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Abstract

Solid tumor growth and metastasis require the interaction of tumor cells with the surrounding 

tissue, leading to a view of tumors as tissue-level phenomena rather than exclusively cell-intrinsic 

anomalies. Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in 

proximate or direct contact with adipocytes and adipose-associated stromal and vascular 

components, such as fibroblasts and other connective tissue cells, stem and progenitor cells, 

endothelial cells, innate and adaptive immune cells, and extracellular signaling and matrix 

components. Excess adiposity in obesity both increases risk of cancer development and negatively 

influences prognosis in several cancer types, in part due to interaction with adipose tissue cell 

populations. Herein, we review the cellular and noncellular constituents of the adipose “organ,” 

and discuss the mechanisms by which these varied microenvironmental components contribute to 

tumor development, with special emphasis on obesity. Due to the prevalence of breast and prostate 

cancers in the United States, their close anatomical proximity to adipose tissue depots, and their 

complex epidemiologic associations with obesity, we particularly highlight research addressing the 

contribution of adipose tissue to the initiation and progression of these cancer types. Obesity 

dramatically modifies the adipose tissue microenvironment in numerous ways, including induction 

of fibrosis and angiogenesis, increased stem cell abundance, and expansion of proinflammatory 

immune cells. As many of these changes also resemble shifts observed within the tumor 

microenvironment, proximity to adipose tissue may present a hospitable environment to 

developing tumors, providing a critical link between adiposity and tumorigenesis.

Introduction

Cancer is characterized by fundamental aberrations in cellular behavior, including the ability 

to multiply indefinitely in the absence of growth-promoting factors and a resistance to 

signals that normally result in programmed cell death (apoptosis) (160). In the case of solid 

tumors, carcinogenic transformation and cell proliferation are followed by establishment of a 
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vascular supply, or tumor angiogenesis, which facilitates the delivery of oxygen and 

nutrients to the growing tumor (160). Subsequent invasion into and migration through 

surrounding tissues allows for the establishment of nearby satellite tumors or entry into the 

lymphatic or vascular systems for dissemination and secondary tumor formation 

(metastases) (160). Solid tumor growth and tissue invasion require the interaction of tumor 

cells with the surrounding tissue. It is well established that communication between cancer 

cells and the tissue-level context in which they reside, collectively referred to as the tumor 

“microenvironment,” is pivotal in determining whether a given tumor will exist in dormancy 

or progress to malignancy (410). The tumor microenvironment includes, but is not limited 

to, the tumor cells themselves, blood vessels (endothelial cells and pericytes), lymphatic 

vessels (lymphendothelial cells), adipocytes, fibroblasts, and various stem and progenitor 

cells (6) (Fig. 1). Also present is a wide variety of innate and adaptive immune cells, which 

can act as critical antitumor defenses or, alternatively, play central roles in tumor promotion. 

The tumor “stroma” is the connective, functionally supportive framework of the tumor, and 

by definition refers to a complex mixture of signaling molecules and extracellular matrix 

(ECM; for a list of abbreviations see Table 1) components, as well as the stromal cells (e.g., 

fibroblasts and pericytes) that produce and are embedded within them (44). However, the 

term “stroma” may also be used to collectively refer to all of the aforementioned cell types 

and secreted factors, as all are present within the cancer cell-adjacent tissue. Thus, 

considerable heterogeneity, both within the cancer cells themselves and among the 

interacting stromal cells, leads to a view of tumors as communities, and the process of 

tumorigenesis as a tissue-level phenomenon occurring in conjunction with intrinsic genetic 

deviations within individual cancer cells (380).

Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in 

proximate or direct contact with adipocytes and other adipose-associated cell populations. 

Although the specific nature of the reciprocal communication occurring between a 

developing tumor and adjacent adipose tissue is an area of active study, a growing body of 

literature indicates that these interactions with the local adipose milieu are important drivers 

of malignancy. Many of these studies have focused on dysregulated adipose and associated 

systemic metabolic dysfunction in the context of obesity, as there is now adequate evidence 

establishing a link between obesity/adiposity and elevated risk for, or accelerated 

progression of, several cancers. Following an overview of the adipose organ, we will briefly 

address epidemiologic links between obesity and cancer. Subsequently, we aim to provide 

the reader with an understanding of the recently described mechanistic links between cancer 

development or progression and adipose tissue per se, as opposed to obesity-associated 

systemic alterations such as metabolic dysfunction. Thus, although adipose dysfunction in 

obesity will be addressed frequently, we have chosen to emphasize the local physical and 

paracrine roles of adipose tissue in solid tumor development and malignancy by focusing on 

individual components of the adipose tissue microenvironment.

The Adipose Organ

Adipose tissue is a type of loose connective tissue that was long considered to be largely 

physiologically inert, primarily storing energy in the form of lipids while cushioning and 

insulating the body. However, work over the past several decades has established that 
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adipose tissue is also a substantial contributor to whole body endocrine signaling, 

modulating feeding behavior and total body energy expenditure, as well as hematopoiesis 

and lymphopoeisis, overall immune function, and reproduction (400, 402). Additionally, 

adipose tissue is now understood to contribute to the pathogenesis of a variety of regional 

and systemic diseases. The adipose tissue “organ” is in fact comprised of a variety of distinct 

adipose depots (Fig. 2), each of which differentially exerts systemic and regional control on 

overall energy metabolism and signaling based on location and adipose tissue subtype. 

Specifically, adipose depots can be divided according to anatomic location into 

subcutaneous, intramuscular, and visceral subtypes. Whole adipose depots, or specific 

regions within depots, may be further subclassified as white, brown, or beige depending on, 

among other factors, cellular mitochondrial content, with a higher relative number of 

mitochondria corresponding to a darker adipocyte hue. In humans, subcutaneous adipose 

tissue comprises ~80% of total body fat, and is contained primarily in the abdominal, 

gluteal, and femoral depots (216) (Fig. 2A). The breast fat pad is also a nontrivial 

contributor to total subcutaneous fat content in women. On the other hand, visceral depots 

represent approximately 5% to 20% of total body fat in normal weight (i.e., not overweight 

or obese) individuals (216). Visceral adipose tissue surrounds vital organs, and includes 

omental, mesenteric, and epiploic adipose, as well as the gonadal, epicardial, and 

retroperitoneal fat pads. Finally, numerous smaller depots, such as intramuscular, 

intraorbital, and bone marrow adipose, nourish and protect tissues throughout the body. 

While the majority of these depots are comprised of white adipose tissue—discussed further 

in the Adipocytes section—smaller brown and beige adipose tissue caches are also found in 

adults (147, 162). Importantly, due to similarities in the location and composition of adipose 

depots and endocrine function relative to humans, the laboratory mouse (Mus musculus) is a 

commonly used model for investigation of adipose tissue anatomy and physiology (Fig. 2B).

Although adipocytes constitute approximately 90% of adipose tissue volume, the adipose 

tissue microenvironment is a rich ecosystem of additional stromal and vascular components 

(often referred to collectively as stromal-vascular fraction). The stromal-vascular 

compartment of human white adipose tissue includes endothelial cells (10–20% of cells), 

pericytes (3–5%), fibroblasts and other connective tissue cells (15–30%), and stem and 

progenitor cells (0.1%), which reside within a complex milieu of signaling molecules and 

ECM components (50) (Fig. 3). Adipose tissue also contains a rich and varied collection of 

innate and adaptive immune cells (macrophages, dendritic cells, mast cells, eosinophils, 

neutrophils, and lymphocytes; 25–45%) (50). However, the exact cellular proportions, 

degree of vascularity, ECM composition, metabolic characteristics, and secretory products of 

adipose tissue vary according to numerous factors, including depot location, sex, age, health 

status, and extent of adipose accumulation (216).

Obesity and Cancer

Adipose tissue exhibits an almost unlimited capacity to expand, a unique property that has 

received increased attention in recent years as obesity has moved to the forefront of global 

public health concerns. Overweight and obesity, defined by the World Health Organization 

(WHO) as abnormal or excessive adiposity that presents a risk to health, are frequently 

measured at the population level using the body mass index (BMI), an individual’s weight in 
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kilograms divided by the square of his or her height in meters. However, it must be 

acknowledged that, at an individual level, the BMI formula can vary considerably by sex and 

race and says little about body composition, often underestimating adiposity (302,347). For 

this reason, additional measures specifically of adiposity, such as waist circumference or the 

Body Adiposity Index (BAI; [hip circumference (cm)/height (m)1.5−18]) developed by 

Bergman et al. (41), are sometimes used to correlate adiposity with disease risk.

Current status of the obesity epidemic, globally and in the United States

Since the recognition of obesity as a global epidemic in 1997 (54), increasing resources have 

been allocated to more completely understanding the prevalence, risk factors, and longterm 

consequences of this health hazard. For example, a recent quantitative meta-analysis 

analyzed 1698 population-based data sources, encompassing 186 countries and more than 

19.2 million adult participants (9.9 million men and 9.3 million women), to evaluate trends 

in mean BMI over the last four decades (270). The authors reported a global increase in 

overall age-adjusted prevalence of obesity in men from 3.2% to 10.8%, and in women from 

6.4% to 14.9%, between 1975 and 2014 (270) (Fig. 4A). An additional cross-sectional 

analysis of the United States National Health and Nutrition Examination Survey (NHANES) 

for the years 2013–2014 reports that the overall age-adjusted prevalence of obesity (again by 

BMI) among US adults (age 20+ years) has reached 37.7% (120). Moreover, among men 

and women in the US, obesity prevalence has now reached a staggering 35% and 40.4%, 

respectively (120). Furthermore, extreme obesity (or class 3 obesity, defined as BMI >40) in 

the United States is currently 9.9% for women and 5.5% for men (120), considerably higher 

than the global prevalence of 1.6% and 0.64%, respectively (270) (Fig. 4B). Importantly, a 

disproportionate burden of obesity and overweight is observed among women who self-

identify as Hispanic or non-Hispanic black minorities; NHANES data indicate that the 

overall age-adjusted prevalence of obesity in non-Hispanic black and Hispanic women 

measures 57.2% and 46.9%, respectively, compared to 38.2% in non-Hispanic white women 

(120) (Fig. 4C). Finally, it should be noted that rising obesity rates are not restricted to 

adults. The prevalence of obesity in US children and adolescents ages 2 to 19 years old rose 

from approximately 10% during the 1988 to 1994 NHANES period to 17.0% in the 2011 to 

2014 period, with extreme obesity more than doubling from approximately 2.5% to 5.8% 

(287).

The obesity-cancer link

Cancer is currently the second leading cause of death in the United States, and is expected to 

surpass heart disease as the leading cause of death within the next few years (357). 

Approximately 40% to 60% of cancer patients are classified as overweight or obese (145, 

320), and in 2004 it was estimated that overweight and obesity accounted for one in seven 

cancer deaths in men and one in five in women (56). Importantly, obesity is differentially 

associated with both increased risk of cancer development and increased risk of poorer 

cancer prognosis. Indeed, an association between obesity and increased risk of onset remains 

ambiguous for several cancer types for which there is strong support for an influence on 

outcome. With this caveat acknowledged, there is adequate evidence to support an 

association between obesity and increased risk of developing colorectal, post-menopausal 

breast, endometrial, kidney, esophageal, liver, gallbladder, pancreatic, and thyroid cancers, 
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as well as non-Hodgkin’s lymphoma and myeloma (33, 55, 208, 210, 409). The American 

Society of Clinical Oncology (ASCO) has also acknowledged that obesity contributes to 

poorer cancer prognosis following diagnosis in a number of ways, including by impairing 

the delivery of systemic cancer therapies and by elevating risk of both tumor recurrence and 

development of additional primary malignancies (224). Interestingly, there is also a body of 

literature that supports a protective effect of obesity in overall survival for some cancer 

types, a finding known as the “obesity paradox.” Potential explanations for the obesity 

paradox emphasize methodological issues, such as unmeasured confounders and/or a 

reliance on BMI as a metric for obesity (219, 368). As mentioned previously, BMI is a rather 

crude mathematical estimate that does not capture important considerations such as percent 

adiposity, regional distribution of adiposity (e.g., android vs. gynoid obesity), or differences 

in lean mass. Gonzalez et al. reported that the use of body composition indices resulted in a 

disappearance of the obesity paradox in 175 cancer patients in which BMI was previously 

associated with a protective effect, emphasizing the importance of considering body 

composition in epidemiologic analyses of cancer outcomes (149). In fact, when body 

composition was included, loss of lean mass (sarcopenia) was a more important prognostic 

indicator than BMI for patients exhibiting cancer-associated cachexia, a systemic wasting 

syndrome frequently observed in end-stage cancer patients that is characterized by a rapid 

loss of both skeletal muscle and adipose tissue (149, 240). Thus, additional evidence is 

needed to determine whether isolated reports of the obesity paradox are simply artifactual or 

in fact clinically relevant.

Nevertheless, leading hypotheses seeking to explain observed connections between obesity 

and increased cancer morbidity and mortality emphasize factors such as metabolic 

disruption-induced growth factor dysregulation; higher levels of circulating adipokines and 

cytokines secreted by inflamed obese adipose tissue; and elevated production of estrogens 

by adipose tissue (90, 297). These hypotheses emphasize the role of adipose as an endocrine 

organ and obesity as a potential state of adipose endocrine dysfunction. However, growth 

and invasion of some solid tumors into adjacent adipose may promote tumor aggression even 

in the absence of obesity. For example, adipose tissue invasion at the tumor margin is 

associated with an increase in lymph node metastasis in patients with invasive breast 

carcinoma, irrespective of BMI (454). Thus, whether select adipose-mediated mechanisms 

of tumor promotion are merely exacerbated by obesity or are unique to a dysregulated obese 

adipose microenvironment in many cases remains to be determined. Moreover, the 

mechanisms whereby adipose accumulation increases risk of tumor onset and/or mediates 

tumor progression in adipose-adjacent cancers are multifactorial, complex, and likely tissue/

organspecific, in part due to unique paracrine and physical interactions occurring between 

cancer cells and adjacent adipose tissue. In this review, we have especially highlighted the 

role of obesity in the development and progression of breast and prostate cancers due to the 

prevalence of these cancer types in the US population and their significant contributions to 

cancer-related mortality.

Breast and prostate cancers are the most frequently diagnosed cancers and the second 

leading causes of cancer-related death among US men and women, respectively (357). Due 

to their now recognized genetic and molecular heterogeneity, these cancer types have been 

shown to exhibit complex associations with obesity. For example, although the association 
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between obesity and risk of postmenopausal breast cancer is now well established, the 

relationship between obesity and premenopausal breast cancer risk was controversial until 

studies began to consider molecular breast cancer subtypes. Specifically, recent work has 

clarified an association between obesity and premenopausal onset of triple-negative breast 

cancers (TNBCs), with differential risk according to race (12, 16, 67, 307, 405). Studies 

from our lab and others have also demonstrated that diet-induced obesity is associated with 

accelerated TNBC latency (time to development of a palpable tumor) in ovary-intact 

preclinical mouse models (18, 73, 375, 376). Additionally, in patients with confirmed breast 

cancers, obesity is associated with increased risk of breast cancer invasion (143, 272), 

development of distant metastases (111, 247, 294), tumor recurrence (42, 346), and 

mortality (2, 24, 55, 64, 84, 229, 420, 436) irrespective of molecular subtype. On the other 

hand, the role of obesity in risk of prostate cancer development remains equivocal (22, 32, 

48, 283), in part because, similar to breast cancer, prostate cancer risk in obese individuals 

also appears to vary by race (32, 127). However, in confirmed prostate cancers, obesity is 

consistently associated with an elevated risk of cancer aggression (high Gleason scoring, a 

grading system used to inform the prognosis of men with prostate cancer) and prostate 

cancer-associated mortality (206, 463). Thus, rising obesity rates present an oncological 

crisis, both globally and within the United States.

Following a brief consideration of the anatomy of breast and prostate in humans and 

laboratory mice—a frequently used model in basic science and translational/pre-clinical 

cancer studies—potential mechanistic links between adipose tissue and breast and prostate 

cancer development or progression will be discussed in detail through a comprehensive 

examination of the available literature regarding adipose-cancer interactions in each organ.

Anatomy of the Breast and Prostate

The laboratory mouse remains the most widely used animal model for the study of cancer 

pathophysiology. Consequently, integration of experimental findings with studies of human 

disease requires an understanding of human and veterinary pathology and anatomy, as well 

as developmental, molecular, and cellular biology. While this level of detail is beyond the 

scope of this review, this section will provide a brief comparative biology overview of the 

breast and prostate in humans and mice as a backdrop for the studies reviewed in subsequent 

sections.

Mammary gland anatomy and adipose-cancer interaction in humans vs. mice

In both mice and humans, the mammary gland is a unique, dynamic organ that continuously 

undergoes anatomic and functional changes over the life course (180). In mice, the nascent 

mammary gland (“mammary tree”) consists of a network of epithelial ducts, each of which 

terminates in a stem cell-enriched structure called a terminal end bud (TEB; Fig. 5A). 

During sexual maturation, inductive hormonal and growth factor-derived signals stimulate 

the proliferation of ectodermal cells within these TEBs, driving ductal elongation and 

branching (168, 263, 361). The mature mammary epithelium continues to undergo further 

differentiation during later life stages such as pregnancy, lactation, and post-partum 

involution, or epithelial regression (98, 361). Development of the mammary tree and 
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pregnancy/lactation-associated expansion and involution require remodeling of the 

surrounding stroma. In mice, mammary ductal-adjacent stroma is primarily comprised of 

adipose tissue, without a significant collagenous matrix layer (Fig. 6).

In comparison to mouse, the human mammary gland is a more extensively branching 

structure. Beginning at the nipple, the lactiferous sinus branches into segmental, or 

interlobular, ducts (Fig. 5B). Segmental ducts branch further into terminal ducts and lobules, 

which together comprise the functional unit of the human mammary gland, the terminal 

ductal lobular unit (TDLU). Immediately surrounding the TDLU is a loose intralobular 

stroma, referred to as “specialized stroma,” which contains abundant fibroblasts (Fig. 6) 

(98). Fibroblasts within the intra-lobular stroma exhibit phenotypic and functional 

differences from those found within inter-lobular stroma, including expression of select 

collagen isoforms (21) and ectoenzymes (20). Dense, collagenous inter-lobular stroma 

surrounds the entire human TDLU structure, forming a thick layer between the TDLU and 

adjacent adipose tissue. Surrounding the interlobular stroma is a large depot of subcutaneous 

adipose, comprising 7% to 56% of the volume of the adult breast (416).

The most extreme example of tumor infiltration into adipose tissue is seen in breast cancer. 

Breast cancer most frequently begins in ductal epithelial cells, which proliferate to fill the 

ductal lumen and generate a precancerous lesion called ductal carcinoma in situ (DCIS). 

