymphocyte–suppressive agent,
distinction between MDSC subgroup
response to therapies has potentially
important implications for treating
patients with concurrent PH (67, 68).

In total, other leukocytes far
outnumber MDSCs within the lung, with
multiple redundant regulatory pathways
operating to decrease pathologic signaling
(69–71). However, little is known about
these regulatory networks related to the
pulmonary vasculature. Complexity
of regulation highlights the potential
negative outcomes of broadly directed
immunobiologic targeted therapy (72). A
rigorous approach is required for use of
adjuvant therapies, especially with
application to disease entities outside the
scope of cancer treatment. CXCR2
inhibitors are a class of drugs that has
been shown to be safe in patients with
advanced lung disease. Therefore, this class
of drugs should be considered in clinical
trials of patients with IPF at risk for
development of pulmonary vascular
disease. n
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