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Abstract

Introduction—In mammals, FADS2 catalyzes “front-end” A4-, A6-, and A8-desaturation of fatty
acyl chains, whereas FADSI has A5-desaturase activity. Eighteen and 20-carbon precursors to
highly unsaturated n-3 and n-6 fatty acids are the usual substrates for FADS1 and FADS2. Our
main objective was to characterize the metabolic fate of oleic acid (OA) due to action of FADS
gene products.

Methods—MCEF-7 cells were stably transformed with either FADS1 or FADSZ2 or empty vector.
A series of dose-response experiments were conducted with albumin-bound fatty acid substrates
(18:1n-9 and 20:1n-9) provided in concentrations up to 100 uM. Cells were harvested after 24 h,
after which FAME were prepared and analyzed by GC-FID and covalent adduct chemical
ionization tandem mass spectrometry (CACI-MS/MS).

Results—When stably transformed cells were incubated with 18:1n-9, FADSZ1 and control cells
elongated 18:1n-9 — 20:1n-9 (11-20:1), while FADSZ cells A6 desaturated, elongated, and then
A5 desaturated via FADS coded activity leading to Mead acid, 9-18:1 — 6,9-18:2 — 8,11-20:2
(20:2n-9) — 6,8,11-20:3 (20:3n-9). Surprisingly, FADSI cells A7 desaturated 11-20:1 —
7,11-20:2, the latter detected at low levels in control and FADS2 cells. Our results imply three
pathways operate on 18:1n-9: 1) 18:1n-9 — 18:2n-9 — 20:2n-9 — 20:3n-9; 2) 18:1n-9 —
20:1n-9 — 20:2n-9 — 20:3n-9 and 3) 18:1n-9 — 20:1n-9 — 7,11-20:2.

Conclusion—Alternative pathways for oleic acid metabolism exist depending on FADS2 or
FADSI activities, we present the first evidence of A7 desaturation via the FADSI gene product.
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Introduction

In mammals, the metabolism of omega-3, omega-6 and omega-9 unsaturated fatty acids
(UFA) is carried out by one set of desaturation and elongation enzymes. Fatty acid
desaturases (FADS) catalyze the site-specific introduction of ¢/sdouble bonds into
hydrocarbon chains, required for the biosynthesis of highly unsaturated fatty acids [1]. The
FADS gene cluster comprises three genes - FADSI, FADSZ, and FADS3 spanning 100 kb
region on the long arm of chromosome 11 (11q12-q13.1) [2]. FADS2 is a multifunctional
even numbered desaturase, shown to catalyze “front-end” A4-, A6-, and A8-desaturation of
fatty acyl chains acting on at least ten substrates (one saturate, one monounsaturate and eight
polyunsaturates), whereas FADS1 has only A5 desaturation activity [1, 3, 4]. The elongase
gene (ELOVL) family in mammals comprises of seven members (ELOVL1-ELOVLY7).
Among the seven elongases, ELOVL2 and ELOVLS5 are polyunsaturated fatty acid (PUFA)-
specific, whereas ELOVL4 prefer saturated fatty acids (SFA) and very long-chain PUFA
(C28-C38). ELOVL1, ELOVL3, ELOVL6 and ELOVLT7 prefer SFA and monounsaturated
fatty acids (MUFA) as substrates [5, 6].

A6 desaturation of 18-carbon substrates by FADS2 is the rate-limiting step in the
biosynthesis of long chain polyunsaturated fatty acids (LCPUFA) under many but not all
physiological conditions [1, 6]. Among three common substrates for FADS2, 18:3n-3
displays the greatest affinity, followed by 18:2n-6, and 18:1n-9 (oleic acid) [7]. Under
typical physiological conditions, Mead acid (5,8,11-eicosatrienoic acid, 20:3n-9), a trienoic
derivative of oleic acid, comprises less than 1% of total erythrocyte fatty acids [8]. In
contrast, when essential fatty acid deficiency (EFAD) is experimentally induced, for instance
in human umbilical epithelial cells, 20:3n-9 content rises to 5% of total fatty acids after 16
days [9]. Because cellular Mead acid content increases when omega-3 and omega-6 levels
are depleted, the presence of elevated Mead acid levels and the triene-tetraene ratio (Mead
acid/arachidonic acid; [20:3n-9]/[20:4n-6]) serves as a biomarker for EFAD [10, 11].