Subsequently, invasive ductal carcinoma (IDC) cells invade the mammary stromal 

compartment, encountering an area rich in adipose tissue. On the other hand, approximately 

1 in 10 invasive breast cancers originate in the lobules, beginning as lobular carcinoma in 
situ and progressing to invasive lobular carcinoma. The lack of intra-lobular stroma in mice 

(98) and relatively thinner collagenous matrix means that tumor cell invasion in mouse 

models of breast cancer results in immediate encounter of adipocytes and other adipose cell 

populations (Fig. 7A), whereas human invasive breast carcinoma must invade through both 

intra- and interlobular stroma before directly encountering adipose tissue (Fig. 7B).

Prostate gland anatomy and adipose-cancer interaction in humans vs. mice

Before progressing to a comparison of mouse and human prostate anatomy, it should be 

acknowledged that rat and canine models have generated important mechanistic knowledge 

in prostate cancer research, particularly in the context of the spontaneous development of 

prostate lesions (184). However, genetically engineered or xenografted mice remain the most 

commonly used model in prostate cancer research. For an overview and critique of currently 

available mouse models of human prostate cancer, the reader is directed to (151, 184).

Like the mammary gland, the prostate exhibits important inter-species differences. In mice, 

the prostate is comprised of four lobes lying anterior and lateral to the urethra. These lobes 

are named after their spatial orientation (anterior, dorsal, ventral, and lateral lobes, see 

diagram in Fig. 8) and exhibit distinctive histology (184, 291). The glandular acini of the 

prostatic lobes are surrounded by a thin fibromuscular tunica, and are embedded in a loose 

connective tissue stroma with minimal smooth muscle cells and sparse collagen fibers (291). 

Individual mouse prostate lobes are surrounded by a delicate mesothelium-lined capsule, and 

are separated from each other by fibrous and adipose connective tissue (291).
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In contrast to mice, the human male prostate does not have exterior lobation, but instead 

contains distinct glandular regions (a peripheral zone, a central zone, and a transition zone; 

see diagram in Fig. 8) (291), again with characteristic histology. Similar to the breast, a 

conspicuous histological difference between mouse and human prostate lies in the stromal 

component. In humans, the prostate gland bears an anterior, well-developed, nonglandular 

fibromuscular stromal region. Abundant adipose tissue is present surrounding most of the 

posterolateral aspects of the prostate (424), and is used as a marker of extraprostatic tissue in 

biopsy samples (49). This region of adipose is referred to in subsequent sections as 

periprostatic adipose. Intraprostatic adipose, when present, consists of a small focus of a few 

adipocytes, and is rarely observed histologically (49).

The most common type of prostate cancer is acinar adenocarcinoma, which originates from 

the glandular epithelium. Pre-neoplastic prostatic intraepithelial neoplasia (PIN) progresses 

to invasive adenocarcinoma, in which extension of prostatic carcinoma through the prostatic 

capsule (extraprostatic extension) and resulting interaction with the surrounding adipose is 

an indicator of malignant progression and advanced histopathological stage (378). The 

periprostatic adipose depot unambiguously contributes to prostate cancer malignancy (326, 

386, 396). In fact, interaction with periprostatic adipose tissue has been suggested to be 

amore important determinant of cancer recurrence than an invasive phenotype (192). 

Analogous to breast cancer, recent advances in molecular phenotyping by The Cancer 

Genome Atlas Research Network have identified several genomically distinct molecular 

subtypes of prostate cancers (31). Whether these subtypes interact differentially with 

adjacent adipose remains to be determined.

Microenvironmental Links between Adipose Tissue and Cancer

Context matters: Extracellular matrix in adipose tissue and cancer

Adipocytes and other stromal cells are embedded in a loose, three-dimensional ECM, the 

noncellular tissue component that provides both structural and biochemical support to 

surrounding cells, such as cell adhesion, paracrine communication, and differentiation 

signals. Maintenance of the adipose tissue ECM—primarily comprised of fibronectin and 

collagens (373)—involves a variety of cell types, including fibroblasts, macrophages, 

adipocytes, and preadipocytes. Importantly, adipocyte function and survival is tightly 

regulated by both the molecular composition and mechanical properties of the surrounding 

ECM (239).

The structural flexibility of adipose tissue ECM facilitates transient volume changes in 

response to normal fluctuations in lipid stores throughout the feed-fast cycle. However, rapid 

adipocyte hypertrophy (increased adipocyte volume) during the development of obesity can 

result in intracellular or regional hypoxia. Reduced tissue oxygenation induces 

transcriptional programs in adipocytes and other stromal cells that ultimately lead to excess 

deposition of fibrillar ECM components such as collagens I, III, and VI and development of 

tissue fibrosis (373, 398). Indeed, adipose depots of obese subjects often exhibit greater total 

fibrosis, and particularly pericellular fibrosis around adipocytes, than lean individuals 

(95,363). Importantly, hypoxia-induced adipose tissue fibrosis is associated with onset of 

metabolic perturbations in adipocytes (199, 373), while dysregulation in visceral adipose 
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function is linked to the pathogenesis of insulin resistance and type II diabetes mellitus (95, 

158, 199). Furthermore, as adipocytes become encapsulated in a shell of rigid ECM, 

impaired cellular function also results in apoptosis and necrosis (277). Release of damage-

associated molecular patterns (DAMPs) from dead and dying adipocytes and adjacent live 

adipocytes promotes recruitment of macrophages and other inflammatory cells; 

histologically, these macrophages can be observed within crown-like structures (CLS), foci 

of macrophages and other inflammatory cells surrounding dead and dying adipocytes (265). 

Macrophages are fully integrated into all stages of the fibrotic process through secretion of 

soluble mediators and cytokines such as transforming growth factor β1 (TGF-β1), platelet-

derived growth factor (PDGF), and chemokines that attract and activate fibroblasts and 

collagen-producing myofibroblasts (373, 446).

Interestingly, while adipose tissue fibrosis in the context of obesity is well described, 

increased adipose ECM deposition, fibrosis, and immune cell infiltration are also observed 

in cancer-associated cachexia (35). Abdominal subcutaneous adipose depots of lean 

cachectic subjects bearing gastrointestinal cancers displayed extensive adipose ECM 

remodeling, including a dramatic increase in deposition of collagens I, III, and VI as well as 

elastin and fibronectin (11). These changes were associated with increased myofibroblast 

content and elevated activation of TGF-β/SMAD signaling pathways (11). As described later 

in the Adipocytes and adipocyte-cancer interactions section, cancer-associated cachexia is 

also associated with metabolic dysfunction in adipocytes, which may be mediated in part by 

ECM modifications.

Importantly, epithelial tissue homeostasis and tissue organization is also heavily dependent 

upon a dynamic dialogue with the surrounding ECM. Enhanced ECM stiffness triggers the 

process known as epithelial-to-mesenchymal transition (EMT), which is characterized by the 

loss of epithelial polarity, de-differentiation, and local invasion (271,313,340,442). 

Furthermore, disruption of ECM structure or misinterpretation of ECM-derived signals due 

to alterations in signaling receptor profiles is associated with development of a malignant 

phenotype in transformed epithelial cells (43, 141, 230). Hence, modifications in the adipose 

tissue ECM that provide a hospitable environment to developing tumors, such as enhanced 

stiffness in obese breast tissue, may provide a link between adipose tissue and 

tumorigenesis.

As discussed in later sections, chronic low-grade inflammation, macrophage infiltration, 

hypoxia, and aberrant wound healing responses, including an increase in myofibroblast and 

activated fibroblast content, are features of both the tumor and adipose tissue 

microenvironments (44, 101, 230). In tumors, chronic activation of the wound repair 

response leads to excess deposition of ECM components and accumulation of scar-like 

fibrotic tissue in a process known as desmoplasia, or the desmoplastic reaction (Fig. 9A). 

Desmoplasia is associated with poor outcomes in both breast and prostate cancers (23, 258), 

and can facilitate cancer progression by interfering with drug delivery. Thus, ECM 

remodeling and the resultant disturbances in cytoskeletal tension and mechanotransduction 

have emerged as important factors that promote neoplastic transformation, cancer 

malignancy, and cancer metastasis (44, 220, 230), and may provide another connection 

between adipose dysregulation and cancer.
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Adipose extracellular matrix composition and viscoelasticity: Influence on the 
normal breast and breast cancer—Mammographic density denotes the radiologic 

appearance of the breast, and is a metric of the fibroglandular (epithelial and nonfatty 

stromal) content in that tissue (322). A number of qualitative and quantitative methods have 

been developed to estimate mammographic density, including Breast Imaging Reporting and 

Data System (BI-RADS) categories, Wolfe’s parenchymal patterns, Tabar’s classification 

scheme, and numerous two- and three-dimensional image analysis techniques (452). Within 

heterogeneous breast tissue, tumors most frequently arise within the most 

mammographically dense regions of the breast, suggesting that denser fibroglandular tissue 

directly influences carcinogenesis (408). Indeed, regardless of the reporting method (322), 

high mammographic density is consistently and strongly associated with both elevated risk 

of breast cancer (51) and more aggressive tumor characteristics (453), even after adjustment 

for other risk factors such as age and BMI (178).

At the molecular level, high mammographic density reflects desmoplasia, a series of 

histological alterations including, but not limited to, the development of a dense, collagenous 

stroma rich in type I and/or type III collagen (88,126). Similar stromal changes are also 

observed in breast cancers (348), and are orchestrated by a heterogeneous, reactive 

population of so-called “cancer-associated fibroblasts” (CAFs). CAFs display remarkable 

plasticity, and frequently differentiate into myofibroblasts, a cell type exhibiting properties 

of both fibroblasts and smooth muscle cells (87,193,353). In nonmalignant tissue, 

myofibroblasts play an important role in wound healing responses, secreting a fibronectin- 

and collagen type I-rich ECM characterized by fibrillary architecture and increased cross-

linking and density (344). They are also a predominant source of fibrogenic and/or 

inflammatory cytokines in fibrotic lesions (171). Despite the utility of this cell type to 

normal wound healing programs, however, the presence of myofibroblasts in tumors 

contributes to pathological desmoplasia (193), and may thereby promote cancer progression 

(198).

In addition to fibroblasts, local (adipose-derived) mesenchymal stem cells, bone marrow-

derived mesenchymal stem cells, myeloid precursors, and cells derived from the epithelial-

mesenchymal transition may also represent alternative sources of myofibroblasts in tumor 

stroma (93,251,304). Furthermore, in tumors growing in an adipose tissue-rich 

microenvironment, cancer cell-induced reprogramming of local adipocyte morphology, gene 

expression, and function has been observed to promote to adipocyte delipidation and 

atrophy/regression (46). This process occurs concurrently with the accumulation of 

fibroblast-like cells and a desmoplastic stroma; this synchronicity raises the possibility that 

some CAFs might be derived from dedifferentiated adipocytes (46) (Fig. 9B). However, as 

CAFs are a heterogeneous cell type, the extent to which their specific lineages determine 

their contribution to tumor progression remains inconclusive.

Although obesity is associated with reduced mammographic density, in part because fat is 

radiolucent, several studies have unveiled close links between chronically inflamed obese 

mammary adipose tissue and the development of fibrosis and associated ECM rigidity 

(301,344,372). Myofibroblasts are typically absent from normal, uninflamed breast tissue 

(401). However, Seo et al. showed that obesity elevated matrix rigidity in noncancerous 
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breast tissue by enhancing myofibroblast content in mammary adipose (344). Distinct from 

tumors (65), these obesity-associated increases in myofibroblast content and matrix rigidity 

occurred in a transforming growth factor beta (TGFβ)-independent manner (344), 

suggesting that ECM composition and stiffness may be differentially regulated in benign 

obese and malignant breast tissue. The same study showed that adipose stromal cells (ASCs, 

also called adipose-derived stem cells) isolated from obese mice exhibited increased 

expression of α-smooth muscle actin (α-SMA, a myofibroblast marker), as well as increased 

fibronectin and a more fibrillar, partially unfolded, and stiffer ECM (344), implicating ASCs 

as a source of myofibroblasts in obesity. Furthermore, obese ASCs also exhibited enhanced 

proliferative capacity and secreted increased quantities of matrix components (344), thereby 

mimicking characteristics of tumor-associated stromal cells (65, 193). Consistent with these 

results, histologically normal breast tissue from obese patient mastectomies exhibited 

increased α-SMA staining and collagen fiber length and thickness relative to tissue from 

lean individuals (344). Obesity-associated increases in α-SMA levels also correlated with 

formation of CLS, further implicating macrophages in the development of mammary 

adipose tissue fibrosis (344).

Increased matrix rigidity in breast adipose tissue may be an important mediator of cancer 

initiation and progression in obese individuals. To test the effects of obesity and ECM on 

tumor cell behavior, Seo et al. cultured preinvasive human MCF10AT cells upon 

decellularized matrices produced by ASCs isolated from lean or obese mice. The authors 

reported that, relative to ECMs deposited by lean ASCs, obesity-associated ECMs increased 

MCF10AT cell motility and promoted the formation of disorganized three-dimensional 

acini, indicative of greater tumorigenic potential (344). Additionally, ECM generated by 

obese mammary ASCs significantly enhanced the proliferation of the highly invasive MDA-

MB-231 cancer cell line by altering mechanotransduction through enhanced RhoA/ROCK-

mediated cell contractility and YAP/TAZ transcription factor activity (344). Collectively, 

these results are suggestive of a relationship between obesity-associated mammary adipose 

tissue fibrosis and accelerated tumor initiation and/or proliferative capacity.

In addition to fibroblasts/myofibroblasts, adipocytes play a vital role in defining the ECM 

environment through secretion and processing of factors such as collagen VI, an ECM 

component with both structural and signaling roles that is highly enriched in adipose tissue 

(199, 300, 419). Excess adipocyte collagen VI expression in obesity is associated with 

adipose tissue fibrosis and metabolic dysregulation, while the absence of collagen VI in 

mouse models of obesity allowed for uninhibited adipocyte expansion and an improved 

metabolic phenotype (199). Increased adipocyte collagen VI expression is also associated 

with elevated local concentrations of the collagen VI α3 chain cleavage product, 

endotrophin, which has been identified as a driving factor in adipose tissue fibrosis, 

macrophage chemotaxis, and inflammation, and appears to mediate adipose metabolic 

dysregulation in obesity (Fig. 10) (300, 372). Unsurprisingly, increased collagen VI 

production also coincides with increased adipose tissue macrophage content (300, 301). To 

further illustrate parallels in the obese adipose and tumor microenvironments, collagen VI 

and its cleavage product have also been implicated in the initiation and progression of breast 

cancers. Collagen VI is abundantly expressed by breast cancer-associated adipocytes 

(discussed at greater length in the Adipocytes section), and its increased deposition in the 

Cozzo et al. Page 11

Compr Physiol. Author manuscript; available in PMC 2018 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ECM promotes tumorigenesis and malignant progression both in vitro and in vivo by 

inducing alterations in cancer cell signaling programs, gene expression patterns, and post-

translational modifications (185,186). For example, treatment of MCF-7 human invasive 

breast cancer cells with collagen VI significantly elevated the activity of the oncogenic Akt-

GSK3β–β-catenin–Tcf/Lef pathway, ultimately resulting in cyclin D1 protein stabilization 

and enhanced cell proliferation (185, 186). Accordingly, expression of the proto-oncogenes 

GSK3β and cyclin D1 in mammary tumors exhibited a steep immunohistochemical gradient, 

with increased staining intensities observed proximate to adipocytes. A similar gradient in 

collagen VI expression was also observed, further implicating adipocyte-derived collagen VI 

in the induction of mitogenic signaling pathways (186). In addition, adipocyte-derived 

endotrophin induces markers of EMT and acts as a potent adipokine that exerts growth-

stimulatory and prosurvival effects on developing tumors (300). Furthermore, endotrophin 

overexpression in the breast tumor microenvironment is associated with increased rate of 

metastasis (300) and resistance to the platinum-based chemotherapeutic cisplatin (298). 

Thus, increased collagen VI deposition and endotrophin concentration in the extracellular 

milieu of obese adipose may influence both early tumor development and treatment 

outcomes.

Adipose extracellular matrix-derived factors: Direct effects on epithelial cells
—In addition to modulating composition and viscoelasticity of the breast ECM, stromal 

cells within the obese breast microenvironment secrete numerous soluble signaling 

mediators that have direct effects on epithelial cells. In particular, hepatocyte growth factor 

(HGF) is an excellent candidate for stromal-mediated breast cancer promotion in the context 

of obesity. Serum HGF is elevated in obese individuals and is reduced with weight loss (39, 

172, 379), and HGF has been detected in both normal and malignant breast tissue (404). 

Although HGF is classified as an adipokine (421), it is produced by a number of breast cell 

types including stromal fibroblasts. HGF is the only known ligand for its receptor, cMET, 

and HGF signaling impacts the phenotypes of both early- and late-stage breast cancers. With 

respect to early-stage lesions, we have reported that treatment of premalignant basal-like 

breast cells with HGF-blocking antibodies inhibited 3D morphogenesis, reflecting a 

reduction in epithelial malignant potential (63). Importantly, basal-like breast cancer is a 

clinically intractable TNBC subtype that is more prevalent in obese individuals (12, 16, 67, 

307, 405), and an HGF gene expression signature generated via treatment of pre-malignant 

breast cells with recombinant HGF was found to correlate with both basal-like subtype and 

poor survival in >700 breast cancer samples from three publically available datasets (63).

In advanced tumors, HGF signaling initiates an invasive growth program that promotes cell 

migration, invasion, proliferation, and angiogenesis (Fig. 11) (255). HGF is also elevated in 

the serum of breast cancer patients and correlates with advanced disease (63, 173, 174, 351). 

In support of this observation, our laboratory previously demonstrated that high fat diet-

induced obesity increased HGF concentration and enhanced expression and activation of 

cMET in the mammary fat pad of C3(1)-T-antigen (TAg) mice, a unique genetically 

engineered mouse model (GEMM) of spontaneous basal-like breast cancer (152, 170, 376). 

We also reported that obesity increased HGF production by primary murine fibroblasts 

isolated from both normal mammary glands and tumors, and that CAFs isolated from obese 
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animals induced epithelial cell migration in an HGF-dependent manner (376). Obesity-

mediated regulation of HGF secretion from other stromal cell types such as adipocytes is 

currently under investigation.

Adipose extracellular matrix in prostate cancer—Despite being a common feature 

of mouse models of prostate cancer, histologically conspicuous reactive stroma is much less 

prevalent in human prostate tumors (184). However, like the breast, induction of a 

myofibroblastic phenotype and degree of reactive stroma carry important prognostic value 

for prostate cancer malignancy (23, 365, 406). Notably, as the literature regarding the 

contribution of adipose tissue to breast cancer onset and progression has greatly outpaced 

that of prostate cancer, obesity-associated ECM modifications are currently better 

characterized in the mammary, relative to the periprostatic, fat pad. Additionally, conflicting 

data exist regarding the association between periprostatic fat density (measured by magnetic 

resonance imaging or computed tomography) and tumor aggressiveness in prostate cancer 

patients (413,414,441). Our literature search also revealed no publications reporting that 

periprostatic adipose tissue fibrosis occurs in obesity, but whether this is due to a lack of 

occurrence or a lack of examination is unknown. Furthermore, no studies investigating links 

between adipocyte-derived endotrophin and prostate cancer were available at the time of 

writing this review. Therefore, future obesity-prostate cancer studies may be informed by the 

sundry findings linking breast cancer and adipocyte-associated fibrosis, modifications in 

ECM dynamics, and endotrophin release.

