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Study Objectives: There is a long-standing debate about the best way to characterize performance deficits on the psychomotor vigilance test (PVT), a widely 
used assay of  cognitive impairment in human sleep deprivation studies. Here, we address this issue through the theoretical framework of  the diffusion model 
and propose to express PVT performance in terms of  signal-to-noise ratio (SNR).
Methods: From the equations of  the diffusion model for one-choice, reaction-time tasks, we derived an expression for a novel SNR metric for PVT performance. 
We also showed that LSNR—a commonly used log-transformation of  SNR—can be reasonably well approximated by a linear function of  the mean response 
speed, LSNRapx. We computed SNR, LSNR, LSNRapx, and number of  lapses for 1284 PVT sessions collected from 99 healthy young adults who participated in 
laboratory studies with 38 hr of  total sleep deprivation.
Results: All four PVT metrics captured the effects of  time awake and time of  day on cognitive performance during sleep deprivation. The LSNR had the best 
psychometric properties, including high sensitivity, high stability, high degree of  normality, absence of  floor and ceiling effects, and no bias in the meaning of  
change scores related to absolute baseline performance.
Conclusions: The theoretical motivation of  SNR and LSNR permits quantitative interpretation of  PVT performance as an assay of  the fidelity of  information 
processing in cognition. Furthermore, with a conceptual and statistical meaning grounded in information theory and generalizable across scientific fields, LSNR 
in particular is a useful tool for systems-integrated fatigue risk management.
Keywords: total sleep deprivation, circadian misalignment, psychomotor vigilance test, performance impairment, psychometrics, diffusion model, cognitive pro-
cessing, central cognition, neuronal processing capacity, fatigue risk management.

INTRODUCTION
The psychomotor vigilance test (PVT) is one of the most 
widely used assays of impairment in behavioral alertness in 
human sleep deprivation studies.1 The PVT is a one-choice, 
reaction-time task requiring subjects to respond as quickly as 
possible to a visual stimulus. In the standard implementation 
of the task, the duration of a test session is 10 min, and trials 
occur at random intervals of 2–10 s. Performance on the PVT 
is highly sensitive to fatigue from sleep loss, circadian mis-
alignment, and time on task,2 while showing minimal effects of 
aptitude or practice. Interindividual differences in performance 
impairment on the task are stable and can be partially explained 
by genetic makeup.3

The effects of sleep loss, circadian misalignment, and time 
on task on performance in a PVT session are characterized by 
an increase in response time (RT) variability across trials—par-
ticularly in the form of a skewing of the RT distribution to the 
right such that the biggest impact tends to be observed in the 
right tail of the distribution (Figure 1a)—in conjunction with 
a more modest increase in false starts.1 Evidence from neuro-
imaging studies indicates that these effects, and interindivid-
ual differences therein, may be explained in terms of reduced 
processing capacity in the brain.4 Furthermore, through cog-
nitive modeling, these effects have been linked to deficits in 
central cognition (rather than stimulus detection and response 

execution), which result in the brain superimposing noise onto 
stimuli while they are being processed.5

There is no consensus, however, about which metric(s) to 
extract from the RT distribution to best capture this phenom-
enon.6 To address this issue, we can make use of a theoreti-
cal framework called the diffusion model,5 which describes 
task performance in terms of a diffusion process representing 
the accumulation of evidence in central cognition. The dif-
fusion process is characterized by a drift rate that represents 
the speed of evidence accumulation. The process triggers a 
response when the evidence accumulation reaches a decision 
threshold (Figure 1b). In the diffusion model for one-choice, 
reaction-time tasks such as the PVT, the effects of sleep dep-
rivation on the RT distribution have been shown to predomi-
nantly involve a decrease in the drift ratio, which is defined as 
the drift rate relative to the variability in drift rate across trials.5

The drift ratio is comparable to the discriminability index in 
signal detection theory and can be seen as a measure of the 
fidelity of information processing in central cognition. This 
suggests that the skewing of the RT distribution due to sleep 
loss is a consequence of intrinsic degradation of information 
processing due to increased neuronal processing noise.7 Here, 
we propose to express PVT performance in terms of the fidelity 
of information processing—specifically in terms of the well- 
established concept of the signal-to-noise ratio (SNR).