Emerging biochemical evidence indicates a functional role for Mead acid. Its involvement in
anti-inflammatory signaling pathways may partially compensate for the reduced serum
levels of omega-3 and omega-6 fatty acids, both of which modulate the immune response
[12]. Hamazaki et al. demonstrated that Mead acid reduces angiogenesis by inhibiting
vascular endothelial growth factor-A (VEGF-A) function and attenuates the activity of
osteoblasts [13, 14]. Therefore, Mead acid may promote cartilage synthesis, as further
evidenced by elevated Mead acid concentrations in chondrocytes [15]. The anti-angiogenic
activity of Mead acid may also serve to inhibit tumorigenesis in certain types of cancer [16].
Full elucidation of Mead acid synthesis and metabolism may therefore contribute to the
development of novel immunological and cancer therapeutics.

MCF7 cells have no native capacity for the biosynthesis of LCPUFA from linoleic and a.-
linolenic acids because of the absence of A6-desaturase activity. Earlier, we showed
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restoration of this metabolic defect by transient transfection of FADS2 and both FADS1 and
FADS2 competing for the same fatty acid substrate [17]. Here by using MCF7 cells stably
expressing FADS1 or FADS?2 we investigate the role of these enzymes in oleic acid
metabolism.

Materials and Methods

Chemicals

Cell culture

Fatty acids (18:1n-9, 20:1n-9, and 22:1n-9) were purchased from Nu-Chek Prep (Elysian,
MN). Solvents for lipid extraction are HPLC grade from Sigma-Aldrich (St. Louis, MO, US)
or Burdick & Jackson (Muskegon, MI, US). Media and solution for cell culture were
obtained from Life Technologies (NY), Corning (MA) and ThermoFisher Scientific (MA).

MCEF-7 cells stably expressing FADS1 and FADS?2 were created using the pcDNA3.1
expression vector system along with empty vector cells as control; details are available
elsewhere [3]. Briefly, the antibiotic-resistant transformants were selected to generate pure
(i.e. clonal) stably transformed FADS1 and FADS2 cells. Based on this selection method we
expect 100% of the cells to contain FADS1 and FADS2. The cells were maintained on
MEM-a media containing 10% (v/v) of heat-inactivated (30 min, 56°C) fetal bovine serum
(FBS), 10 mM HEPES buffer and 0.5 mg/ml geneticin at 37°C with 5% CO,. Dosage
studies were carried out by using 1x10° cells in 60x15 mm culture dishes and were grown
for 48 h in 10% FBS to 80% confluence. Cells were incubated with bovine serum albumin
(BSA)-bound fatty acid (18:1n-9 or 20:1n-9) substrates at concentrations of 0, 20, 50 and
100 pM for 24 hours (h). The BSA-bound fatty acid stock consists of 0.33 mM BSA plus 1
mM fatty acid substrate in10 ml PBS. For 100 uM treatment 0.5 ml is used from 10 ml
stock. BSA is used to bound fatty acid substrates to be added exogenously to the cells, so
zero dose does not contain BSA. While supplementing fatty acid substrate cells were grown
in FBS free media. After 24 h, the cells were washed twice with PBS and harvested using
trypsin for fatty acid analysis.

Fatty acid analysis

Fatty acid methyl esters (FAME) were prepared by using a modified one-step method [18],
and quantitatively analyzed by a Hewlett Packard 5890 series 11 GC-FID with a BPX 70
column (20 m, 0.22 mm inner diameter, 0.25 m film); Hewlett Packard, Palo Alto, CA,
U.S.A)), with H as a carrier gas. FAME were structurally identified by GC-covalent adduct
chemical ionization tandem mass spectrometry (GC-CACI-MS/MS) as previously described
[3]. An equal weight FAME mixture (462A; Nu-Chek Prep, Inc.) was used to calculate
response factors on a daily basis [19], and peak area was normalized to 18:2n-6 and 20:3n-6
as in previous studies[4, 20]. Substrate availability alters substrate utilization. Treatment
with n-9 fatty acids (FA) has effects on the n-7, n-9 FA families, as well as saturates (C16:0
and C18:0). Use of these FA for normalization produces data that are not clearly related to
the hypothesis. While the n-6 and n-3 FA are products of FADS1 and FADS?2 action, we did
not add n-3 and n-6 substrates exogenously either via direct supplementation or via media as
we used FBS free media. The n-3 FA are always present at minor levels even if not added
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exogenously from FBS while growing the cells. As the n-3 are in trace amounts, we were
not able to use them for normalization. The n-6 FA that are present in these cells come from
FBS prior to FA treatment and are in amounts which can be used for normalization. In our
analysis neither 18:2n-6 nor 20:3n-6 did changed between FADS2, FADS1 and Control
treatments, so we used them for normalization. Three biological replicates were used. GC
analyses were performed in triplicate for each biological replicate. FAME were dissolved in
heptane and stored at -20°C until analysis.