Adipocytes and adipocyte-cancer interactions

Adipocytes are specialized connective tissue cells that constitute a major cell type in both 

the normal-weight and obese breast. The majority of adipocytes in adult humans are white 

adipocytes, which contain a large, unilocular lipid droplet and are specialized for storage of 

neutral lipids. However, brown and/or beige adipocytes (also called “brite” or “inducible” 

adipocytes (147)) have also been reported in adults, and likely play important roles in 

thermogenesis (445). More recently, “pink” adipocytes have been described in murine 

mammary gland, arising exclusively during pregnancy and lactation due to a process 

wherein white adipocytes progressively transdifferentiate to acquire secretory, epithelial-like 

features (147). Adipocytes secrete a broad range of signaling molecules that exert local 

and/or systemic effects with the potential to influence tumor growth. Among the better 

studied adipocyte-derived factors are metabolic factors such as leptin, adiponectin, resistin, 

visfatin, and plasminogen activator inhibitor-1 (PAI-1); hematopoietic factors such as GM-

CSF; growth factors such as angiopoietins, HGF, vascular endothelial growth factor 

(VEGF), insulin-like growth factor-1 (IGF-1), and TGF-β; and a variety of cytokines, 

including interleukin-6 (IL-6) and TNF-α and the chemokine monocyte chemoattractant 

protein (MCP-1) [also referred to as chemokine (C-C motif) ligand 2 (CCL2)] (Fig. 12) (60, 

391). Several of the aforementioned adipocyte-derived growth factors influence development 

of a tumor vascular supply (tumor angiogenesis), as discussed in the Endothelial Cells/
Lymphendothelial Cells section below. Whereas leptin and adiponectin are considered true 

adipokines, many of the other signaling molecules, including resistin, visfatin, TNF-α, IL-6, 

MCP-1, and PAI-1, are not, as they are expressed by both adipocytes and immune cells 

populations such as macrophages, and play a variety of well-known roles in immunity (391). 
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Thus, select functions for several of these signaling molecules will be discussed within the 

section titled Adipose

Tissue Immune Populations in Cancer Development and Progression—Finally, 

although there are clear and important roles for leptin and adiponectin in tumorigenesis and 

malignancy, these roles have been reviewed extensively by others (137, 196, 284, 299, 421) 

and will be addressed only briefly within this review.

Adipocytes exhibit both short- and long-range interactions with cancer cells, and may be 

found in close proximity to tumors, along tumor margins, and within the tumor body. These 

cancer-associated adipocytes (CAAs; also referred to as peritumoral, intratumoral, or tumor-

infiltrating adipocytes) influence tumor biology in a number of ways, including by 

promoting angiogenesis and inflammation (reviewed in 274, 423, 427). Although it is 

reasonable to hypothesize that proliferation and invasion of tumor cells into cancer-adjacent 

adipose may account for the presence of CAAs within the tumor body, the origin of CAAs in 

fact remains unclear. As explained in further detail in the section on Adipose-derived 
Stromal Cells below, several cell types may give rise to intratumoral CAAs.

In addition to indirect mechanisms of tumor growth promotion (e.g., stimulation of 

angiogenesis, production of proinflammatory cytokines), the proximity of CAA to growing 

tumors may also provide direct metabolic benefits to cancer cells. In the phenomenon known 

as metabolic symbiosis, cancer cells within hypoxic regions of a tumor undergo metabolic 

shifts that facilitate increased utilization of fuel sources such as lactate, glutamine, and fatty 

acids released by surrounding cells, including other cancer cells (8, 268) and adipocytes 

(241, 250). Lipid droplet size within mature white adipocytes is the net result of several 

processes, including fatty acid uptake or de novo fatty acid synthesis, esterification, and 

lipolysis. As mentioned previously, CAAs have been frequently observed to undergo 

delipidation. Interestingly, Nieman et al. showed that co-culture of primary omental 

adipocytes with ovarian cancer cells, which frequently metastasize to the omentum, induced 

lipolysis in adipocytes, upregulation of β-oxidation in cancer cells, and direct transfer of 

lipids between the two cell types (273). Notably, the transfer of lipids from adipocytes to 

cancer cells has also been observed in prostate cancer (139) and breast cancer (426). These 

findings indicate that active heterotypic cellular interactions between cancer cells and 

adipocytes induce metabolic symbiosis.

CAAs may also influence cancer cell phenotypes through the shedding of exosomes, small 

vesicular bodies released from cells as a form of short- or long-range communication. Lazar 

et al. (215) reported that exosome shedding by mature human adipocytes induced increased 

migratory and invasive behavior in melanoma cells, which grow in proximity to the 

hypodermal adipose layer. Proteomic analysis of adipocyte-derived exosome composition 

revealed enrichment for proteins involved in mitochondrial lipid metabolism, particularly 

fatty acid oxidation. Remarkably, their results suggested that these enzymes were 

incorporated and utilized by melanoma cells. Melanoma cells pretreated with exosomes 

exhibited increased ability to form lung metastases in mice and an increase in fatty acid 

oxidation without a concomitant change in glycolysis, indicating that augmentation of lipid 

oxidation pathways occurred in the absence of complete metabolic reprogramming. In 
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further support of these findings, administration of the mitochondrial fatty acid oxidation 

inhibitors etomoxir or trimetazidine reversed exosome-induced enhancement of migration 

without affecting basal migration levels. Importantly, increasing adiposity in obese 

individuals enhanced both the number of exosomes released from adipocytes as well as the 

potency of their effect on melanoma cell migration. Collectively, these studies reveal 

important roles for adipocytes in regulating cancer cell migration and metastatic potential.

Adipocytes in the normal breast and breast cancer—Mouse models have revealed 

that adipocytes act as local regulators of normal mammary epithelial cell growth and 

function. Thus, mammary epithelial cells possess an inherent requirement to reside among 

adipocytes during embryonic and postnatal development, as well as throughout later life 

stages such as pregnancy, lactation, and involution (176). Indeed, using the novel FAT-

ATTAC mouse, a model of inducible and reversible adipocyte loss developed by Scherer and 

colleagues, Landskroner-Eiger et al. showed that adipocytes play crucial roles in normal 

growth and development of mammary ductal epithelium (71, 209), contributing both to 

ductal branching morphogenesis during puberty and to maintenance of normal alveolar 

structures in adulthood (209).

Due to the proximity of the adipose pad to the mammary glandular organ, ductal tumor 

invasion results in interaction of breast cancer cells with adipocytes and other adipose 

stromal constituents (Fig. 6 and Fig. 7), with dramatic implications for tumor cell biology. 

Carter and Church reported that mature breast adipocytes, but not preadipocytes, increased 

motility of both normal and malignant breast epithelial cell lines through secretion of PAI-1 

(62). Similarly, higher levels of CAA-specific IL-6 expression in human breast tumors were 

associated with larger tumor size and more extensive lymph node involvement (92). 

Moreover, coculture with adipocytes induced mesenchymal features in human breast cancer 

cells, including repolarization of vimentin and downregulation of E-cadherin, thereby 

promoting tumor cell invasion and metastasis (92). Furthermore, adipocytes cocultured with 

malignant breast epithelial cells exhibited the profound phenotypic changes associated with 

CAA, including delipidation and decreased expression of adipocyte markers (92). Hence, 

bidirectional communication between adipocytes and breast tumor cells also alters adipocyte 

biology.

For example, reminiscent of findings in melanoma (215), prostate (139), and ovarian cancers 

(273) (discussed in the Adipocytes and adipocyte-cancer interactions intro section above), 

following coculture of breast cancer cells with adipocytes Wang et al. reported increased 

lipolysis by adipocytes and concomitantly increased fatty acid oxidation by breast cancer 

cells (426). Importantly, the signal released by tumor cells to induce adipocyte delipidation 

was not identified, although IL-6 and β-adrenergic stimulation—factors previously 

implicated in lipolytic induction in cancer-associated cachexia (393)—were eliminated as 

potential candidates (426). Similar to Lazar et al. (215), Wang et al. reported that coculture 

with adipocytes increased both in vitro invasion toward a stimulus and formation of breast 

cancer lung metastases in vivo, each of which were restored to basal levels by administration 

of the fatty acid oxidation inhibitor etomoxir (426). In vitro etomoxir administration also 

reduced the morphological hallmarks of EMT. Remarkably, the increase in fatty acid 

oxidation by breast cancer cells appeared to be dependent on an upregulation of both 
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adipocyte triglyceride lipase (ATGL) and the carnitine palmitoyltransferase 1 (CPT1) 

isoform CPT1A, enzymes not expressed at appreciable levels in noncancerous human breast 

epithelial cells. Short-hairpin (sh)RNA-mediated knockdown of CPT1A and ATGL reduced 

hallmarks of EMT and invasive potential, respectively.

In addition to oxidizing transferred fatty acids, breast cancer cells also esterified free fatty 

acid from adipocyte lipolysis (426), incorporating the newly synthesized triglyceride into 

lipid droplets within the cancer cells themselves. Breast cancer cell lipid droplet 

accumulation was supported by both in vitro coculture experiments employing radiolabeled 

palmitate and the observation of lipid droplet accumulation in breast cancer cells along the 

tumor margin in histological sections (i.e., in close proximity to adipocytes). Interestingly, 

despite increased fatty acid oxidation, breast cancer cells showed reduced ATP content and 

activation of AMP-activated protein kinase (AMPK). AMPK activation following coculture 

with adipocytes was associated with increased mitochondrial biogenesis and function, 

indicated by increased levels of PGC-1α and its associated transcription factor PPARα as 

well as an increase in the ratio of mitochondrial to genomic DNA. AMPK also inhibited 

acetyl-CoA carboxylase, the rate-limiting enzyme in fatty acid synthesis, ensuring 

uninterrupted flux of fatty acids into mitochondria. Furthermore, breast cancer cell fatty acid 

oxidation was determined to be uncoupled from ATP production and, unlike in melanoma 

(215), occurred with a concurrent increase in anaerobic glycolysis, consistent with activation 

of AMPK (426). Collectively, these findings provide new insight into mechanisms of 

metabolic symbiosis between adipocytes and cancer cells in breast tumors.

Interactions between cancer cells and adjacent adipose may also increase breast cancer stem 

cell abundance and facilitate metastatic progression. Picon-Ruiz et al. isolated human 

adipocyte stem cells and used adipogenic differentiation media to generate “immature” 

adipocytes. Coculture of these “immature” adipocytes with both primary breast cancer cells 

and established cancer lines conferred stem-like features to the epithelial cells, including 

elevated expression of the pluripotency markers Sox2, c-Myc, and Nanog (306). Coculture 

with adipocytes also increased mammosphere-forming capacity, indicating a more stem-like 

phenotype due to a greater ability to grow under nonadherent conditions. Furthermore, when 

co-cultured breast cancer lines were orthotopically injected into mouse models, the resulting 

tumors exhibited reduced latency, increased abundance of tumor-initiating cells, and an 

enhanced capacity to form distant metastases. Taken together, this study demonstrates that 

interactions between immature adipocytes and breast cancer cells drive initiation of highly 

metastatic cancers by enhancing epithelial cell tumor-initiating potential.

Due to the practice of autologous fat grafting as a method of breast reconstruction 

(oncoplastic surgery) following breast-conserving tumor excision, the impact of adipocytes 

on tumor malignancy may be a consideration for recurrence following treatment. Indeed, 

using a model of autologous fat grafting, Massa et al. reported increased proliferation of 

several breast cancer lines co-cultured with either induced adipocytes (i.e., differentiated 

from fibroblasts) or intact adipose tissue samples obtained from liposuction patients (245). 

However, a recently published prospective matched case-control analysis found no 

significant differences in locoregional recurrence in patients who received autologous fat 

grafting versus those who did not (249). Although cases and controls were matched for 
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hormone receptor status in this study, no analysis was conducted to evaluate potential 

differences in recurrence by molecular tumor subtype, potentially due to the limited sample 

size and low locoregional event rate. Therefore, based on the aforementioned complex 

relationships between obesity status and risk of specific breast cancer subtypes, as well as 

the reported roles for adipocytes in regulating breast epithelial tumorigenicity and metastatic 

potential, additional studies are needed to address concerns regarding the potential risks 

associated with fat grafting in breast reconstructive surgery. Stratification by BMI and/or 

molecular tumor subtype may be necessary to fully assess the influence of fat grafting on 

breast cancer recurrence rates.

Adipocytes and prostate cancer—Bidirectional communication between adipocytes 

and prostate epithelial cells also influences prostate tumor biology, particularly with regard 

to chemokine activity. Chemokines, or chemotactic cytokines, are small secreted signaling 

proteins that induce directed, gradient-driven migration (chemotaxis) in nearby cells that 

express the appropriate chemokine receptor. The functions of chemokines in malignancy 

depend on both tumor characteristics and the specific chemokine in question, but are 

frequently associated with leukocyte infiltration as well as metastatic potential and site-

specific spread of tumor cells (26). Adipose tissue-specific expression of many CC 

subfamily chemokines and their receptors is upregulated in human obesity (177). For 

example, Laurent et al. (211) identified a CCR3/CCL7 axis regulated by obesity, through 

which secretion of CCL7 by mature periprostatic adipocytes supported the directed 

migration of prostate cancer cells, thereby promoting cell migration toward the periprostatic 

fat pad and the spread of cancer cells outside of the prostate gland. This process appeared to 

be augmented in obesity by both enhanced secretion of CCL7 by hypertrophic adipocytes 

and increased expression of the CCL7 receptor, CCR3, by prostate cancer cells (211).

Adipocyte-derived CCL2 is also implicated in prostate cancer progression. Ito et al. reported 

that adipocyte-derived CCL2 directly stimulated prostate cancer cell proliferation, 

promoting invasion and migration through induction of MMP-2 activity and ultimately 

leading to enhanced tumorigenesis and metastasis (183). Importantly, increased production 

of CCL2 by bone marrow adipocytes and other stromal cells is also strongly implicated in 

the propensity of prostate cancer cells to metastasize preferentially to bone (161, 222). 

Adipocytes are an important component of the bone marrow microenvironment. Bone 

marrow adipocyte content increases with age, obesity, and obesity-associated metabolic 

pathologies (169, 197), suggesting a potential link between obesity and elevated rates of 

prostate cancer metastasis (161, 222).

Interestingly, prostate cancer-adipocyte crosstalk also appears to induce tumor-promoting 

changes in periprostatic adipocytes. Treatment of periprostatic adipose tissue organotypic 

explants with PC3 prostate carcinoma cell-conditioned medium activated a cancer-

promoting secretory profile, including increased secretion of osteopontin, TNFα, and IL-6, 

and reduced production of adiponectin (328). These changes were not observed upon 

treatment of cells comprising the periprostatic adipose stromal vascular fraction (i.e., all 

stromal populations except adipocytes) with PC3 cell-conditioned medium, suggesting that 

the observed increase in protumorigenic factor production by explanted tissue was due 

specifically to tumor-mediated education of adipocytes (328). Indeed, adipocytes appear to 
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be a major source of microenvironmental IL-6 in prostate cancer. Periprostatic adipose tissue 

harvested from patients undergoing radical prostatectomy secreted IL-6 at concentrations 

375 times greater than that in patient-matched serum and correlated with histological grade 

(117). Additionally, Tang et al. (386) recently showed that co-culture of prostate cancer cells 

increased production of the cysteine protease cathepsin B by adipocytes. Further probing 

revealed that adipocyte co-culture induced secretion of the peptide hormone cholecystokinin 

(CCK) by prostate cancer cells, resulting in establishment of an autocrine/paracrine 

amplification loop in which CCK, acting through the CCK receptor CCKBR, induced 

expression of cancer stem cell markers such as CD49f and Sca-1 in prostate cancer cells and 

further production of cathepsin B by adipocytes. Importantly, cathepsin B has been shown to 

facilitate prostate cancer invasion and metastasis via degradation of ECM and basement 

membrane components (37, 252). Collectively, these studies demonstrate that prostate 

cancer cell-induced alterations in adipocyte function are important mediators of tumor 

progression. Figure 13 briefly summarizes adipocyte-cancer cell crosstalk findings.

Adipocytes and adipose wasting in cancer-associated cachexia—An example of 

long-range adipocyte-tumor interactions can be observed in cancer-associated cachexia 

(referred to hereafter as cancer cachexia or simply cachexia). Cancer cachexia is a fatal 

energy-wasting syndrome that is estimated to be the immediate cause of death in 

approximately 20% to 40% of end-stage cancer patients (392). A key feature of cancer 

cachexia is white adipocyte “browning,” characterized by greatly increased levels of brown 

fat-mediated thermogenesis in white adipose depots (201, 303). Accordingly, cachectic 

patients exhibit irreversible, pathologically elevated basal energy expenditure levels, 

adipocyte lipolysis and adipose tissue wasting, rapid weight loss, and eventually, death (4, 

78, 201, 303). Although prolonged systemic inflammation plays a well-established role in 

cachexia-associated adipose tissue wasting (4, 78), tumor-derived factors have also been 

shown to contribute to the pathophysiology of this syndrome. For example, in a murine 

model of Lewis lung carcinoma, Kir et al. (201) demonstrated that tumor-derived 

parathyroid hormone-related protein (PTHrP) induced the expression of thermogenesis-

associated genes in adipose tissue, implying a crucial role for this hormone in energy 

expenditure and tissue wasting. Accordingly, administration of a PTHrP neutralizing 

antibody prevented cachexia-associated weight loss and ablated thermogenic gene 

expression in white and brown adipose tissue. Furthermore, compared to cancer patients 

lacking detectable levels of blood PTHrP, patients with detectable blood PTHrP levels 

exhibited significantly higher resting energy expenditure levels per kilogram of lean body 

mass, implying a clinically relevant association between this hormone and wasting.

On the other hand, Rohm et al. (332) reported that browning and associated thermogenesis 

in major white adipose depots was not the primary mechanism of adipose tissue wasting in 

mouse models of colon cancer-induced cachexia. Although the brown adipose-associated 

protein cell death activator (CIDEA) was upregulated in both brown and white adipose 

depots of cachectic mice relative to healthy controls, this upregulation occurred in the 

absence of changes in other proteins implicated in adipocyte browning and thermogenesis, 

such as uncoupling protein 1 (UCP-1). Furthermore, while increased free fatty acid release 

was observed in primary mouse adipocytes exposed to serum from cachectic mice, this 
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increase in lipolysis was not associated with well-characterized lipolytic inducers such as 

increased expression of lipases (e.g., hormone-sensitive lipase and ATGL), or increased β-

adrenergic receptor activation. Instead, CIDEA-mediated degradation of AMPK, evidenced 

by a reduction in AMPK protein and enzymatic activity, contributed to adipocyte metabolic 

dysfunction. For example, although increased lipolysis was observed, decreased AMPK 

activity also resulted in reduced inhibitory phosphorylation of acetyl-CoA carboxylase, 

suggesting the establishment of a futile cycle in adipocytes characterized by simultaneous 

increases in both lipolysis and lipogenesis. Microinjection of white adipose depots with a 

peptide designed to interfere with the AMPK-CIDEA interaction (termed AMPK–CIDEA-

interfering peptide, or ACIP), followed by implantation of the cachexia-inducing colon 

cancer cell line C26, resulted in approximately 30% greater retention of adipose depot mass 

and greater adipocyte lipid droplet size compared to the contralateral control-injected depot. 