Statement of Significance
By introducing a novel, signal-to-noise-ratio metric for a widely used fatigue assay, the psychomotor vigilance test (PVT), this research connects perfor-
mance impairment in human sleep deprivation studies with a theoretically grounded, benchmark index of  the fidelity of  information processing in human 
central cognition. This work contributes theoretical insight into the effects of  sleep loss and circadian misalignment on brain functioning and informs the 
debate about which metrics to extract from the PVT response time distribution. Furthermore, this work is relevant in applied settings by providing a basis for 
quantifying fatigue risks in sleep-deprived individuals and for spurring a new line of  research into the reliability of  partially automated, integrated systems 
with sleep-deprived humans in the loop.
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Figure 1—Psychomotor vigilance test (PVT) metrics and the effects of  sleep deprivation. (a) Illustration of  the response time (RT) distribution 
at baseline (solid) and after a night of  total sleep deprivation (dotted). The inset shows the number of  responses (lapses) in the right tail of  the 
distribution (RTs ≥ 500 ms) at baseline (BL; solid) and after a night of  total sleep deprivation (SD; hatched). Figure adapted from Honn et al.10 
with permission. (b) Illustration of  the diffusion model for one-choice, reaction-time tasks. Figure adapted from Ratcliff  and Van Dongen5 with 
permission. (c–f) PVT metrics (means ± SE) at 2-hr intervals across 38 hr of  total sleep deprivation (c: SNR, d: LSNR, e: LSNRapx, f: number 
of  lapses). The curves in each graph correspond to four different laboratory studies (Study 1: black; Study 2: dark gray; Study 3: light gray; and 
Study 4: dotted). The insets show the difference (mean and standard error) between sleep deprivation (28–38 hr awake) and the same times 
of  day 24 hr earlier at baseline (4–14 hr awake) in each of  the four studies. In the bottom right graph the vertical scales are inverted such that 
downward consistently corresponds to worse performance on the PVT.
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EXPRESSIONS FOR SNR
In the diffusion model for one-choice, reaction-time tasks, cogni-
tive processing of a stimulus involves an encoding step, a central 
information-processing step (or decision step), and a response 
preparation step (Figure 1b). The central information-processing 
step is represented as a one-boundary diffusion process in which 
evidence is accumulated from a starting point to the decision 
threshold, with an accumulation rate (drift rate) that is normally 
distributed across trials and superimposed on Brownian noise.5 The 
encoding and response preparation steps are considered together 
as non-decision processes, which are assumed to vary in duration 
across trials according to a uniform distribution. The overall RT to 
a stimulus is the time it takes for the central information-processing 
step to terminate plus the duration of the non-decision processes.

The SNR is the ratio of the average power of the signal to 
the average power of the noise. To derive an expression for the 
SNR, we consider the amount of evidence accumulated in the 
central information-processing step as a function of time, in 
which the signal is a ramp function determined by the drift rate 
and the noise is the Brownian noise. Because the SNR increases 
as time passes, we must define it over a fixed unit of time. We 
can approximate the SNR from the RT data of a PVT session, 
as follows (see Online Supplement):
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trials in the PVT session. False starts (i.e., trials with responses 
prior to 150 ms after stimulus onset) are not included.

In other fields that make use of the SNR, such as information 
theory and electrical engineering, the metric is typically com-
puted in log-transformed form:

  LSNR SNR= 10 10log ( ),  (2)

which is expressed in units of decibel (dB).
If the speed/accuracy trade-off8 (i.e., the ratio of the decision 

threshold to the magnitude of the Brownian noise) is stable 
such that the criterion individuals use to emphasize speed over 
avoiding false starts is nearly constant, LSNR is approximately 
proportional to the mean response speed (i.e., the mean of  
1/RT). It is then possible to use a simple approximation of LSNR:
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Using mixed-effects linear regression on the data set presented 
subsequently, we found that B = 3855 ms,a and the correlation 
between LSNR and LSNR

apx
 was 0.65.

EFFECT OF SLEEP DEPRIVATION ON SNR
We computed PVT metrics for a total of 1284 test sessions in 
sleep deprivation studies conducted in the Sleep and Performance 
Research Center at Washington State University Spokane.3 
A group of 99 healthy young adults (ages 22–37, 50 females) 
participated in one of four in-laboratory studies (study 1: n = 37; 
study 2: n = 12; study 3: n = 39; study 4: n = 11). In each of the 
studies, after baseline sleep (10 hr time in bed ending at 08:00) 
subjects were exposed to 38 hr of total sleep deprivation under 
constant supervision. Subjects performed the PVT on a desktop 
computer at 2-hr intervals. During testing, they were seated at a 
desk in a private laboratory room with dim ambient light (fixed 
below 100 lux). Subjects in Study 4 also had their head position 
fixed with a chin rest. For all test sessions that took place at least 
4 hr after baseline sleep (after any sleep inertia had fully dissi-
pated), we extracted the following outcome metrics: SNR (Eq. 
1), LSNR (Eq. 2), LSNR

apx
 (Eq. 3), and number of lapses (RTs 

≥ 500 ms). These outcomes were analyzed as a function of time 
awake using mixed-effects analysis of variance (ANOVA) with 
fixed effects for time and study and their interaction and a ran-
dom effect over subjects on the intercept.