The fate of oleic acid (18:1n-9) was evaluated using stably transformed FADS1 and FADS2
MCF7 cells. Figure 1 shows three metabolic routes to two fates for 18:1n-9 (a) 18:1n-9 is
desaturated via A6 desaturation (D6D) to 18:2n-9 followed by elongation to 8,11-20:2 and
A5 desaturation (D5D) to 20:3n-9 (b) 18:1n-9 is elongated to 20:1n-9 followed by A8
desaturation (D8D) by FADS2 to 8,11-20:2. The 8,11-20:2 is then A5 desaturated to 20:3n-9
or (c) A7 desaturation (D7D) by FADS1 to 7,11-20:2.

Figure 2 shows chromatograms of control, FADS1 and FADS2 stable MCF7 cell treatments
dosed at O uM or 100 uM of 18:1n-9 or 20:1n-9 substrates. When cells are treated with 100
UM of 18:1n-9, the elongation product 20:1n-9 is seen in control and FADS1 cells, whereas
in FADS2 cells, 18:1n-9 is (a) desaturated via D6D to 18:2n-9, followed by elongation to
8,11-20:2 or (b) elongated to 20:1n-9 followed by D8D by FADS?2 to 8,11-20:2. (c) FADS1
cells D7D 20:1n-9 to a novel product, 7,11-20:2. GC-MS analysis was performed to
unambiguously identify methyl 20:2 (Figure 3). Figure 3: Panel A is the MS-1 spectrum
showing peaks at m/z 376, 323, 291, and 273, corresponding to the [M+54], [MH]*, [M
+54-32], and [M+54-32-18] ions, respectively, characteristic of a 20:2 FAME. Panel B is the
MS-2 collisional dissociation spectrum of [M+54], yielding ions at m/z 278 and 208
corresponding, respectively, to the a and w diagnostic ions for 7,11-20:2 and positively
identifying this novel product. Panel C is the MS-2 collisional dissociation spectrum of [M
+54], yielding ions at m/z 264 and 234 corresponding, respectively, to the a and w
diagnostic ions for 8,11-20:2.

Figure 4 shows MCF7 cells stably expressing FADS1, FADS2, and control (empty vector)
incubations with various concentrations (0, 20, 50 and 100 pM) of 18:1n-9 or 20:1n-9
substrates. When cells treated with 18:1n-9 control and FADS1 cells synthesize 20:1n-9 via
chain elongation. In contrast, FADS2 cells accumulate D6D product 18:2n-9, which
increased with increasing concentration of 18:1n-9. Increasing precursor 18:1n-9 not only
increased product 18:2n-9 but also increased 8,11-20:2 by several fold. Similarly, when cells
were treated with 20:1n-9, FADS1 cells accumulate D7D product 7,11-20:2, which steadily
increased with increasing concentrations. No obvious changes were seen in control cells,
whereas, in FADS2 cells 8,11-20:2 increased at concentrations 20 and 50 pM. Based on the
unexpected observation of A7 desaturation of 20:1n-9, we performed similar experiments
with 22:1n-9 (erucic acid). No desaturation product was observed for 22:1n-9 upon
incubation with FADS1, FADS2, or control cells (data not shown). When cells were treated
with oleic acid, the percent conversion to all downstream FA by FADS2 was 20% and by
FADS1 was 3%.
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When incubated with 11-20:1, the novel 7,11-20:2 product was also detected in control and
FADS2 cells (Figure 2 and Figures 4, top and bottom right panels). Though MCF7 cells have
no native FADS2 activity, they do have FADS1 activity. These data demonstrate that
7,11-20:2 appears in cells when substrate 11-20:1 is provided even in cells with FADS2
activity. In 18:1n-9 treated cells, 7,11-20:2 is detected only in FADS1 but not control or
FADS?2 cells, consistent with 9-18:1 — 11-20:1 — 7,11-20:2 and the last step catalyzed by
FADS1 (Figures 2 and 4).