No significant effect was observed from ACIP injection into adipose depots of control, 

noncachectic mice, suggesting that the augmented AMPK-CIDEA interaction and 

downstream influences on lipid metabolism in adipocytes may be a cachexia-specific 

phenomenon.

These findings by Rohm et al. are particularly interesting in light of the reportedly opposite 

regulation of AMPK in breast cancer cells co-cultured with adipocytes that was highlighted 

in the previous section (426). Also interesting to note is the lack of a role for β-adrenergic 

signaling in either of these two studies (332, 426), as catecholamines are well-established 

regulators of lipolysis, while lipid mobilizing factor—a tumor-derived factor frequently 

implicated in cachexia (393, 394)—also signals through beta receptors. Thus, although the 

causes of cachexia are multifactorial and systemic, it is clear that adipocyte-cancer cell 

interactions are key players in the pathophysiology of this syndrome. Future work should 

seek to identify additional tumor-derived paracrine and hormonal signals that contribute to 

cachexia pathogenesis and progression.

Adipose-derived stem cells

Human adipose tissue stroma is a rich source of multipotent mesenchymal stem cells, 

termed adipose stromal cells or adipose-derived stem cells (ASCs), that can differentiate 

toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages (467). 

Interestingly, several recent studies suggest that ASC recruitment substantially contributes to 

stromal populations in both breast and prostate cancers. Due to the abundance of adipose 

tissue, as well as the minimally invasive procedures required to collect it, ASCs are a 

celebrated approach for tissue engineering and regenerative medicine. For example, 

lipoaspirate preparations may be “enriched” by the addition of ASCs to improve graft 

volume retention (204, 403). However, the findings described below suggest that caution 

may be advised in use of ASCs in patients with a history of cancer. Notably, factors such as 

age and menopausal status have been found to influence the proliferation and differentiation 

capacities of ASCs (47). Future studies on the impact of age on ASC recruitment to tumors 

will yield interesting findings.

Adipose-derived stem cells in breast cancer—The varied stromal components of the 

tumor microenvironment must be recruited from either adjacent tissue or from distant 
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precursor sources such as bone marrow. Kidd et al. (200) investigated the relative 

contribution of ASCs versus bone marrow-derived stem cells to stromal populations in 

mouse models of ovarian and breast cancers, and found that the majority (greater than 70%) 

of intratumoral myofibroblasts, pericytes, and endothelial cells were recruited from 

neighboring adipose tissue. However, CAF subpopulations were recruited from multiple 

distinct sources, with fibroblasts positive for fibroblast specific protein and fibroblast 

activation protein originating from bone marrow-derived mesenchymal stem cells, while α-

smooth muscle actin+/chondroitin sulfate proteoglycan 4+ (α-SMA+/NG2+) CAFs were 

recruited from adjacent adipose. While the factors contributing to ASC recruitment to 

tumors are still ambiguous, Gehmert et al. have demonstrated that the PDGF-BB/PDGFR-β 
signaling pathway may be involved in ASC recruitment to breast cancers (140). Together 

these results imply that the diversity of the tumor microenvironment can be attributed, at 

least in part, to the heterogeneous origin of stromal constituents.

Although ASCs are primarily localized to fat depots, circulating ASCs have also been 

detected in obese individuals and cancer patients, with greater levels observed in obese 

patients bearing colon, prostate, or breast cancers (relative to lean) (142, 327, 367, 462). 

Additionally, relative to ASCs from lean adipose, ASCs isolated from obese adipose show 

enhanced potential to traffic to breast tumors in both humans and mice (366, 464). Zhang et 

al. (464) recently reported hematogenous seeding of breast and ovarian tumors by ASCs in 

obese mice, resulting in infiltration and subsequent differentiation to pericytes and 

intratumoral adipocytes/CAA. This process occurred in an obesity-dependent manner, with a 

sixfold increase in “shedding” of precursors from adipose depots in obesity contributing to 

tumor cell survival and angiogenesis. It will be interesting to note in future studies whether 

specific adipose depots shed ASCs to the circulation at different rates. Ultimately, these 

findings reinforce the need to more comprehensively evaluate the risk of breast cancer 

recurrence after autologous fat grafting, particularly in obese individuals.

Adipose-derived stem cells in prostate cancer—Similar to breast cancer, local and 

circulating ASCs have been reported in prostate cancer patients. Ribiero et al. observed 

higher levels of circulating ASCs in the blood of overweight or obese compared to lean 

prostate cancer patients (327). The authors also reported that periprostatic adipose tissue of 

prostate cancer patients bore significantly higher numbers of ASCs than nearby visceral 

adipose tissue, independent of BMI. Interestingly, increased recruitment of ASCs into 

prostate tumors in obesity has been reported, and was recently attributed to secretion of the 

chemokines CXCL1 and CXCL8 by cancer cells (Fig. 14) (462, 464). CXCL8 expression 

was restricted to malignant cells and was obesity-independent; on the other hand, secretion 

of CXCL1 by nonmalignant epithelium was exclusively observed in histological sections 

from obese individuals, while CXCL1 expression in tumor cells was found in a significantly 

higher percentage of tumor sections from obese as compared to lean patients (462). The 

extent to which periprostatic ASCs, as opposed to circulating ASCs released from other 

adipose depots, contribute to the cellular composition of prostate tumor stroma was not 

quantified in the highlighted studies and requires further investigation.
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Adipose and endothelial/lymphendothelial cells

Vascularization mechanisms in adipose tissue and tumors—Expansion of 

adipose tissue during progression to obesity requires concomitant expansion of the adipose 

vascular bed through the process known as angiogenesis, the formation of new blood vessels 

from preexisting vessels. In fact, administration of antiangiogenic agents in models of both 

genetic and diet-induced obesity either prevented weight gain (385) or induced dose-

dependent, reversible weight reduction and adipose tissue loss (52, 333). When expansion of 

the vasculature does not occur in proportion to the expansion of adipocyte volume 

(hypertrophy), cellular and/or regional hypoxia develops, resulting in activation of the 

transcriptional complex hypoxia-inducible factor 1 (HIF-1) through stabilization of the 

HIF-1α subunit. HIF-1-mediated upregulation of inflammatory and proangiogenic signaling 

pathways in adipocytes, endothelial cells, and immune cells induces vascular growth, 

facilitating further tissue expansion (216, 381, 434). In this way, the microenvironment 

during accumulation of adipose tissue resembles the tumor microenvironment during tumor 

vascularization (Fig. 15). The extensive list of signaling factors contributing to angiogenesis 

in both adipose tissue and tumors includes VEGF isoforms, angiopoietins 1 and 2, leptin, 

adiponectin, TNFα, fibroblast growth factor (FGF) isoforms, TGFβ, HGF, and cytokines 

such as IL-6 and IL-8 (60, 225, 266). Among these, the VEGF/VEGFR system—one of the 

best characterized and most potent of the known proangiogenic signaling pathways—is the 

main mediator of angiogenic activity in adipose tissue (115, 166, 225). The VEGF-A ligand 

in particular is abundantly expressed by adipocytes and other adipose stromal populations 

(166, 225). An additional shared factor of particular importance is angiopoietin-2, which 

signals through the receptor tyrosine kinase TIE2 to induce ECM degradation and disruption 

of endothelial-pericyte interactions during sprouting angiogenesis (157, 203). Importantly, 

several of the pro-angiogenic factors listed above, including multiple VEGF isoforms, leptin, 

HGF, and angiopoietin-2, are also elevated in the serum of obese subjects and are implicated 

in systemic effects of obesity on cancer progression (39, 253, 358).

Similar to adipose tissue, growth of solid tumors is also heavily dependent upon 

synchronous expansion of their vascular beds. In early stage solid tumors, rapid proliferation 

leads to diffusion-limited hypoxia, wherein cells within the tumor mass end up at a distance 

from the surrounding vasculature that is beyond the diffusion limit of oxygen. Resulting 

hypoxia-induced apoptosis and necrosis limit further tumor growth unless an intratumoral 

vascular system is established. The shift in developing primary or metastatic tumors from 

avascular to vascularized is termed the “angiogenic switch,” and is a discrete and requisite 

step for exponential tumor growth and progression to malignancy (Fig. 15) (40,159,324). 

Accordingly, tumor microvessel density is a powerful and independent prognostic indicator 

for several human cancers, including breast, prostate, melanoma, ovarian, gastric, and colon 

cancers (324). However, in light of the myriad options for tumor vascularization described 

below, it is interesting to note that themicrovessel density in solid tumors is often lower than 

in their normal tissue counterparts (103).

New tumor vessel formation can occur through a number of nonmutually exclusive 

mechanisms, including sprouting and migration of endothelial cells (“classical” sprouting 

angiogenesis) or intussusceptive (nonsprouting) microvascular growth, a process in which 
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tumor cells induce splitting and rapid remodeling of existing endothelial vessels (324). 

Remarkably, along with endothelial cells, tumor cells themselves may integrate into newly 

forming blood vessels, resulting in mosaicism (324). Tumor cells may also engage in a 

process known as vasculogenic mimicry, the arrangement of tumor cells into vascular 

channels, which anastomose with adjacent blood vessels (100, 234, 324). An additional 

mechanism for perfusion of tumors is vessel co-option, wherein tumor cells simply track 

alongside existing vessels for their own oxygen and nutrient gain, thereby exploiting nearby 

mature vessels in the host organ (324). Given that adipose tissue is one of the most 

vascularized tissues in the body (225, 423), it is unsurprising that co-option of adipose tissue 

vascular beds was recently shown to promote accelerated tumor growth and intratumoral 

vascularization (226).

Among other abnormal features, tumor vasculature is characterized by enhanced 

permeability, including transcellular holes and fenestrae, which drives further angiogenesis 

and increases nutrient and oxygen delivery, immune cell infiltration, and tumor cell 

extravasation during metastasis (25, 99). Similar to adipose tissue, the VEGF/VEGFR 

system—and particularly VEGF-A—is highly expressed in tumors and is a potent inducer of 

tumor vascular permeability (102). Given the extensive similarities of the pro-angiogenic 

signaling networks in adipose and tumors, it is unsurprising that the vasculature in these two 

tissue types is structurally similar. For example, adipose tissue capillaries also contain 

fenestrations, the presence of which depends upon a poorly understood synergistic 

relationship between VEGF, leptin, and FGF-2 signaling (59). It is tempting to speculate that 

the fenestrations within adipose vasculature may provide a convenient means of escape for 

tumor cells invading into adipose tissue.

In addition to hematogenous metastasis, a tumor cell can also escape from its primary 

location through lymphatic dissemination. In a number of cancer types, including breast 

cancer, melanoma, and prostate cancer, metastasis to the tumor draining lymph node(s), also 

referred to as the “sentinel” lymph node(s), is a common initial route for metastatic 

dissemination from solid tumors (7). For this reason, sentinel lymph node biopsy in newly 

detected and early-stage cancers is a frequent and evidence-based clinical practice required 

for staging of disease, determination of prognosis, and development of the treatment 

approach. In a process similar in principle to classical sprouting angiogenesis, secreted 

factors in some solid tumor types and other inflamed tissues can also initiate 

lymphangiogenesis, the formation of new lymphatic vessels from preexisting vessels. These 

newly formed lymphatic vessels exhibit morphological differences from those in their 

healthy tissue counterparts, including structural disorganization (7). Interestingly, tumor-

associated lymphangiogenesis appears to involve both incorporation of bone marrow-derived 

endothelial progenitors and endothelial mimicry by CD11b+ tumor-associated macrophages, 

although there are conflicting reports regarding the extent to which the latter occurs (167, 

323, 341, 468).

Although peritumoral lymphatic vessel density can act as a prognostic indicator in several 

cancer types, including cervical, colorectal, breast, and prostate cancers (79, 105, 135, 256, 

334), several studies have suggested that intratumoral lymphatic vessels in solid tumors may 

be either collapsed due to intratumoral pressure, occluded by infiltrating tumor cells and 
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therefore nonfunctional, or simply absent altogether (295, 399, 418, 439). Thus, the high 

frequency of cancer cell detection in regional lymph nodes implicates peripheral, 

peritumoral lymphatic vessels in mediating tumor metastasis in these tumor types (439, 

440). However, results showing nonfunctional intratumoral lymphatic vessels have not been 

uniformly supported (360). Consequently, the role of tumor lymphangiogenesis and the 

relative contribution of intratumoral versus peritumoral lymphatics to lymph node metastasis 

remains controversial.

Adipose and breast cancer angiogenesis—In vivo tumor models have demonstrated 

the ability of breast tumors to obtain a blood supply through all of the aforementioned 

processes: vessel co-option, intussusceptive growth, vasculogenic mimicry, and classical 

sprouting angiogenesis (124, 343). Additional mechanisms have also been described for 

breast cancers, such as vasculogenesis and glomeruloid angiogenesis, albeit to a lesser extent 

(124). Nevertheless, remodeling of existing vessels appears to be the dominant mechanism 

for establishing new vasculature in human breast cancers (97, 123). In support of this 

assertion, Lim et al. (226) demonstrated that implantation of the E0771 murine mammary 

tumor line into either brown or white adipose tissue resulted in accelerated tumor growth 

rates and increased intratumoral vessel densities as compared to tumors grown 

subcutaneously. These results were attributed to co-option of preexisting adipose vascular 

beds, as tumor growth and vascularity reflected the differential degree of vascularity within 

the respective adipose types. Furthermore, adjacent adipose tissue fostered both reduced 

pericyte coverage and enhanced permeability, features associated with worse prognosis.

In obesity, both the increased abundance of white adipose and the resulting chronic 

inflammatory conditions of the microenvironment may promote tumor vascularization. 

Indeed, enhanced tumor angiogenesis in the context of obesity is observed in both mice and 

humans (18, 153, 218, 422, 464). In one compelling study, Arendt et al. (18) developed a 

novel humanized mouse model wherein human adipose stromal populations overexpressing 

CCL2 were injected into cleared mammary fat pads (cleared of endogenous mammary 

epithelium) to generate an obese-like microenvironment. Prior to tumor formation, the 

authors reported enhanced angiogenesis in CCL2-overexpressing mammary fat pads, which 

was shown to be mediated by elevated levels of macrophage recruitment and activation. 

Upon transplantation of transformed human breast epithelial cells, the obese-like 

microenvironment augmented macrophage-associated angiogenesis in early premalignant 

lesions as well as tumor-adjacent adipose following tumor formation, which induced the 

formation of larger and higher-grade tumors. Whether the observed tumor-promoting effects 

were due to specific macrophage phenotypes in “obese” versus lean mammary adipose or 

simply to an increase in macrophage numbers was not explored. Moreover, this study did not 

differentiate whether increased tumor-associated macrophage content in obesity was due to 

accelerated recruitment of bone marrow-derived macrophages or to co-option of nearby 

mammary adipose tissue macrophages. Nevertheless, similar results were reported by 

Cowen et al., who demonstrated that high-fat diet-induced obesity in the MMTV-PyMT 

model of spontaneous breast cancer resulted in mammary adipose tissue inflammation, 

enhanced macrophage recruitment, and increased mammary tumor vascular density (73).
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As described in the previous section, obesity is also associated with elevated levels of 

circulating and infiltrating ASCs (464) which produce a range of proangiogenic factors, 

including VEGF and HGF (217). Our lab has demonstrated that inhibition of the HGF 

receptor, cMET, via the small molecule kinase inhibitor crizotinib significantly reduced 

tumor burden and tumor vascularity in both lean and obese C3(1)-TAg mice (74). Reversal 

of high fat diet-induced elevation of HGF/cMET expression in both normal mammary gland 

and tumors was also observed with weight loss, which significantly blunted the effects of 

obesity on both pre-neoplastic lesion formation (316) and tumor progression (377) (Fig. 16). 

Importantly, endothelial cell upregulation of cMET is one mechanism attributed to inherent 

or acquired resistance to anti-angiogenic therapies targeting VEGF (91, 355). In fact, the 

HGF/cMET pathway has been reported to act synergistically with VEGF (355, 371), and 

clinical trials investigating crizotinib alone [ClinicalTrials.gov: NCT 02101385 (342)] or in 

combination with anti-VEGF therapy [ClinicalTrials.gov: NCT 02074878 (36)] for the 

treatment of advanced TNBC are currently underway at the time of preparation of this 

review.1

However, one response to anti-angiogenic therapies is vessel pruning and regression, leading 

to intratumoral hypoxia. Such hypoxic conditions induce an influx of tumor-associated 

macrophages and other myeloid cells, triggering tumor revascularization and tumor relapse 

(248, 321, 329, 431). In addition, peritumoral adipose tissue is characterized by a dense 

macrophage infiltrate and a high degree of vascularization. Indeed, Wagner et al. 

demonstrated that inflamed, tumor-associated adipose tissue acts as a source of both vascular 

endothelium and activated proangiogenic macrophages, thereby fueling the growth of 

malignant cells (15, 422). Importantly, the presence of macrophages within adipose tissue 

increases considerably in obesity (429). Thus, obesity-associated mammary adipose 

inflammation and resulting macrophage infiltration and angiogenesis may contribute to 

tumor relapse following antiangiogenic therapies.

Adipose tissue and lymphangiogenesis in breast and prostate cancers—
Lymphatic vessels in the normal breast are dispersed throughout the interlobular stroma and 

adipose tissue (418), the latter of which acts a source of molecules that directly affect the 

lymphatic endothelium. For example, the lymphangiogenic factors VEGF-C and VEGF-D 

are chemotactic for macrophages in mice, and their blockade in a diet-induced obesity 

model attenuated macrophage infiltration, adipose tissue inflammation, and onset of insulin 

resistance (194). An increase in circulating levels of pro-lymphangiogenic factors such as 

HGF and VEGF-C in obesity may also alter lymphatic vessel density or function by 

enhancing capillary permeability and inducing lymphendothelial hyperplasia (58,254,358). 