Figure 1c–f shows the sample means (± SE) as a function 
of time awake for each of the PVT outcome metrics. All four 
metrics displayed the well-established homeostatic and circa-
dian regulation of fatigue,1 with performance degrading across 
time awake and modulated by time of day (main effect of time: 
F

16,1132
 > 36.6, p < .001). The SNR metric (Figure 1c) exhib-

ited the greatest dynamic range (relative to SE). Also, SNR was 
the only metric to reveal that well-rested baseline performance 
(at 4–14 hr awake) was improved by fixation of head position 
with a chin rest in Study 4 (dotted curve) compared to the other 
studies. However, the difference among studies in baseline SNR 
impacted the study-specific estimates of the effect of sleep dep-
rivation (at 28–38 hr awake) relative to baseline (Figure 1c, 
inset)—suggesting that on the basis of SNR, the sleep depriva-
tion effect in Study 4 was overestimated.

This was corroborated by the LSNR metric (Figure 1d), for 
which the difference between sleep deprivation and baseline is 
not biased by the absolute baseline value. Based on LSNR, the 
effect of sleep deprivation (28–38 hr awake) relative to baseline 
(4–14 h awake) was –1.9 ± 0.1 dB (grand mean ± SE), corre-
sponding to a 36.0% reduction in the fidelity of information 
processing. At the trough of performance in the early morning 
(22 hr awake), the LSNR change from baseline was –3.0 ± 0.2 
dB, corresponding to a 49.9% reduction in the fidelity of infor-
mation processing. Results were similar but less pronounced 
for LSNR

apx
 (Figure 1e).

For the number of lapses (Figure 1f), the degradation of per-
formance due to extension of wakefulness (beyond ~16 hr) 
seemed to be more abrupt than for the other metrics, but this 
is an artifact caused by a floor effect in the number of lapses 
at baseline. The different PVT metrics were fairly similar in 
their sensitivity to total sleep deprivation across all time points 
according to Cohen’s effect size measure f 2. As indicated in 
Figure 1c–f, the effect sizes approached or exceeded the bench-
mark for “large” (f2 ≥ 0.35) for all four metrics, being the high-
est for LSNR (f2 = 0.40). However, LSNR

apx
 had considerably 

greater intraindividual stability after accounting for the mean 
effect of time, as determined with the intraclass correlation 

aIf the mean response speed is given in units of s−1, as is often the case in the literature, 
use B = 3.855 s.
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coefficient (ICC). Furthermore, the LSNR and LSNR
apx

 metrics 
exhibited relatively high degrees of normality around the sam-
ple means, which is a desirable property for purposes of statis-
tical testing.

DISCUSSION
The theoretical foundation for SNR and LSNR through the dif-
fusion model permits interpretation of these metrics as quan-
titative measures of the fidelity of information processing in 
cognitive performance. The LSNR metric outperforms the SNR 
metric and the number of lapses as PVT outcome measures on 
a range of psychometric properties, including high sensitivity 
to sleep deprivation and circadian misalignment, high degree 
of statistical normality, and absence of floor and ceiling effects. 
The LSNR metric has the additional advantage that, by defi-
nition, a given change in LSNR always has the same meaning 
regardless of absolute values. For instance, a reduction in LSNR 
of 3 units (i.e., a −3 dB change) from baseline to sleep depriva-
tion may be interpreted as a 50% drop in the fidelity of infor-
mation processing regardless of the absolute baseline value. 
Interestingly, it follows that the baseline value for LSNR may be 
set to 0 dB to anchor the metric, without loss of generality and 
without causing a floor or ceiling effect. This provides a novel 
solution in the area of mathematical modeling of fatigue, where 
metric anchoring has been a topic of debate.9

The approximation LSNR
apx

 exhibits greater intraindividual sta-
bility than the original LSNR, albeit at a cost of less precision and 
somewhat less sensitivity. LSNR

apx
 links LSNR with mean response 

speed (i.e., the mean of 1 / RT), which has previously been shown 
to be a sensitive measure of fatigue from sleep loss.6 As such, 
LSNR

apx
 connects the effects of sleep loss on the estimated fidel-

ity of information processing with the existing literature on sleep 
deprivation and the PVT.1 However, LSNR

apx
 is less precise when 

the speed/accuracy trade-off may vary, as in studies involving, for 
example, reward manipulations or administration of stimulants.

The present work connects literature on sleep loss with liter-
ature in information theory and other fields regarding the fate 
of information under noisy conditions and enables new lines 
of research to better understand, predict, and mitigate deficits 
in cognitive performance when people are sleep deprived (see 
Online Supplement for examples). Because LSNR has a con-
ceptual and statistical meaning that generalizes across scien-
tific fields, it also provides a basis for calculations of the overall 
reliability of partially automated operational systems with 
sleep-deprived humans in the loop. As such, the LSNR metric 
for the PVT may be a useful addition to the currently available 
tools for systems-integrated fatigue risk management.
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