Discussion

Oleic acid (18:1n-9) exists in various animal and vegetable fats and oils and serves as a
precursor for the synthesis of Mead acid (20:3n-9). In the present study, by using MCF7
cells stably transformed with FADS2 and FADS1 we investigated the pathways leading to
the biosynthesis of Mead acid. Conversion of oleic acid to Mead acid has been shown earlier
by using siRNA-mediated knockdown assays [21] to proceed via two pathways. (a)
‘classical’ A6-pathway (A6 desaturation — elongation — A5 desaturation), or (b)
‘alternative’ elongation/A8-pathway (elongation — A8 desaturation — A5 desaturation)
Supplementary Figure 1. In classical A6-pathway, similar to the PUFA pathway FADS?2
catalyzes the rate limiting A6 desaturation step to form 18:2n-9, which is followed by
elongation reaction catalyzed by ELOVL5 and A5 desaturation to yield 20:3n-9. However, in
the alternative pathway 18:1n-9 first is elongated to 20:1n-9. This step is known to be
catalyzed by ELOVL3, ELOVL5 or ELOVLY7 [5, 21, 22]. The fate of 20:1n-9 then follows
A8 desaturation (FADS2) — A5 desaturation (FADS1) to yield Mead acid. Interestingly, our
stable FADS1 cells D7D 20:1n-9 to 7,11-20:2.

Desaturases and elongases are well known to compete for the same substrates. For example,
18:2n-6 and 18:3n-3 EFA competes to access FADS2 (A6-desaturase activity). Earlier we
showed that FADS1 and FADS2 compete for the same substrates [17]. In MCF7 cells with
substantial absence of FADS2 (A8 desaturation activity), the D5D (FADS1) operates on
20:2n-6 and 20=3n-3 to yield 5,11,14-20=3 and 5,11,14,17-20=4, respectively [17].
Similarly, here we show FADS1 acting on 20:1n-9 to yield 7,11-20:2, demonstrating that the
metabolic fate of 20:1n-9 depends on FADS1 and FADS2 activities.

In 2001, Destaillats et al. [23] reported that seed oils of two Taxaceae species ( 7axus
chinensis and T. baccata) contain a A7-PUFA dihomotaxoleic (DHT; cis-7,cis-11 20:2) acid.
The T. chinensis and T. baccata species contain taxoleic acid (TA; all-cis 5,9-18:2) at 16.4
and 10.6% and dihomotaxoleic at 0.13 and 0.06% of total fatty acids, respectively. The
presence of 5,9-18:2 and 7,11-20:2 in these two species seed oils led Destaillats et al. [23] to
propose that DHT could be the elongation product of TA. The 7,11-20:2 is also seen in the
hardshell clam (Mercenaria mercenaria) [24]. Here we provide the first molecular evidence
showing that FADS1 introduces a double bond at the A7 position leading to the biosynthesis
of 7,11-20:2 (DHT).

The all-c/s A7 monounsaturated and polyunsaturated fatty acids have been previously
reported in numerous samples. In human milk lipids, Precht and Molkentin [25] reported
existence of ¢/s-7 16:1. In plant species like Arabidopsis thaliana, Spinacia oleracea, and
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Brassica napus which are widely known as 16:3 plants, A7-methylene interrupted
hexadeca-7,10,13-trienoic acid is one of the most abundant fatty acids comprising up to 30%
of the total [26, 27]. The dienoic 7,11-18:2 was found in the sponge Haliclona cinerea from
the Black Sea [28]. By using labelling studies Zhukova has shown presence of non-
methylene-interrupted dienoic 22:2 (7,13) and 22:2 (7,15) in the bivalve mollusk Scapharca
broughtoni. Similarly, Kawashima et al. [29] identified non-methylene-interrupted dienoic
fatty acids in Cellana grata. The 20 carbon 7,13-20:2 and 7,10,13-20:3 were found in liver
lipids of rats raised on a fat free diet [30]. The 7,10,13-20:3 and 7,10,13,16-20:4 (20:4n-4)
were also found in Bathymodiolus japonicus and Bathymodiolus platifrons two cold-seep
mussels, which host methane-oxidizing bacteria [31].