Indeed, obesity is associated with dysfunction of the adipose lymphatic system, including 

decreased lymph node size and number (430), reduced drainage of macromolecules (19), 

increased perilymphatic inflammation (281), and altered lymph node immune cell 

composition (430). These changes were recently attributed to the condition of obesity per se

—specifically injury to lymphatic endothelial cells caused by inflamed adipose tissue—

rather than the high fat diet used to generate the obese phenotype (136). Interestingly, using 

1During peer review and publication of the present review, clinical trial NCT 02074878 was terminated due to poor accrual.
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a model of Prox1 haploinsufficiency, Harvey et al. demonstrated that lymphatic vascular 

defects and resulting abnormal lymph leakage into surrounding tissues induced adult-onset 

obesity (163). A follow-up study by Escobedo, et al. further reported that the obese mutant 

phenotype of Prox1+/− mice could be rescued with tissue-specific restoration of Prox1 in 

lymphatic endothelial cells (110). Whether lymphatic vessel density is altered in peritumoral 

adipose, either normal or obese, has not been reported. However, Yamaguchi et al. observed 

a more than threefold increase in lymph node metastasis with adipose tissue invasion at the 

tumor margin in patients with invasive breast carcinoma (454).

The role of adipose tissue in prostate carcinoma angiogenesis and lymphangiogenesis is not 

well understood. However, as mentioned previously, ASCs are abundant in periprostatic 

adipose tissue (327) and are a source of lymphangiogenic factors (383). Indeed, implantation 

of ASCs has been used successfully in mice to induce lymphangiogenesis in a model of 

lymphedema (352, 459). Importantly, obesity may influence the degree of proangiogenic/

lymphangiogenic factors released from the periprostatic adipose depot. Venkatasubramanian 

et al. reported that conditioned media generated via explant culture of human obese 

periprostatic adipose stimulated prostate cancer cell proliferation and angiogenesis to a 

significantly greater degree than explants from lean patients, providing a potential link 

between obesity and worse prostate cancer prognosis (417). Paradoxically, elevated leptin 

concentration in obese mouse models is associated with attenuated tumor cell proliferation 

and reduced angiogenesis and lymphangiogenesis in prostate cancers in vivo (259,325). 

Furthermore, rate of lymph node metastasis in patients with clinically localized prostate 

cancer does not appear to be altered by obesity (53). Thus, there are lingering questions 

surrounding the role of periprostatic adipose tissue in prostate tumor progression in both 

lean and obese individuals, particularly with regard to its influence on tumor angiogenesis.

Adipose Tissue Immune Populations in Cancer Development and 

Progression

Acute inflammatory responses, such as those that occur in the context of pathogen 

infections, are usually self-limiting and are characterized by an “acute inflammatory 

infiltrate” consisting primarily of neutrophils and sometimes eosinophils (72). However, 

when triggering factors persist or inflammatory resolution mechanisms fail, a shift occurs in 

the immune profile to a “chronic inflammatory infiltrate,” predominantly comprised of 

lymphocytes and mononuclear cells such as macrophages and dendritic cells. Chronic 

inflammation is consistently associated with increased risk of carcinogenesis and is a well-

known hallmark of cancer (28, 72), leading Dvorak to describe tumors as “wounds that do 

not heal” (101). Solid tumors frequently contain a dense infiltrate of immune cells, including 

lymphocytes, neutrophils, macrophages and mast cells, each of which directly or indirectly 

influence the course of tumor progression. In fact, many of the changes that occur in the 

tumor microenvironment are largely orchestrated by immune cells (107, 310, 435). Chronic 

inflammation is also highly prevalent in obesity, and as discussed in previous sections, plays 

pivotal roles in adipose tissue (lymph)angiogenesis and development of fibrosis. Thus, the 

final section of this review will focus on adipose tissue immune populations. We will 

emphasize the changing immune profile during adipose accumulation and progression to 
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obesity and the potential impact of these alterations on adipose-adjacent tumor progression. 

However, it should be noted that the immune profile of adipose tissue depends upon both the 

degree and the duration of adiposity, as well as a variety of other factors that are beyond the 

scope of this review, including physical activity, dietary intake, the microbiome, and certain 

therapeutics such as thiazolidinediones (188).

Healthy adipose tissue contains a wide variety of innate and adaptive immune cells, 

including macrophages, dendritic cells, mast cells, eosinophils, neutrophils, and 

lymphocytes, which collectively constitute ~25% to 45% of stromal cells in humans (50). In 

lean adipose, these “resident” immune cells maintain tissue homeostasis by clearing 

apoptotic cells, suppressing inflammation, and mediating basal ECM remodeling and 

angiogenesis in response to routine fluxes in caloric availability (51). However, during 

progression to obesity, rapid expansion of adipose tissue and associated adipocyte 

dysfunction trigger a dynamic infiltration of innate and adaptive immune populations (Fig. 

17). These immune cells act as potent sources of inflammatory cytokines, chemokines, 

growth factors, and matrix-degrading enzymes such as matrix metalloproteases (MMPs), 

which rapidly remodel the tissue microenvironment and result in chronic low-grade, or 

“smoldering,” inflammation (373). A decrease in relative influence of select adipose resident 

populations known for their anti-inflammatory action (e.g., immunosuppressive 

macrophages, eosinophils, regulatory T cells, and innate lymphoid cells [ILC2s])may further 

exacerbate adipose inflammation in obesity and associated sequelae, thereby indirectly 

mediating differential immune responses during tumor-adipose interactions in lean versus 

obese individuals.

Despite a surge in research over the past 15 years on the roles of immune cells in adipose 

tissue biology, many fundamental lines of investigation remain incompletely understood. For 

example, a growing understanding of the complexity of innate lymphocyte subsets and their 

remarkable parallels with adaptive lymphocyte subsets (362) complicates interpretation of 

innate vs. adaptive influence. In addition, data regarding roles for select immune cell types, 

such as basophils, in adipose tissue remain in short supply. Notably, while comparing the 

immune response to tumor growth in lean and obese individuals many studies have failed to 

take into account co-morbidities associated with obesity, which may alter the 

immunometabolic milieu. For example, type II diabetes is a metabolic condition in which 

insulin resistance, often due to prolonged obesity and associated inflammation, results in 

hyperinsulinemia, hyperglycemia, and dyslipidemia. In addition to elevating risk of both 

cancer development and cancer mortality in several solid tumor types (146, 458), metabolic 

dysregulation in type II diabetics shifts availability of metabolic substrates such as glucose 

and fatty acids, which can alter immune cell number and behavior (66, 128, 189). 

Furthermore, medications prescribed for glucose control in type II diabetics, such as 

metformin, may have profound and confounding effects on antitumor immunity through 

suppression of inflammation in macrophages (165) or augmentation of the cytotoxic T cell 

response (104). With these caveats acknowledged, the increased presence of adipose 

inflammatory cells in obesity may provide a link between adipose tissue and the 

pathophysiology of adipose-associated cancers. Thus, when considering the effects of 

adipose tissue on cancer development, the potential for cross talk between adipose immune 

populations and the developing tumor is paramount. Due to a current dearth of literature 
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addressing immune populations in periprostatic adipose, the structure for this final section of 

our review will diverge from the format above, which emphasized breast and prostate 

adipose pads individually, and instead focus more generally on literature regarding immune 

populations in a variety of adipose depots.

T cells in adipose and cancer

T cell diversity in the tumor microenvironment—Tlymphocytes, or Tcells, are 

central to cell-mediated immune responses and mediate exquisitely specific adaptive 

immune defenses within a given disease context, including cancer. Broadly speaking, T cells 

can be classified into CD4+ helper T (Th) and CD8+ cytotoxic T (Tc) cell subsets. CD4+ Th 

cells can be further subdivided into pro-inflammatory effector Th1 cells or 

immunoregulatory Th2 cells, which influence both generation and activity of CD8+ Tc cells 

and antigen-presenting cells (APCs), such as macrophages and dendritic cells, within the 

tumor microenvironment. Other T cell subsets include Th17 cells, γδT cells, and certain 

types of natural killer (NK) cells, the latter of which exhibit cytotoxic activity and play a role 

in antitumor immune defense. While each of these T cell subsets, along with other, less well-

characterized populations, influence both tumor progression and adipose immunity (275, 

466), a comprehensive review of T cell function in these contexts is beyond the scope of this 

review. However, several of the most well characterized subsets will be addressed below, 

with particular emphasis on how adiposity-associated alterations in CD8+ T cells and a 

subset of CD4+ T cells termed “classical T regulatory cells,” or Tregs, may contribute to 

cancer development in obese individuals.

CD8+ T cells and CD4+ Tregs generally exhibit opposing immunologic functions in both 

the tumor microenvironment and normal tissues. CD8+ Tc cells are a critical component of 

antitumor immune defense, directly killing tumor cells through release of cytotoxic granules 

containing perforin and granzyme B, and indirectly promoting tumor rejection by 

stimulating APC activity. On the other hand, Tregs are a subset of CD4+ T cells identified 

by expression of the cell surface markers CD4 and CD25 and the transcription factor 

forkhead box P3 (FOXP3), which acts as the master regulator of the Treg phenotype (122, 

175). Tregs directly regulate the activity of other T cells through suppression of CD8+ Tc 

cell proliferation following T cell receptor (TCR) stimulation and activation of immune 

checkpoint pathways, which provide a critical defense against T cell-mediated responses to 

self-antigens (autoimmunity). Specifically, in T cells, the amplitude and duration of TCR-

mediated immune responses are determined by immune checkpoint proteins, which exert co-

stimulatory and/or inhibitory signals to effectively “tune” the immune response and curtail 

collateral tissue damage. For example, FOXP3-mediated constitutive expression of the 

immune checkpoint protein CTLA4 by Tregs inhibits development of self-reactive CD8+ Tc 

cells in secondary lymphoid organs such as lymph nodes (382). In peripheral tissue, 

including tumors, expression of the inhibitory checkpoint protein Programmed Death-1 

(PD-1) by “exhausted” or chronically activated T cells impairs cell-mediated responses. 

Binding of ligands to the PD-1 receptor triggers T cell senescence, apoptosis, or conversion 

to a Treg phenotype (14,425), thereby attenuating cell-mediated immune responses (190). 

Additionally, Tregs potently suppress the function of other immune cells such as APCs, NK 

cells, and CD8+ Tc cells through production of cytokines including IL-10 and TGF-β (190, 
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275, 466). While these immune-regulatory functions provide a critical defense against 

rampant immune responses, by suppressing immunosurveillance and promoting immune 

tolerance in the tumor microenvironment Tregs actively prevent robust elimination of 

developing cancers. Accordingly, the density of Tregs in solid tumors is correlated with 

adverse clinical outcomes in melanoma, as well as ovarian, gastric, pancreatic, hepatic, 

breast, and prostate cancers (34,119,437).

Differential T cell content and activation in lean and obese adipose tissue: 
Links to cancer—In addition to their well-established roles in the tumor 

microenvironment, Tregs have also recently been shown to contribute to the maintenance of 

adipose tissue metabolic homeostasis. Feuerer et al. (116) demonstrated that nearly half of 

the CD4+ T cells in lean visceral adipose of male mice expressed FOXP3. In fact, visceral 

adipose in 30-week-old mice contained a greater abundance of Tregs than lymphoid tissues 

such as spleen and lymph nodes. Interestingly, these adipose-resident Tregs were frequently 

detected in CLS, which are typically associated with inflammatory cells. Expression 

profiling of isolated adipose Tregs revealed a distinct gene signature from that of 

“conventional” T cells from spleen and lymph nodes. Divergent transcription patterns in 

adipose Tregs included a relative increase in chemokines involved in leukocyte migration 

and extravasation and greatly elevated IL-10 expression (>100-fold) as compared to lymph 

node Tregs. Adipose-resident Tregs also exhibited limited TCR diversity relative to spleen or 

lymph node Tregs (116). Similarly, Yang et al. reported that adipose T cells displayed a TCR 

profile distinct from that of splenic T cells, further demonstrating that depot-specific 

microenvironments modulate lymphocyte phenotypes (455).

Feuerer et al. (116) also noted that the presence of Tregs in visceral adipose declined with 

increasing adiposity in three mouse models of obesity, although the abundance of lymphoid 

tissue Tregs was unaffected. Subsequent mechanistic studies employing Treg stimulation 

and depletion suggested that IL-10 secretion by Tregs dampens inflammation in adipose 

tissue, thereby safeguarding insulin sensitivity. A second study published the same year by 

Nishimura et al. (276) also reported a decrease in Treg content in obese murine visceral 

adipose, with a simultaneous and substantial increase in the presence of CD8+ Tc cells 

displaying markers of activated effector T cells. Of note, in obese mice the accumulation of 

CD8+ Tc cells preceded macrophage infiltration by 3 to 4 weeks, indicating that T cells may 

effect microenvironmental changes enabling macrophage recruitment (Fig. 17). An increase 

in CD8+ Tc cells, particularly within CLS, was also observed in subcutaneous adipose. 

Genetic or antibody-mediated depletion of CD8+ Tc cells during the course of high-fat 

feeding attenuated the onset of insulin resistance, prevented macrophage infiltration, and 

blunted obesity-associated increases in TNFα and IL-6 expression in whole adipose tissue; 

these phenotypes were “rescued” upon reintroduction of CD8+ Tc cells via adoptive 

transfer. CD8+ T cell depletion in established obesity similarly reduced the presence of 

proinflammatory macrophages and CLS density in adipose tissue. These findings were 

confirmed in vitro, as coculture of CD8+ T cells from obese adipose with macrophages 

induced significantly greater macrophage-specific TNFα expression than did CD8+ T cells 

from lean adipose. In sum, these studies illustrate that reduced Treg content and increased 

CD8+ T cell presence promote macrophage-specific expression of pro-inflammatory 
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mediators, thereby contributing to adipose inflammation and metabolic dysfunction in 

obesity, both of which are drivers of tumor malignancy.

However, the nature of these reported shifts in T lymphocyte profiles of obese murine 

adipose has not been consistent in human studies. In fact, the opposite has been observed. In 

obese adults, the expression of Treg activation markers and Treg cytokines increased with 

increasing adiposity, particularly in subcutaneous as compared to visceral adipose (397, 

461). One potential explanation for these observed increases in Treg activation relates to 

increased local estrogen concentration in adipose tissue of obese subjects. Indeed, 

Subbaramaiah et al. provided evidence that elevated cyclooxygenase-2 (COX-2)-induced 

prostaglandin E2 (PGE2) production by CLS-associated inflammatory cells mediates 

increased risk of breast cancer in obesity by inducing activity of aromatase in mammary 

adipose tissue (260, 370). Increased aromatase activity in adipose tissue increases the 

conversion of circulating androgens to estrogens, and thus is of particular concern for 

development of estrogen receptorpositive breast cancers in postmenopausal women, a 

population in which obesity is strongly linked to elevated risk of cancer (70, 412). Estrogen 

also exerts a positive effect on both expansion of Tregs and augmentation of their 

immunosuppressive activities (309, 411). Elevated PGE2 also induces FOXP3 expression 

and Treg function (29, 30, 349). Paradoxically, however, elevated aromatase and PGE2 levels 

are also present in adipose of obese mice. Thus, the significance of interspecies differences 

in obesity-associated Treg abundance and/or activation is unclear.

Interspecies differences in T cell content are not exclusive to Tregs. For example, although 

increases in Tc and Th1 cell content are frequently reported in murine models of obesity, the 

prevalence of these cell types in obese human adipose is controversial. Indeed, while Yang et 

al. reported that the stromal-vascular fraction of abdominal subcutaneous adipose from 

obese human subjects displayed an increased percentage of both CD4+ and CD8+ T cells 

compared to lean individuals (455), two additional studies profiling T cells in obese human 

adipose did not reach the same conclusions (397,461). Accordingly, although CD8+ T cells 

appear to contribute to adipose inflammation in mice, their role in human obese adipose 

remains ambiguous. Furthermore, in addition to identifying potentially critical cross-species 

differences in adipose T cell function, these results also suggest that, in humans, an increase 

in pro-inflammatory cell abundance in adipose occurs with a parallel protective response 

driven by Tregs. Should this be the case, an elevated presence of Tregs in human obese 

adipose may contribute to immunosuppression of anti-tumor responses in adipose-adjacent 

cancers.

In addition to influencing Treg-mediated immunosuppression, obesity may also impair T 

cell-mediated antitumor responses through systemic mechanisms. For example, obesity 

reportedly accelerates age-associated declines in immune function, including thymic 

atrophy. The thymus is a specialized primary lymphoid organ located in the mediastinum 

that houses maturing T lymphocytes. Beginning at puberty, the thymus undergoes 

involution, or atrophy, exhibiting fibrotic and fatty changes that culminate in its replacement 

by adipose tissue (96). Following thymic involution, the peripheral T cell pool is primarily 

maintained independently of thymic lymphopoiesis, such as by expansion of existing T cell 

populations; however, it should be noted that some studies in humans have reported that the 
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aged thymus retains a limited capacity to produce naïve T cells (387). Eventually, the age-

related decline in naïve T cell production, in combination with steady exposure to antigenic 

challenge and resulting expansion of effector-memory T cells, depletes the naïve T cell pool 

and reduces diversity of the TCR repertoire (432). Thus, these processes reduce the 

capability of the adaptive immune system to respond to new antigenic challenges, increasing 

susceptibility to infection, autoimmune responses, and cancer. Importantly, Yang et al. (456) 

reported that prolonged obesity in mice increased perithymic adipose tissue content, reduced 

thymocyte counts, and enhanced thymocyte apoptosis relative to lean animals, each of which 

are associated with thymic aging. Similarly, increased frequencies of CD4+ and CD8+ 

effector-memory cells in subcutaneous adipose of obese mice, concomitant with a notable 

decrease in TCR diversity and depletion of the CD4+ and CD8+ naïve T cell pools, further 

supported an acceleration of the immune aging process. Moreover, splenic T cells isolated 

from obese mice exhibited reduced expression of pro-inflammatory mediators important for 

antitumor immune defenses, including interferon-γ and TNFα. Finally, in humans, analysis 

of mature thymus-derived T cells demonstrated that increasing adiposity significantly 

correlated with a reduction in thymic output in overweight and obese middle-aged subjects. 

These obesity-related restrictions in TCR diversity and T cell function may account for 

reports of impaired adaptive immunity in obese patients (195, 296) and suggests a reduced 

capacity to mount an effective antitumor immune response.

Recent clinical successes with tumor immunotherapies targeting the PD-1 immune 

checkpoint pathway have increased interest in the regulation of this pathway in the context 

of obesity. As described above, PD-1 expression by T cells is an important driver of 

immunosuppression and reduced cytotoxic T cell response in the tumor microenvironment 

(68), prompting development of PD-1-targeting monoclonal antibodies (e.g., pembrolizumab 

and nivolumab) for clinical use. Recently, Shirakawa et al. reported B cell-dependent 

accumulation of CD4+ T cells constitutively expressing PD-1 within visceral adipose of 

obese mice and human omental adipose from obese patients (354), further suggesting that 

tumor-adjacent adipose in obese individuals may present an immunosuppressive 

environment. In light of the accelerated thymic aging and naïve T cell depletion reported in 

obese patients, it will be interesting to see whether adipose contributes to increased PD-1+ 

T-cell content in the solid tumor microenvironment.

Macrophages and myeloid-derived suppressor cells

Macrophage ontogeny and activation—Macrophages, or “big eaters,” are myeloid-

lineage immune cells typically classified within the innate immune system, yet bridge innate 

and adaptive immunity through extensive interactions with adaptive immune cells such as T 

cells. Conventionally, macrophages have been classified according to the “M1/M2” 

dichotomy, wherein “M1” polarized, or “classically activated,” macrophages are 

proinflammatory, and “M2” polarized, or “alternatively activated,” macrophages are anti-

inflammatory. M1 macrophages are generated in vitro upon exposure to Th1 cytokines (e.g., 

IFN-γ) or stimuli such as bacteria and lipids (191, 337, 338). In contrast, M2 macrophages 

are most commonly generated by culture in the presence of Th2 cytokines such as IL-4 

and/or IL-13 (150). However, a variety of other compounds may also be used for M2 

macrophage polarization, including TGF-β, IL-10, glucocorticoid hormones, M-CSF, and 
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PGE2 (236). Importantly, a lack of standardized nomenclature and macrophage polarization 

strategy (267), coupled with the multifarious nature of tissue macrophages and their 

exquisite ability to respond to context-dependent cues (138), has resulted in a tremendous 

influx of literature about the respective roles of M1 vs. M2 macrophage subsets in disease 

that is often contradictory and difficult to reconcile (242). Furthermore, while much of our 

understanding of the M1 and M2 phenotypes have come from animal and in vitro studies, 

genomic profiling of human and mouse macrophages treated with M1 or M2 stimuli 

revealed that only approximately 50% of macrophage polarization markers are shared across 

both species (243). With these caveats acknowledged, despite their utility to in vitro 
research, truly polarized macrophages are rare in vivo. Instead, tissue macrophages display a 

diverse array of functional phenotypes and often express one or more markers of both M1 

and M2 subtypes, resulting in a mixed phenotype with specific expression and function 

varying by tissue type and timing of residence, as discussed below (Fig. 18) (82, 212, 262, 

451).

Over the past few decades, macrophage ontogeny studies have revealed multiple origins for 

what are now referred to as “tissue resident” macrophage populations (for two excellent 

reviews on macrophage ontogeny the reader is referred to (144, 212)). During primitive 

hematopoiesis in early embryonic development, macrophages arise in the blood islands of 

the yolk sac from an erythromyeloid precursor, differentiating to macrophages without 

passing through a monocyte stage (148,244). These early embryonic macrophages are 

followed by a second wave derived from fetal monocytes and originating in the fetal liver 

(148, 244). Collectively, macrophages within these waves of early hematopoiesis populate 

tissues throughout the body and develop specialized functions based on their tissue of 

residence (e.g., microglia in the brain, Kupffer cells of the liver, etc.) (144, 212). Tissue-

resident macrophages persist through adulthood and, in most tissues, self-maintain through 

local proliferation without significant contribution from circulating monocytes (exceptions 

include the intestine and the dermis) (81, 164). Only in later stages of embryonic 

development and postnatally do macrophages develop from bone marrow-derived circulating 

monocytes, which are recruited to tissues as needed when insults arise (38, 52).

Although the embryonic origin of many specialized tissue macrophage populations has been 

identified, the precise origin of adipose tissue macrophages (ATMs), and the degree to which 

resident ATM populations are replaced by circulating monocytes, remains unclear (Fig. 19). 

In one recent study, Franklin et al. demonstrated that ablation of the CCL2 receptor, CCR2, 

significantly reduced mammary fat pad macrophage content in lean mice (125); CCL2 

mediates egress of monocytes from bone marrow and thereby augments the abundance of 

circulating monocytes (345). This study by Franklin and colleagues therefore suggests that 

mammary-specific ATMs in lean mice are replenished throughout adulthood by circulating 

monocytes. Whether this replenishment also occurs in other lean adipose depots under 

physiologic conditions has not been reported.

Macrophage content and phenotypes in obesity—Macrophages are the most highly 

represented immune cells in adipose tissue, and their numbers increase considerably in both 

visceral and subcutaneous adipose in obesity. However, the increased presence of ATMs in 

obesity appears to arise from multiple tissue sources. For example, using bone marrow 
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transplant studies employing CD45.2-expressing recipient mice and syngeneic CD45.1-

expressing donor mice, Weisberg et al. reported that adipose-infiltrating macrophages in 

obesity had differentiated from bone marrow-derived, circulating monocytes (429). 

However, Amano et al. demonstrated that elevated CCL2 in visceral adipose drove local 

proliferation of macrophages in obesity, which contributed to ATM accumulation (13). Local 

ATM proliferation was also observed by Hasse et al., with live imaging of adipose explants 

showing that macrophages expressing M2-identifying markers underwent mitosis within 

CLS, followed by migration to interstitial spaces between adipocytes (154). Moreover, in 
vivo proliferation in a subset of bone marrow-derived macrophages has also been described, 

a surprising finding as bone marrow-derived macrophages were long believed to be 

terminally differentiated and thus nonproliferative (80). Importantly, however, recruitment of 

bone marrow-derived macrophages and local ATM proliferation need not be mutually 

exclusive, and future studies should examine obese ATM ontogeny in a longitudinal fashion.

Regardless of their tissue of origin, the increased presence of macrophages in obese adipose 

tissue can be best observed histologically as an increase in CLS formation. Indeed, Weisberg 

et al. demonstrated that macrophage influx and CLS formation in both mice and humans 

were significantly correlated with both adipocyte diameter and BMI (429). Time course 

studies probing the changing immune profile in obesity report that this macrophage 

accumulation occurs subsequent to neutrophil and T cell infiltration (106,276). However, 

there is variability in both the reported timing of macrophage influx and the degree of 

infiltration across adipose depots. For example, Elgazar-Carmen et al. observed an increase 

in CLS formation in murine visceral adipose tissue as early as 3 weeks into high fat feeding, 

which increased in density over time until the study endpoint at 16 weeks of diet exposure 

(106). On the other hand, Nishimura et al. reported that the presence of macrophages in the 

stromal-vascular fraction of visceral adipose tissue did not increase until 10 to 12 weeks of 

high-fat feeding (276). These temporal differences may be due to variation in the age at 

which obesity was induced and the dietary composition used to generate adiposity (i.e., both 

the percent kilocalories obtained from lipids as well as the lipid profile), as each are 

important considerations in diet-induced obesity studies. Nevertheless, although the initial 

timing of macrophage infiltration varies across studies, macrophage accumulation continues 

with prolonged obesity, with ATMs eventually comprising up to 50% of adipose stromal-

vascular cells (75, 292, 429, 449). Due to sexual dimorphism in mice with regard to degree 

of adiposity in response to high-fat feeding, as well as differential contribution of adipose 

depots to obesity-associated metabolic dysregulation, many obesity studies have 

preferentially quantified changes in macrophage content in abdominal adipose depots of 

male mice (i.e., inguinal and periepididymal). However, we and others have also 

demonstrated obesity-associated CLS formation in the mammary fat pad of female mice, as 

well as human breast adipose tissue (260, 369, 370, 374).

As mentioned in previous sections of this review, obese adipose tissue frequently exhibits 

elevated levels of proinflammatory cytokines such as TNFα and IL-6. Although obese 

adipocytes have been shown to contribute to the secretion of these factors (130), 

macrophages and other stromal-vascular cells are thought to be the primary source of 

proinflammatory mediators in both mice (429) and humans (76, 112). Following initial 

reports of adipose macrophage influx in 2003 (429, 449), early characterization of ATMs 
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reported the appearance of a CD11c-expressing population of ATMs in adipose tissue of 

obese, but not lean, mice (131,231), as well as a phenotypic switch in the collective ATM 

population from an anti-inflammatory (M2) polarized state in lean animals to a pro-

inflammatory (M1) state in obese animals (231). Importantly, however, more recent research 

indicates that the nature of ATM phenotypes in obesity is more dynamic and complex than 

originally expected. For example, the pro-inflammatory phenotype of CD11c-expressing 

ATMs appears to be malleable, and may be modulated by degree of insulin sensitivity in 

obese animals (221). In addition, more extensive profiling of ATMs in obese adipose of mice 

and humans has revealed that these cells harbor a “mixed” pro-and anti-inflammatory 

phenotype (350, 460). For example, in human abdominal subcutaneous adipose, ATMs 

accumulating in CLS expressed both CD11c and the commonly used M2 marker mannose 

receptor C type 1 (CD206), as well as both pro- and anti-inflammatory interleukins (IL-1β, 

IL-6, IL-8, and IL-10) (433). These results are further supported by Nakajima et al., who 

reported accumulation of ATMs expressing both CD11c and CD163, the latter of which is 

commonly associated with M2-like macrophages, in abdominal visceral and subcutaneous 

adipose of obese subjects (269). Shaul et al. (350) also described a mixed M1/M2 phenotype 

in obese murine CD11c+ visceral ATMs, suggesting phenotypic and functional similarities 

between murine and human ATMs in obesity. Interestingly, in the latter study, these mixed 

phenotype ATMs exhibited a shift toward a more M2-like transcriptional profile as obesity 

progressed.

Due to the phenotypic overlap between ATMs and canonical M1- and M2-polarized 

macrophages, the precise stimuli that activate ATMs, as well as the specific surface marker 

profile of this cell population, have only recently been described. Using a membrane 

proteomics approach, Kratz et al. (205) described a unique, “metabolically activated” 

phenotype in visceral ATMs from obese mice, which displayed surface markers distinct 

from those of classically activated macrophages generated in vitro. When these 

metabolically activated ATMs were recapitulated in vitro by exposure to conditions 

characteristic of the metabolic syndrome (high glucose, insulin, and palmitate), they were 

further found to exhibit increased surface expression of M2-associated lipid metabolizing 

proteins, but not other M2-defining markers. Metabolically activated ATMs also exhibited 

increased PPARγ activation, as well as a strong and selective induction of protein 

sequestome-1/p62, a scaffold protein with a variety of signaling roles including activation of 

the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

κB) (205, 261). Importantly, PPARγ is a transcription factor crucial in the generation of the 

M2-like macrophage phenotype, while the NF-κB transcription factor family mediates 

several aspects of the M1 inflammatory response. Ablation of PPARγ or p62 in 

metabolically activated macrophages increased expression of several proinflammatory 

mediators, indicating that PPARγ and/or p62 attenuate proinflammatory responses in ATMs 

in obesity (205). Moreover, Ferrante and colleagues (450) observed elevated lysosome 

biogenesis and lipid metabolism in visceral adipose ATMs from obese mice relative to lean, 

without concomitant activation of inflammatory pathways. In fact, the authors suggested that 

the driving force for the chronic low-grade inflammation observed in obesity may simply be 

the increased density of macrophages in obese adipose, rather than a shift in the 
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inflammatory potential of individual macrophages. Thus, questions remain regarding our 

understanding of ATM phenotype and degree of plasticity within adipose tissue.

Adipose tissue macrophages: Connections to cancer—Increased ATM content in 

obesity suggests a clear inflammatory link between obese adipose and initiation of adipose-

adjacent cancers. For example, as mentioned previously, macrophage infiltration into obese 

breast adipose tissue and resulting inflammation are linked to increased risk of mammary 

carcinogenesis (260, 370). Additionally, in various sections of this review we have addressed 

roles for ATMs in development of adipose tissue fibrosis (373, 446), which may influence 

early stages of tumor initiation. Macrophages are also highly represented within the body 

and margins of many solid tumor types, and directly promote progression of both early and 

established tumors (317,438). Indeed, macrophages are implicated in every aspect of tumor 

progression, including induction of the angiogenic switch (227); generation of an 

immunosuppressive environment (236); ECM degradation to facilitate invasion and 

migration of tumor cells into surrounding tissue; and physical participation in tumor cell 

metastasis (315, 438). Macrophages have also been shown to negatively influence response 

to anticancer therapies in breast and prostate cancers (86,89,109,235,356). Accordingly, in 

human breast tumors, degree of macrophage infiltration is an independent prognostic 

indicator strongly associated with high vascular grade, reduced relapse-free survival, and 

decreased overall survival (57, 218, 438).

Differences in phenotype and trophic potential between embryonic-resident, locally 

proliferating, and bone marrow-derived ATM populations may influence tumor development 

and ATM participation in the tumor microenvironment. Collectively, macrophages found 

both along the solid tumor periphery and within the tumor mass are referred to as tumor-

associated macrophages (TAMs). Studies investigating the origins of TAMs in mice have 

reported that circulating bone marrow-derived monocytes are the primary source of TAMs in 

syngeneically grafted (264) and spontaneously arising mammary tumors (125), as well as in 

breast cancer pulmonary metastases (314). Furthermore, Franklin et al. reported that 

monocyte-derived TAMs in the MMTV-PyMT mouse model of spontaneous breast cancer 

proliferate within the tumor site and are phenotypically and functionally distinct from the 

resident mammary tissue macrophages present before tumor development (125). Together 

these observations argue against recruitment of local tissue-resident macrophage 

populations. However, studies probing TAM ontogeny have investigated this question 

exclusively in lean animals. The term “tissue-resident macrophages” is often used to refer to 

embryonic macrophages, but may also refer to any macrophages residing in a given tissue 

before an insult induces recruitment of bone marrow-derived inflammatory monocytes. Both 

expansion of adipose tissue in obesity and the presence of a developing tumor act as 

inflammatory insults; thus, the marked increase in ATM content in obesity, as well as their 

variable tissues of origin and distinct phenotypic differences from macrophages in lean 

adipose, requires an evaluation of the ATM-TAM relationship in the context of obesity.

Similarities between adipose tissue macrophages and tumor-associated 
macrophages—In a similar vein to ATMs, discrepancies exist between reports of the 

defining “TAM phenotype.” Conventionally, TAMs have been described as resembling 
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alternatively activated M2 macrophages (108, 236, 237). However, large-scale transcriptome 

analyses of TAMs in breast cancer suggest that TAMs collectively exhibit a mixed 

phenotype, expressing both M1-like and M2-like markers (288). Interestingly, this same 

study also showed that the gene signature of breast TAMs resembled that of fetal 

macrophages, with increased abundance of transcripts for genes regulating angiogenesis, 

tissue remodeling, and immune response (288). On the other hand, Franklin et al. recently 

reported that TAMs in the MMTV-PyMT model of metastatic, luminal-B breast cancer did 

not resemble M2-like macrophages, nor were they dependent upon tumor-elicited Th2 

immune response (125). Together these studies indicate that, at least in breast cancer, TAMs 

are highly heterogeneous, and their phenotypes depend on tumor type, subtype, and location 

within the tumor (i.e., margins vs. periphery and extent of hypoxia) (315). Alterations in 

TAM phenotypes may also occur over the course of tumor development and progression, as 

Qian and Pollard have described a shift in TAMs throughout tumorigenesis from an 

“inflammatory” type during tumor initiation to an anti-inflammatory, M2-like trophic type in 

later stages of tumor progression (315). As mentioned previously and discussed further in 

the following section on Myeloid-derived suppressor cells, a similar shift has been described 

in ATMs over the course of prolonged obesity (350).

Shared characteristics between the tumor and obese adipose microenvironments, such as 

fibrosis, elevated ECM stiffness, angiogenesis, and regional hypoxia, may foster similarities 

between ATMs and TAMs. In particular, transient hypoxia activates the NF-κB transcription 

factor family (388). While numerous molecules are involved in generating inflammation, 

NF-κB has long been considered to lie at the center of the inflammatory response. However, 

due to the plurality of NF-κB family members, as well as the sheer number of combinatorial 

interactions within canonical and noncanonical signaling pathways, NF-κB activation can 

have both pro- and anti-inflammatory effects. Inflammatory mediators controlled by 

canonical NF-κB signaling include the TNF superfamily, IL-1β, IL-6, several chemokines, 

COX-2, 5-lipooxygenase, MMPs, VEGF, and cell surface adhesion molecules (3). Some of 

these gene products also activate NF-κB, with TNFα being a particularly potent stimulus 

(3). On the other hand, noncanonical NF-κB activities, such as regulation of IL-10 and TGF-

β, play a role in inflammation resolution (213, 214). As discussed throughout this review, 

many of these signaling mediators also contribute to tumor malignancy through a variety of 

mechanisms, including growth promotion, matrix degradation, and tumor angiogenesis. In 

fact, NF-κB signaling is a known mediator of the tumor promoting activities of both early-

stage, proinflammatory TAMs, and late-stage immunosuppressive TAMs (45, 155, 156, 

293). A study by Mayi et al. (246) provided direct evidence underscoring the similarities 

between ATMs and TAMs. Specifically, ATMs from obese individuals expressed several of 

the same cancer-promoting genes as TAMs, including angiogenic factors, chemokines, 

cytokines, proteases, and growth factors. In fact, many of these protumoral genes, including 

VEGF-C and CXCL12, were expressed to an equal or greater extent in obese ATMs 

compared with TAMs (246), and are known targets of noncanonical NF-κB signaling (232). 

Taken together, these findings indicate that chronically activated NF-κB signaling and 

dysregulated immune responses are likely unifying themes between ATMs and TAMs.
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Myeloid-derived suppressor cells—For reasons that are not well understood, 

abnormalities in myelopoiesis under conditions of prolonged inflammation such as chronic 

infections and cancer generate a poorly differentiated group of myeloid-lineage cells 

collectively termed myeloid-derived suppressor cells (MDSCs) (132). MDSCs include 

immature monocytes, neutrophils, dendritic cells, and macrophages, and are defined by their 

expression of the myeloid lineage markers CD11b and Gr1 and their potently 

immunosuppressive properties (132,133,311). Although they are comprised of multiple 

myeloid cell types, MDSCs are frequently described as immature macrophages. However, 

MDSCs in mice are reported to lack markers of mature macrophages such as major 

histocompatibility complex II (MHCII) and/or F4/80 (311, 447).

Factors implicated in promoting the egress of MDSCs from bone marrow, as well as their 

arrest in an immature state and their immunosuppressive nature, include PGE2, IL-6, TNFα, 

IL-1β, and VEGF (311). Of these factors, PGE2 is a particularly potent inducer of MDSCs 

that triggers upregulation of arginase metabolism, thereby suppressing T cell function 

(285,330,359). Several of these signaling molecules are in turn produced by MDSCs, 

resulting in a positive feedback loop of MDSC recruitment. Notably, as discussed in various 

sections throughout this review, each of these factors is also elevated in obese adipose tissue, 

and increased MDSC content in adipose tissue of obese mice has recently been reported. 

Indeed, Xia et al. (447) demonstrated that increased MDSC content in peripheral tissues 

(e.g., adipose and liver) of obese mice acted as an important safeguard of insulin sensitivity 

in both genetic and diet-induced models of obesity. Depletion of Gr1-expressing cells 

exacerbated symptoms of glucose intolerance and increased the presence of CD8+ T cells in 

adipose tissue. On the other hand, adoptive transfer of MDSCs improved fasting glucose and 

insulin levels in obese mice and reduced levels of circulating proinflammatory cytokines. 