In conclusion, we provide the first molecular evidence of A7desaturation via the FADS1
gene product. An alternative pathway for oleic acid metabolism exists, and its metabolic
significance depends on FADS1 and FADS2 activities. Production of 7,11-20:2 is found
when oleic acid's elongation product, 11-20:1 is sufficient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

FADS fatty acid desaturases

UFA unsaturated fatty acids

ELOVL elongase gene

PUFA polyunsaturated fatty acid

MUFA monounsaturated fatty acids

SFA saturated fatty acids

LCPUFA long chain polyunsaturated fatty acids

EFAD essential fatty acid deficiency

VEGF-A vascular endothelial growth factor-A

FBS fetal bovine serum

FAME Fatty acid methyl esters

GC-CACI-MS/MS GC-covalent adduct chemical ionization tandem mass
spectrometry

D6D A6 desaturation

D5D A5 desaturation

D8D A8 desaturation

D7D A7 desaturation

DHT dihomotaxoleic

TA taxoleic acid
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Highlights
. To date FADSL1 is known to catalyze only 5 desaturation.
. We show that FADSL1 catalyzes 7 desaturation of 11-20:1 to yield 7,11-20:2

. In 20:1n-9 supplemented cells 7,11-20:2 is found at low concentration in
basal MCF7 cells
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Figure 1.
Oleic acid Pathway Summary. Metabolic fate of oleic acid (18:1n-9). Oleic acid is

metabolized to 20:3n-9 via (a) A6-pathway (A6 desaturation (D6D) — elongation — A5
desaturation (D5D)) or (b) elongation/A8-pathway (elongation — A8 desaturation (D8D) —
A5 desaturation (D5D)) to biosynthesize Mead acid (20:3n-9). (c) Elongation/A7-pathway
(elongation — A7 desaturation (D7D)) to biosynthesize the novel 7,11-20:2.
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Chromatograms of 18:1n-9 and 20:1n-9 dose studies

Chromatograms of 18:1n-9 and 20:1n-9 dose studies using stable FADS1 and FADS2 MCF7
cells. The 18:1n-9 dose caused 18:1n-9 elongation to 20:1n-9 in control and FADSL cells.
(a) The FADS2 cells A6-desaturate (D6D) 18:1n-9 to 18:2n-9 and then elongate to 20:2n-9
or (b) A-8-desaturate (D8D) 20:1n-9 to 8,11- 20:2. In addition, (c) the FADS1cells A7-
desaturate (D7D) 20:1n-9 to 7,11- 20:2.
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Figure 3.
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Page 12

Data Showing CACI-MS1 and CACI-MS2 spectra of 20:2 FAME. A: CACI-MS1 spectrum

showing m/z 376, 323, 291, and 273 characteristic ions of 20:2 FAME. B: CACI-MS/MS
spectrum of the 20:2 FAME showing FADSL1 action. Novel product 7,11-20:2 was positively

identified based on the detection of diagnostic ions m/z 278 and 208. C: CACI-MS/MS

based on the detection of diagnostic ions m/z 264 and 234.
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Figure 4.
Stably transformed FADS1, FADS2, and control (empty vector) MCF7 cells, incubated with

various concentrations (0, 20, 50 and 100 uM) of 18:1n-9 or 20:1n-9 substrates. The FADS1
and control cells elongate 18:1n-9 to 20:1n-9. The FADS2 cells A6 desaturate (D6D)
18:1n-9 to 18:2n-9. Increasing precursor 18:1n-9 not only increased product 18:2n-9 but also
increased 8,11-20:2 by several folds. In addition, FADS1 cells accumulated A7 desaturation
(D7D) product 7,11-20:2, whereas, FADS?2 cells accumulated the A8 desaturation (D8D)
product 8,11-20:2 which increased at substrate concentrations 20 and 50 pM.
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