Interestingly, the onset of MDSC accumulation coincided with previously reported windows 

of CD8+ T cell and proinflammatory macrophage recruitment, supporting the putative role 

of MDSCs in suppression of a rampant inflammatory response. Accordingly, the percentage 

of CD11b+ Gr1+ MDSCs in adipose tissue increased with the duration of obesity (447). 

Factors contributing to the accumulation of adipose MDSCs in obesity are poorly 

understood, but may include development of insulin resistance or increased local 

concentrations of estrogen and IGF-1, each of which have been found to influence MDSC 

biology (289). Importantly, influx of MDSCs into adipose in prolonged obesity may provide 

a partial explanation for reports of a shift in overall ATM phenotype over the course of 

obesity from pro-inflammatory M1-like to that of more immunosuppressive M2-like 

macrophages (350). For example, isolated MDSCs cultured with media conditioned by 

explanted obese adipose tissue displayed a greater shift toward an M2-like macrophage 

profile than MDSCs exposed to lean adipose explant-conditioned media (447). Future 

studies should examine the extent to which MDSCs in obese adipose differentiate to M2-like 

macrophages in vivo.

While the presence of MDSCs in obese adipose tissue is a relatively recent finding, a large 

body of literature supports the immunosuppressive functions of MDSCs within the tumor 

microenvironment. However, similarities in marker expression and immunosuppressive 

activation states may complicate a clear distinction between TAMs and MDSCs. Moreover, 
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MDSCs can also differentiate into mature TAMs upon entry into the tumor 

microenvironment (207). Functional similarities between MDSCs and certain TAM subsets 

have also been documented. For example, MDSCS suppress the function of critical 

antitumor defense cells (e.g., CD8+ cytotoxic T cells and NK cells) through expression of 

cytokines such as IL-10 and TGF-β and through arginine metabolism via the enzymes 

arginase-1 or inducible nitric oxide synthase (iNOS) (311). Interestingly, simultaneous 

expression of arginase-1 and iNOS is a hallmark of MDSCs that is rarely observed in other 

immune cells (311).

As described in the T lymphocytes section above, activation of the PD-1 pathway in T cells 

is a critical checkpoint promoting immunosuppression in the tumor microenvironment (395). 

Prima et al. reported that coculture of bone marrow-derived myeloid cells with bladder 

tumor cells elevated production of PGE2 by both MDSCs and TAMs, and induced 

expression of the PD-1 ligand, programmed death-1 ligand (PD-L1), in these populations in 

a PGE2-dependent manner (312). PD-1 and its ligands PD-L1 and PD-L2 were also more 

highly expressed in prostate tumors of obese mice compared to those from lean animals 

(457). Importantly, hypoxia-induced HIF-1 activation in TAMs was also recently shown to 

control TAM-specific PD-L1 expression (279). Whether regional hypoxia in obese adipose 

and resulting HIF-1 activation increases PD-L1 expression in ATM remains to be seen. 

However, the presence of MDSCs in prolonged obesity, as well as their influence on ATM 

activation, further suggests that adipose-adjacent cancers in obese individuals may encounter 

an environment conducive to suppressed immunosurveillance.

Neutrophils

Neutrophils infiltrate adipose tissue early in progression to obesity—
Neutrophils are the most abundant white blood cells in human circulation and are typically 

the first immune cells recruited in response to infection or sterile tissue injury. Upon arrival, 

neutrophils secrete a variety of proinflammatory cytokines and participate in presentation of 

antigen to, and activation of, T cells, while helping to recruit additional inflammatory cells 

such as macrophages (443). In lean animals, neutrophils represent a small fraction of total 

adipose tissue immune cells (<1%) (114). However, Elgazar-Carmon and colleagues (106) 

demonstrated that transient neutrophil infiltration into visceral adipose depots occurs early 

during the course of adipose tissue expansion in diet-induced obesity models, suggesting 

induction of an acute inflammatory response. Indeed, neutrophils accumulated in visceral 

(peri-epididymal) adipose of male mice as early as 3 days after initiating high-fat feeding—

well before weight gain—with a corresponding increase in the neutrophil enzyme 

myeloperoxidase. Maximal myeloperoxidase was detected within 3 to 7 days, followed by a 

slow decline and return to baseline levels within 2 to 3 weeks of high-fat feeding, and 

neutrophils were no longer detectable histologically at 16 weeks on diet. Talukdar et al. 

(384) also reported a rapid and dramatic increase in adipose tissue neutrophil content by 3 

days of high fat feeding. This increase was maintained for up to 90 days by FACS analysis 

of immune cells within the epididymal adipose stromal-vascular fraction of obese male 

mice, with a corresponding increase in neutrophil elastase mRNA. However, the exact 

adipose tissue-derived chemoattractant(s) that mediate neutrophil recruitment so early 

during the course of adipose tissue expansion remain unclear, as adipocyte hypertrophy and 
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death do not typically occur until several weeks into diet-induced obesity studies. In either 

case, once inflammation is established, neutrophils in inflamed adipose engage in 

bidirectional interactions with macrophages, dendritic cells, natural killer cells, 

lymphocytes, and mesenchymal stem cells, with important implications for adipose 

metabolic homeostasis. For example, neutrophil elastase appears to be an important 

mediator in the development of obesity-associated insulin resistance in response to adipose 

inflammation, signaling through Toll-like receptor 4 and downstream NF-kB activation to 

influence both recruitment and inflammatory activation state of infiltrating immune cells in 

obesity, including neutrophils themselves (384).

Tumor-associated neutrophils—Within the tumor microenvironment neutrophils 

exhibit varied content and multiple phenotypes, and have been found to exert both pro- and 

antitumoral effects. Similar to the M1/M2 dichotomy long used for macrophages, tumor 

associated neutrophils (TANs) have been described as either “N1” (anti-tumoral) or “N2” 

(protumoral) (Fig. 20) (129). The N1 neutrophil profile is reported to be promoted by 

increased levels of interferon-β (305) and pro-inflammatory cytokines such as IL-1β and 

TNF-α (290,305), while transforming growth factor β (TGF-β) is an important determinant 

of the N2 phenotype (129). Relative to N2 neutrophils, N1 neutrophils display elevated 

oxygen radical-dependent cytotoxicity and increased expression of the chemokine CCL3 and 

the cell adhesion molecule ICAM (129), which recruit additional inflammatory cells and act 

to increase adherence and extravasation, respectively. These proinflammatory N1 neutrophils 

promote CD8+ cytotoxic T cell recruitment and activation by producing T-cell attracting 

chemokines and proinflammatory cytokines (339). The N2 subpopulation can be 

distinguished morphologically, with less pronounced segmentation of the nuclei than N1 

neutrophils and elevated expression of proangiogenic mediators including chemokines 

(CXCR4, CCL2), growth factors (VEGF), and remodeling factors such as MMP9 (38, 290). 

Neutrophil-derived MMP9 was shown to contribute to the angiogenic switch in early-stage 

pancreatic adenocarcinoma (282). Additionally, tumors formed by highly disseminating 

variants of prostate carcinoma recruited elevated levels of MMP9-positive TAN, which 

correlated with tumor cell dissemination and increased levels of angiogenesis and 

intravasation (38). N2 neutrophils are also immunosuppressive; elevated expression of the 

enzyme arginase-1 by N2 neutrophils contributes to depletion of arginase within the tumor 

microenvironment, inhibiting T-cell receptor expression and antigen-specific T-cell 

responses (331).

Adipose tissue neutrophils and cancer—Potentially due to the minimal presence of 

neutrophils in lean adipose, very few studies have addressed the influence of adipose tissue 

on neutrophils specifically in tumors that are adipose-adjacent or adipose-invading. Wagner 

et al. reported that melanoma cell lines implanted within white adipose tissue of lean mice 

showed significantly greater infiltration of CD11b+ cells than tumors implanted at a site 

distant from adipose (422). Although these cells were initially described as monocytes 

and/or macrophages, CD11b is expressed by multiple myeloid lineage cells, including 

neutrophils (415). Furthermore, inflamed peritumoral adipose exhibited increased expression 

of proinflammatory cytokines and chemotactic factors implicated in both macrophage and 

neutrophil recruitment, including CXCL1, macrophage-inflammatory protein-2 (MIP-2), 
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and CCL2 (422). In obese adipose, neutrophils likely contribute to both tumor initiation and 

tumor progression. In addition to facilitating recruitment of additional inflammatory cells, 

neutrophils participate in establishment of the mutagenic pro-inflammatory 

microenvironment associated with cancer initiation. Indeed, neutrophil-derived reactive 

oxygen species and myeloperoxidase are genotoxic, and are recognized mutagens in certain 

tumor types, such as lung cancer (202). Furthermore, the skewed cytokine profile of 

inflamed obese adipose, such as elevated CCL2, may influence recruitment of neutrophils to 

developing tumors.

Alternatively, tumor-adjacent adipose may impinge upon the phenotype of TANs. Incio et al. 

(179) reported that pancreatic tumors from obese animals contained higher concentrations of 

adipocyte-derived IL-1β than those from lean animals, resulting in increased TAN 

recruitment, TAN-induced activation of pancreatic stellate cells, and enhanced deposition of 

fibrillary collagen (i.e., desmoplasia). Obesity was also associated with greater tumor 

weight, which was reverted to lean levels by TAN depletion. Importantly, tumor formation in 

this study was induced, via orthotopic cell injection or tumor fragment implant, following 10 

weeks on a high fat diet—a period during which, as illustrated above, the presence of 

neutrophils in visceral adipose depots is elevated (106, 384). Reversion of tumor growth rate 

was only observed when TAN depletion was initiated on day 1 following tumor induction, as 

opposed to day 7 (179). Thus, it is unclear whether neutrophils recruited from the visceral 

adipose, as opposed to newly trafficked peripheral blood neutrophils, were the primary 

contributors to induction of the desmoplastic response.

Taken together, the balance of N1/N2 TAN subtypes is an important factor in tumor 

progression, and future studies should consider the functions of adipose tissue neutrophils in 

initiation and/or progression of adipose-adjacent or adipose-invading tumors in obese 

individuals. Notably, although the presence of neutrophils in visceral adipose is clearly 

enhanced in early stage obesity, it is important to acknowledge that the time course studies 

described earlier regarding neutrophil adipose infiltration used exclusively male mice, and 

therefore it is unknown to what extent, or when, neutrophils also infiltrate the obese 

mammary fat pad.

Mast cells

Mast cell content and activation states in adipose tissue—An understudied 

immune cell in both adipose and tumor biology is the mast cell. Historically described as 

mediators of allergic hypersensitivity reactions (77), mast cells are found in virtually all 

tissues and are frequently classified into one of two subtypes: those residing in connective 

tissues, which express both tryptase and chymase, and those residing in mucosal tissues, 

which express only tryptase (181). However, similar to other immune cells, mast cells 

exhibit plasticity based on microenvironmental conditions, and thus several phenotypic 

subtypes may exist (134).

Accumulation of mast cells in visceral white adipose in obesity has been reported in both 

mice (10, 228) and humans (94,228), with documented heterogeneity across specific adipose 

depots. Altintas et al. found that mast cell density in the epididymal fat pad of male mice 

increased up to 230-fold under conditions of prolonged obesity, with mast cells intermingled 
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with macrophages in the interstitial spaces between adipocytes (10). A similar study 

published the same year by the same group also found dramatically increased mast cell 

infiltration in mesenteric and perirenal adipose, but no significant obesity-induced changes 

in mast cell density in inguinal subcutaneous adipose (9). However, Liu et al. reported 

increased numbers of mast cells in abdominal subcutaneous adipose tissue from obese 

human subjects, as well as significantly elevated serum tryptase levels, relative to lean 

individuals (228). Many of these mast cells were found in association with microvessels 

(228), implicating mast cells in the regulation of endothelial cell biology and angiogenesis in 

adipose tissue. Interestingly, increased serum tryptase levels were not found in obese 

children and adolescents, suggesting an adult-specific window of susceptibility to adipose-

mast cell interactions (428).

Degree of mast cell activation is also affected by obesity. Divoux et al. (94) reported that 

mast cells isolated from omental and subcutaneous adipose depots of obese subjects 

exhibited a more activated state than mast cells isolated from lean subjects, secreting 

increased levels of pro-inflammatory cytokines, chemokines, and growth factors. 

Histological sections also revealed that mast cells in obese subjects preferentially localized 

to fibrotic bundles or proximate to endothelial vessels, and showed increased degranulation 

relative to those in lean tissue (Fig. 21A). Collectively, these results suggested that mast cells 

in obesity harbor a pro-inflammatory profile, a phenotype that was recapitulated by culture 

of mast cells in a 3D matrix designed to mimic fibrotic conditions. Furthermore, a positive 

correlation was observed between mast cell density and both fasting glucose and glycated 

hemoglobin, suggesting a role for mast cells in altered glycemic status in obese subjects. 

Finally, Zhou et al. recently showed that mast cells in both white adipose and bone marrow 

of obese mice express elevated levels of leptin, potentially in response to increased regional 

concentrations of IL-6 or TNFα in obesity (465).

Similar to the other immune cell populations described above, mast cells have been ascribed 

both pro- and antitumoral roles. Tumor promotion by mast cells has been attributed to 

secretion of proangiogenic factors such as MMP9 and VEGF, immunosuppression through 

release of histamine, or growth promotion by mitogenic factors including PDGF (390). Mast 

cells also secrete IL-1, TNFα, IL-6, IL-10, and IL-4 (390), each of which plays complex—

and sometimes controversial—roles in solid tumor biology (17,27,113,118,223,286). Thus, 

below we consider the potential relevance of adipose mast cells to cancer progression with 

regard to potential changes induced with increased adiposity and prolonged obesity.

Mast cells in breast cancer—In breast cancer, mast cell tryptase levels are linked to 

angiogenesis and lymphangiogenesis (238, 318), lymph node metastasis (448), and 

myofibroblast differentiation (233). Samoszuk et al. (336) reported elevated serum tryptase 

in the blood of breast cancer patients as compared to healthy controls, as well as mast cell 

infiltration and mast cell tryptase expression adjacent to or within the stroma of every breast 

cancer patient sample examined, including DCIS specimens. Interestingly, in patients with 

invasive breast cancers, tryptase was found more frequently as extracellular deposits, 

suggesting mast cell degranulation, whereas in patients with early stage breast cancer, 

tryptase was located intracellularly, within intact mast cells (336).
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Remarkably, mast cell activation state and influence on the course of tumor development 

appear to also depend upon their localization within the tumor microenvironment (Fig. 21B). 

For example, correlation between mast cell density and lymphatic microvessel density varied 

based on breast cancer subtype and peritumoral versus intratumoral mast cell location (318). 

As discussed in an earlier section of this review, peritumoral lymphatic vessel density is a 

prognostic indicator in several cancer types, including cervical, colorectal, breast, and 

prostate cancers (79, 105, 135, 256, 334). Indeed, peritumoral mast cell density was 

significantly positively correlated with lymphatic density in luminal A and basal-like breast 

carcinomas; on the other hand, intratumoral mast cell density showed a low inverse 

correlation with lymphatic density in both luminal A and HER2+ breast cancer subtypes, yet 

a positive correlation with basal-like carcinomas (318). In addition, Rajput et al. investigated 

over 4,000 clinically annotated tissue microarrays from invasive breast cancer patients with 

long-term follow-up, and reported that intratumoral mast cell infiltration was a strong 

marker of favorable prognosis independent of age, tumor grade, tumor size, lymph node 

status, and ER or HER2 status (319). Future work should address the molecular significance 

of the differential prognostic implications based on mast cell localization observed across 

breast cancer subtypes.

Mast cells in prostate cancer—Mast cell location also appears to influence prognosis in 

prostate cancers. Nonomura et al. reported that increased peritumoral mast cell count was 

associated with reduced recurrence-free survival and higher Gleason scores in prostate 

cancer patients treated with radical prostatectomy, irradiation therapy, or androgen 

deprivation therapy (280). Androgen deprivation therapy, also called castration therapy, is 

the gold standard for treatment of patients with metastatic prostate cancer. However, despite 

high initial response rates, nearly all men eventually develop progressive disease, referred to 

as “castration-resistant” prostate cancer. Johansson et al. (187) found that androgen 

deprivation therapy increased mast cell recruitment to the peritumoral tissue compartment of 

locally relapsing human prostate tumors, but not to the tumor itself. Peritumoral mast cells 

promoted tumor growth and tumor angiogenesis, which were further exacerbated by mast 

cell degranulation. Moreover, patients with higher peritumoral mast cell density had higher 

Gleason scores and significantly shorter cancer-specific survival, while patients with low 

numbers of intratumoral mast cells exhibited the same patterns. Low intratumoral mast cell 

count was also associated with high tumor stage, higher tumor cell proliferation index, and 

metastatic spread (187). Similar results have been reported by others, with poorest outcomes 

in prostate cancer patients lacking intratumoral mast cells (121). These studies raise several 

important questions: how different are peritumoral vs. intratumoral mast cells, and what are 

the factors determining which phenotype develops? Are these factors tumor-intrinsic or 

determined by the surrounding tissue, particularly adipose tissue?

Impact of obesity on peritumoral mast cells—Given consistent reports regarding the 

increased mast cell content and altered mast cell activation state in obese adipose, we were 

surprised to find not a single publication addressing the impact of obesity or adipose tissue 

on the density or phenotype of peritumoral mast cells. In fact, the only study found even 

peripherally linking mast cells in adipose tissue to cancer outcomes addressed the frequency 

of metastatic ovarian cancer colonization within “milky spots,” vascularized accumulations 
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of mononuclear cells in human omental adipose that include mast cells (69). It must also be 

noted that BMI was not included as a variable in any of the aforementioned studies 

addressing mast cell function in breast and prostate tumors.

Increased adipose tissue mast cell density in obesity suggests the potential for elevated 

peritumoral mast cell concentrations in adipose-infiltrating tumors of obese individuals. 

However, although increases in adipose mast cell density have been reported in visceral 

adipose tissue of obese mice (10) and abdominal subcutaneous adipose of obese patients 

(228), whether obesity influences mast cell density in breast subcutaneous or periprostatic 

adipose tissue has not been reported. Ishijima et al. demonstrated that mast cells influence 

preadipocyte-adipocyte transition under both physiological and pathological conditions 

(182), suggesting a possible role for mast cells in adipose expansion. Furthermore, adipose 

tissue hematopoietic progenitor cells contain a population committed to the mast cell 

lineage, allowing white adipose tissue to act as a reservoir for mast cells that traffic to other 

tissues such as skin and, potentially, developing tumors (308). Thus, considering the 

differential associations between peritumoral vs. intratumoral mast cells and cancer 

outcomes, future studies should investigate the positioning and granulation status of 

peritumoral mast cells in relation to adipose tissue in lean and obese patients.

Eosinophils

Eosinophils are granulocytes typically associated with allergy and asthma that play key 

immunoregulatory roles in antigen presentation, suppression of inflammation, and 

maintenance of metabolic homeostasis (5, 83). Under physiologic conditions, circulating 

eosinophils are rare. However, eosinophils comprise ~4% to 5% of cells in the stromal-

vascular fraction of lean adipose (444). Indeed, Wu et al. (444) demonstrated that 

eosinophils are the primary source of IL-4 in adipose tissue, as ~ 90% of IL-4-expressing 

cells recovered from visceral adipose of lean mice were eosinophils. Interestingly, they also 

noted an inverse relationship between adiposity and adipose eosinophil content in both 

genetic and diet-induced models of obesity. Furthermore, mice engineered to be eosinophil-

deficient developed significantly greater adiposity and impaired glucose tolerance in 

response to high-fat diet feeding. These results were attributed to impaired eosinophil-

mediated maintenance of alternatively activated, anti-inflammatory macrophages, which are 

generated upon exposure to IL-4 and/or IL-13 and are generally considered to be protective 

against diet-induced obesity and associated metabolic dysregulation. Subsequent studies 

have revealed that visceral adipose eosinophil populations, and thus alternatively activated 

macrophages, are in turn dependent upon innate lymphoid type 2 cells (ILC2s) through their 

production of IL-13 and IL-5, an eosinophil colony stimulating factor (257). In light of their 

direct or indirect anti-inflammatory effects, it is tempting to speculate that the presence of 

eosinophils and ILC2s in lean adipose, and their relative absence in inflamed obese adipose, 

may be a contributing factor to the differential cancer risk profile in lean versus obese 

individuals.

In light of the role of eosinophils in the maintenance of alternatively activated macrophages 

in normal, uninflamed adipose, it may seem surprising that these cells appear to promote 

proinflammatory macrophage polarization in tumors. Accordingly, an E1/E2 classification 
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scheme analogous to the macrophage M1/M2 and T helper cell Th1/Th2 subsets has been 

proposed (335). Eosinophil peroxidase enhances TNF-α and hydrogen peroxide release by 

human monocyte-derived macrophages, suggesting that paracrine signaling between 

eosinophils and macrophages within the tumor microenvironment may be relevant in 

promoting activity of certain tumoricidal TAM populations (364). In agreement with this 

proposition, injection of exogenous eosinophils in a mouse melanoma model reportedly 

reprogrammed TAMs toward a pro-inflammatory, tumoricidal phenotype, a result attributed 

to increased production of eosinophil-derived IFN-γ (61). However, it should be noted that 

while eosinophils facilitate tumor rejection in numerous cancer models, increased levels of 

circulating eosinophils are associated with poor prognosis in some hematologic 

malignancies, such as non-Hodgkin’s and T cell lymphomas (335). Therefore, future 

research should systematically address relationships between local and circulating 

eosinophil content, site-specific tumor promotion vs. rejection, and eosinophil-mediated 

modulation of macrophage polarization.

Although little research has addressed these functions in the context of obesity, it is clear 

that eosinophils also facilitate anti-tumor immune reactions independent of their effects on 

macrophage polarization. For example, Carretero et al. (61) recently reported that 

eosinophil-mediated production of the chemoattractants CCL5, CXCL9, and CXCL10 

promoted cytotoxic T cell recruitment in developing melanomas. Antibody-mediated 

depletion of eosinophils reduced CD8+ T cell infiltration, impaired tumor rejection, and 

severely reduced animal survival. Moreover, injection of melanoma cells together with 

exogenous eosinophils resulted in tumor vessel normalization, as evidenced by reduced 

permeability, enhanced perfusion, and reduced tumor hypoxia, alterations sometimes 

associated with reduced tumor aggression and more efficient vascular delivery of 

chemotherapies. In addition to their effects on other immune cells within the tumor 

microenvironment, eosinophils may also exhibit direct cytotoxicity. Tepper et al. (389) 

reported that mouse melanoma and plasmacytoma cells engineered to express IL-4 exhibited 

reduced or absent tumorigenicity in transplant studies due to elicitation of an inflammatory 

infiltrate comprised predominantly of macrophages and cytotoxic eosinophils. Accordingly, 

administration of a monoclonal antibody with granulocyte-specific cytotoxicity depleted 

eosinophils and restored tumorigenicity of IL-4-producing cells. However, these results were 

called into question by a subsequent study in which eosinophil-deficient IL-5-knockout mice 

showed similar degrees of IL-4-expressing melanoma rejection wildtype animals, a 

phenotype attributed to a neutrophil-mediated response (278). Ultimately, the conflicting 

results of these two studies indicate that the putative cytotoxic functions of eosinophils in 

anti-tumor immunity warrant further study. Moreover, additional investigation into 

eosinophil content in lean vs. obese adipose and their potential influence on adipose-tumor 

interactions should yield interesting findings.

Conclusion

Although adipocytes comprise the bulk of adipose tissue volume, adipose also contains a 

rich variety of stromal and vascular cells, as well as matrix and signaling components, which 

together constitute the adipose tissue microenvironment. A growing body of literature 

indicates that reciprocal, heterotypic interactions between developing tumors and the local 
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adipose milieu influence the course of solid tumor progression. Herein, we have provided an 

overview of interactions between select adipose tissue components and developing adipose-

adjacent cancers, emphasizing breast and prostate cancers and the known or potential impact 

of changes that occur in the adipose tissue microenvironment during progression to obesity. 

As described throughout this review, obesity-associated adipose modifications often 

resemble aberrations observed within the tumor microenvironment. For example, similar to 

tumors, dysregulated obese adipose tissue is characterized by chronic low-grade 

inflammation, macrophage infiltration, hypoxia, and aberrant wound healing responses, 

including an increase in myofibroblast and activated fibroblast content. Obese adipose tissue 

is also a harbor for soluble mediators of cancer development, including metabolites, 

exosomes, cytokines, growth factors, and extracellular matrix scaffolding proteins, which 

collectively provide a critical link between adiposity and tumorigenesis. Thus, we posit that 

adipose-adjacent epithelium in obese individuals encounters an environment particularly 

conducive to tumor initiation and progression.

Despite a recent increase in research regarding the contributions of adipose tissue in cancer 

development, many questions still remain. For example, the identities of many adipose-

derived microenvironmental signaling mediators that modify tumor biology are largely 

unknown. Furthermore, while immune cells in both adipose tissue and cancer biology have 

been characterized individually, few studies have attempted to quantify recruitment of 

immune cells originating in adipose tissue adjacent to tumors. This potential for recruitment 

becomes especially important in the context of obesity, wherein adipose tissue immune cell 

content is greatly increased, yet the relative immune composition and phenotype shifts 

dramatically. Thus, the extent to which specific adipose-derived cell lineages contribute to 

tumor development and/or progression remains inconclusive. Ultimately, given the rising 

global prevalence of obesity, a better understanding of the molecular interactions between 

adipose tissue components and tumor cells is critical for the identification of novel targets 

for prevention and/or treatment of obesity-associated cancers.
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Didactic Synopsis

Major teaching points

1. Solid tumor growth requires the interaction of tumor cells with the 

surrounding tissue, leading to a view of tumors as communities rather than 

exclusively tumor cells.

2. Adipose tissue, or fat, plays important roles in cancer risk and outcome 

because many tumors grow close to or in direct contact with adipose.

3. The adipose community—or microenvironment—includes adipocytes and 

adipose-associated stromal and vascular components, such as fibroblasts and 

other connective tissue cells, stem cells, endothelial cells, innate and adaptive 

immune cells, and extracellular signaling and matrix components.

4. Herein, we review the cellular and noncellular parts of the adipose “organ” 

and the mechanisms by which varied microenvironmental components 

contribute to tumor development, with emphasis on obesity.

5. Obesity dramatically modifies the adipose tissue microenvironment in 

numerous ways, which intriguingly resemble shifts observed within the tumor 

microenvironment.

6. Understanding neighboring adipose is critical in tumorigenesis.
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Figure 1. Tumors as communities
Tumor cells coexist with a variety of stromal and immune cells, and reside in a complex 

mixture of signaling molecules and extracellular matrix components. Adjacent adipose 

tissue may provide a hospitable environment to developing tumors.

Cozzo et al. Page 72

Compr Physiol. Author manuscript; available in PMC 2018 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The adipose organ is comprised of several distinct adipose depots
Adipose depot locations and subtypes in (A) humans and (B) mice [panel B adapted from 

(85) with permission].
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Figure 3. 
Approximate composition of human white adipose tissue stromal-vascular fraction (percent 

cellularity).
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Figure 4. Rising global and US obesity rates
(A) Global age-adjusted prevalence of obesity in men and women, 1975 and 2014; (B) Class 

III obesity (BMI >40), globally and US; and (C) US obesity prevalence by race, ethnicity 

(270).
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Figure 5. Comparison of mouse and human mammary gland anatomical structure
(A) Murine ductal elongation and branching occur at the Terminal End Buds (TEBs). (B) 

The human mammary gland is extensively branched, culminating in the functional terminal 

ductal lobular unit (TDLU).
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Figure 6. Comparison of mouse and human mammary gland histology
Left: Adult mouse mammary fat pad from nulliparous C57BL/6 mouse (4× and 10×, H&E 

staining). Right: H&E-stained normal human breast tissue. Arrowhead and asterisks in right 

panel refer to loose intra- and dense interlobular stroma, respectively. Human histology 

images courtesy of Melissa Troester and the UNC Normal Breast Study (unpublished).
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Figure 7. Adipose-breast cancer interactions in mice and humans
(A) Early invasive lesions in H&E-stained mammary gland tissue from the C3(1)-TAg 

genetically engineered mouse model of spontaneous basal-like breast cancer (unpublished 

images). (B) Human breast cancer—female, 50 years, lobular carcinoma, grade 1, Elston-

Ellis score 5. Image credit: The Human Protein Atlas (1,407).
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Figure 8. 
Anatomical comparison of mouse (left) and human (right) prostate glands.
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Figure 9. Desmoplasia and cancer-associated adipocytes
(A) Mammary tumors from C3(1)-TAg mice are stained with Hematoxylin/eosin (left) and 

Masson’s trichrome (right) (unpublished). In tumors, chronic activation of the wound-repair 

response results in desmoplasia, or excess collagenous extracellular matrix production, 

within tumors. Asterisks (*) indicate desmoplastic stroma. (B) Cancer-associated adipocytes 

(black arrows) at or near the tumor invasive front become smaller and exhibit decreased 

expression of adipocyte markers, while the number of fibroblast-like cells increases.
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Figure 10. Obesity-associated modifications in the adipose tissue microenvironment
Adipose tissue expansion in obesity occurs in association with extracellular matrix changes 

such as fibrosis. Adipocyte hypertrophy and hypoxia trigger macrophage infiltration and 

crown-like structure formation, which further exacerbates development of fibrosis and 

inflammation.
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Figure 11. HGF/cMET: an oncogenic signaling cascade
HGF secretion by stromal cells such as fibroblasts, adipocytes, and macrophages initiates an 

invasive growth program in epithelial cells.
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Figure 12. Adipocyte subtypes and secreted factors
White adipocytes contain a large, unilocular lipid droplet and are specialized for storage of 

neutral lipids. Brown and/or beige adipocytes have increased mitochondrial content relative 

to white adipocytes and play important roles in thermogenesis. “Pink” adipocytes have been 

described in murine mammary gland, arising exclusively during pregnancy and lactation. 

Collectively, adipocytes secrete a broad range of signaling molecules.
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Figure 13. Adipocytes promote tumor progression and metastasis
Adipocytes may provide metabolic substrates directly to cancer cells, or may indirectly 

influence cancer metabolism through exosome secretion. Adipocytes also secrete a variety 

of factors that promote tumor growth, EMT (epithelial-mesenchymal transition), acquisition 

of stem-like features, invasive behavior, and metastasis.
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Figure 14. Obesity, cancer increase circulating ASCs
Human adipose tissue stroma is a rich source of multipotent ASCs, which enter the 

circulation and traffic to other tissues. This “shedding” process is increased in obese and/or 

tumor-bearing individuals. Tumor chemokine secretion (e.g., CXCL1, CXCL8) is influenced 

by obesity and is implicated in ASC recruitment to developing tumors and differentiation 

into stromal populations such as fibroblasts, pericytes, and adipocytes.
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Figure 15. Hypoxia & the angiogenic switch
An extensive list of proangiogenic factors is involved in both induction of the angiogenic 

switch in developing solid tumors and expansion of adipose tissue during progression to 

obesity. As tumor cells proliferate or adipocytes hypertrophy, hypoxia develops and triggers 

stabilization of the HIF-1 complex, a transcription factor which promotes increased 

production of growth factors such as VEGF-A, FGF1, TGF-β, HGF, and angiopoietins 1 and 

2. Additional proangiogenic factors include the adipokines leptin and adiponectin; cytokines 

such as TNFα, IL-6, and IL-8; and matrix metalloproteases, which degrade the extracellular 

matrix. Ultimately, increased vascularization alleviates regional hypoxia and facilitates 

further tissue expansion.
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Figure 16. Mammary HGF/cMET signaling in the in C3(1)-Tag mouse model of basal-like breast 
cancer
Obesity increased HGF production by stromal cells, promoting tumor growth and 

angiogenesis. HGF/cMET-mediated tumor promotion was reversible by weight loss or 

cMET inhibition.
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Figure 17. Summary of changes in immune cell profile during progression to obesity
In the lean state, adipose tissue contains a variety of immunoregulatory cells such as M2-like 

tissue-resident macrophages, regulatory T cells, and eosinophils. Within days of exposure to 

an obesogenic diet neutrophils infiltrate adipose. Over weeks to months, an increase in 

CD8+ T cells, macrophages, and myeloid-derived suppressor cells (MDSCs) results in a mix 

of pro- and anti-inflammatory cells. In prolonged obesity, adipose mast cell content may also 

increase.
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Figure 18. Macrophage activation as a spectrum
Unstimulated macrophages can be polarized in vitro to generate M1 (right) or M2 

macrophages (left) using single cytokines or cytokine and other stimuli cocktails. However, 

tissue macrophages are exquisitely plastic, often expressing one or more markers of both M1 

and M2 subtypes. Thus, tissue macrophage activation lies along a spectrum, resulting in 

mixed phenotype with specific expression and function varying by tissue type and timing of 

residence.
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Figure 19. Adipose tissue macrophage ontogeny
Lineage tracing studies have revealed multiple embryonic sources for tissue-resident 

macrophages (e.g., Kupffer cells, microglia) including the yolk sac and fetal liver. However, 

the contribution of bone marrow monocyte-derived macrophages to tissue-resident 

populations remains ambiguous. Moreover, the relative contribution of yolk sac, fetal liver, 

and bone marrow-derived macrophages within adipose tissue depots has not been 

established, although the overall proportion of inflammatory, bone-marrow derived 

macrophages increases in obese adipose.
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Figure 20. Tumor-Associated Neutrophils have N1 and N2-like phenotypes
(A) Neutrophil content and phenotype is both pro- and anti-tumoral with cytokines such as 

IFNβ, IL-1β, TNF-α activating the N1 or proinflammatory phenotype and TGF-B driving 

the N2 immunomodulatory phenotype. The N1 neutrophil releases reactive oxygen species 

(ROS) and proteins that increase cell recruitment and extravasation [ICAM and CCL3 

(MIP-1-alpha)]. N1 neutrophils support cytotoxic CD8+ T cell activity. N2 neutrophils have 

a less segmented nucleus than typical and secretes many angiogenic and immunosuppressive 

mediators, expressing arginase 1 for example. ROS secreted by both N1 and N2 may both 

promote genotoxicity in tumor initiation, or in contrast, can be cytotoxic to growing tumors. 

The timing and phenotype of neutrophil influx in obesity and tumor progression warrants 

further study. (B) Neutrophils infiltrate adipose early during progression to obesity. 

Neutrophil production of ROS, for example, through myeloperoxidase (MPO) expression, 

contributes to oxidative stress and fibrotic changes.
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Figure 21. Mast cells: Unappreciated players in adipose and tumor biology
(A) Mast cell content in adipose tissue increases with obesity, with mast cells localized to 

blood vessels and/or within fibrotic bundles. Obesity is also associated with increased mast 

cell degranulation, an indicator of a mast cell activation. (B) In cancer, mast cells contribute 

to tumor progression through release of proangiogenic factors (MMP9, VEGF), 

immunosuppressive mediators (histamine), or growth factors such as PDGF. Mast cells also 

secrete cytokines that may promote (arrow) or inhibit (line) tumor progression. Mast cell 

influence on tumor progression appears to be dependent upon mast cell localization as peri-

versus intratumoral.
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Table 1

Abbreviations Used in Text

Abbreviation Explanation

AMPK AMP-activated protein kinase

Ang-2 Angiopoietin-2

APC Antigen-presenting cell

ASC Adipose stromal cell, Adipose-derived stem cell

ASCO American Society of Clinical Oncology

α-SMA Alpha smooth muscle actin

ATGL Adipocyte triglyceride lipase

ATM Adipose tissue macrophages

BAI Body Adiposity Index

BMI Body mass index

CAA Cancer-associated adipocytes

CAFs Cancer-associated fibroblasts

CCK Cholecystokinin

CLS Crown like structure

COX-2 Cyclooxygenase-2

CPT1 Carnitine palmitoyltransferase 1

DAMPs Damage-associated molecular patterns

DCIS Ductal carcinoma in situ

ECM Extracellular matrix

EMT Epithelial-to-mesenchymal transition

FACS Fluorescence activated cell sorting

FGF-2 Fibroblast growth factor 2

GEMM Genetically engineered mouse model

HGF Hepatocyte growth factor

HIF-1, HIF-1α Hypoxia-inducible factor, 1α subunit

IDC Invasive ductal carcinoma

IGF-1 Insulin-like growth factor-1

IL-6 Interleukin-6

ILCs Innate lymphoid cells

ILC2s Innate lymphoid type 2 cells

LVD Lymphatic vessel density

M1, M2 Macrophage phenotypes

MCP-1/CCL2 Monocyte-chemoattractant protein, also called CC chemokine ligand 2

MMP Matrix metalloprotease

MMTV-PyMT Mouse mammary tumor virus, Polyoma middle T antigen

N1, N2 Subtypes of tumor-associated neutrophils (see TAN)

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

NHANES United States National Health and Nutrition Examination Survey

NK cells Natural killer cells
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Abbreviation Explanation

PAI-1 Plasminogen activator inhibitor-1

PD-1 Programmed Death-1

PDGF Platelet-derived growth factor

PD-L1 Programmed death-1 ligand

PGE2 Prostaglandin E2

PIN Prostatic intraepithelial neoplasia

PPARγ Peroxisome proliferator-activated receptor gamma

TAM Tumor-associated macrophage

TAN Tumor-associated neutrophil

TCR T cell receptor

TDLU Terminal ductal lobular unit

TEB Terminal end bud

TGF-β Transforming growth factor beta

Th1, Th2, Th17 T helper cell subtypes

TNBC Triple negative breast cancer

TNFα Tumor necrosis factor alpha

Tregs Regulatory T cells

VEGF Vascular endothelial growth factor
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