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ABSTRACT
Glioblastoma remains one of the most common central nervous system tumors with an extremely poor
prognosis. Recently, rapid progress in immunotherapy has provided new options for the treatment of
glioblastoma. Vaccination, the primary method of immunotherapy, stimulates the body’s tumor-specific
immune response by the injection of foreign antigens. Peptide vaccines involve the injection of tumor-
specific antigens, such as EGFRvIII or heat-shock proteins. Cell-based vaccines, which primarily include
dendritic cell vaccines and tumor cell vaccines, involve injections of ex vivo-modified cells. Despite the
encouraging results of phase I/II clinical trials, no successful phase III clinical trials involving glioblastoma
immunotherapy, including glioblastoma vaccinations, have been reported to date. In this review, the
authors summarize the published outcomes of glioblastoma vaccine therapy, explore its future prospects
based on ongoing clinical trials, and discuss combined therapy as a future direction for glioblastoma
treatment.
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Glioblastoma multiforme (GBM) is an extremely malignant
grade IV central nervous system (CNS) tumor,1 accounting for
30% of all gliomas with an incidence of approximately 3.19
patients per 100,000 people annually.2,3

Stupp et al. proposed the following standard treatment for
GBM: patients underwent tumor resection, followed by radio-
chemotherapy (during the radiotherapy, the tumors were irra-
diated at a dose of 2 Gy/day, 5 times per week for 6 weeks, and
the total dose was 60 Gy; during the chemotherapy, temozolo-
mide (TMZ) was administered at 75 mg per square meter of
body surface area daily, 7 days per week from the first to the
final day of radiotherapy) and six cycles of adjuvant TMZ (150
to 200 mg per square meter for 5 days during each 28-day
cycle).4 The prognosis of GBM patients remains poor: The
median overall survival (OS) is 14.6»16.7 months with the cur-
rent standard-of-care therapy.5–8 Treatment- and prognosis-
related molecular markers, such as the methylation of
O6-methylguanine-DNA methyltransferase (MGMT), 1p/19q
co-deletion, mutation of IDH, mutation of the TERT promoter,
overexpression of epidermal growth factor receptor (EGFR),
and new therapies such as immunotherapy, are continuously
emerging.5,9

Immunotherapy is defined by the National Cancer Institute
(NCI) as ‘a type of biological therapy that uses substances to
stimulate or suppress the immune system to help the body fight
cancer or other diseases’.10 Immunotherapy is mainly divided
into active immunotherapy and passive immunotherapy.
Active immunotherapy elicits a tumor-specific immune
response through an injection of foreign antigens, primarily via
a vaccine injection (including peptide and cell-based vaccines),
whereas passive immunotherapy, including antibody therapy

and adoptive immunotherapy, achieves anti-tumor responses
through an injection of novel immunemodulating biologics
(e.g., antibodies) instead of directly activating the body’s
immune system.11 Recently, immunotherapy has become a new
antineoplastic regimen in addition to surgery, radiotherapy,
chemotherapy and targeted therapy in cancers such as mela-
noma and non-small cell lung cancer, yet none immunotherapy
approaches have been approved for clinical use to treat GBM.
This review aims to summarize the current clinical and experi-
mental outcomes of vaccination-based active immunotherapy
for GBM and, thus, provide a reference for the clinical manage-
ment of GBM.

Immunology of the central nervous system (CNS)

Previously immune-privileged site

The CNS was traditionally considered an immune-privileged
site due to its lack of a lymphatic system and its separation
from the blood circulatory system by the blood-brain barrier.12

However, several studies have revealed the mechanism underly-
ing the circulation of immune cells and systems in the CNS.
Microglia constitute one type of CNS immune cell, accounting
for 5% to 20% of all glial cells and playing important roles in
innate and acquired immunity (e.g., antigen presentation).13

Interestingly, Fonseca et al. investigated the aggregation of
abundant microglia and macrophages in GBM and hypothe-
sized that microglia promoted tumor progression by interacting
with the tumor.14 Activated T-lymphocytes, which are located
in cervical lymph nodes, can penetrate the blood-brain barrier,
enter the CNS and contribute to the interchange between the
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CNS and lymphatic system.15 The immune system can also
communicate with the brain parenchyma via cerebrospinal
fluid (CSF) and interstitial fluid (ISF) and can transport anti-
gens and immune cells.16

Immunosuppression in GBM

Although the CNS has a unique immune mechanism and
sequestration, immunotherapy for GBM continues to face
immunosuppression. GBM cells create immunosuppressive
microenvironments mainly by secreting certain cytokines and
expressing membrane proteins.17

GBM can inhibit immune system attacks by secreting cyto-
kines. The tumor cell secretes chemokines (e.g., CCL2), which
recruit regulatory T cells (Treg) and inhibit the proliferation
and activity of effector T cells and antigen-presenting cells
(APCs) through anti-inflammatory cytokines, e.g., interleukin
10 (IL-10) and transforming growth factor beta (TGF-b).18,19

In addition, tumor-associated macrophages (TAMs) and mye-
loid-derived suppressor cells (MDSCs) can inhibit the immune
response in the GBM microenvironment.19

GBM can directly or indirectly attenuate the function of
immune cells by expressing membrane proteins. By expressing
the FASL, B7 and PDL1 receptors, GBM cells bind to negative
regulatory factors of immune functions (e.g., FAS, CTLA-4 and
PD-1), thereby inhibiting the activity of T cells or NK cells and
promoting the immune escape of GBM.20–23 The downregula-
tion of classical MHC class I molecules and the overexpression
of certain non-classical MHC class I molecules (e.g., HLA-G
and HLA-E) can inhibit the cytotoxicity of NK cells and cyto-
toxic T cells, which contributes to tumor immune escape.24,25

Additionally, the irregular vascular structure of GBM and
the low perfusion of the tumor could result in a reduction in
immune and treatment responses.26

Origins of vaccine immunotherapy and non-specific
vaccines

The earliest report of a cancer treatment using a vaccine was
reported in 1891 by William B. Coley, who injected streptococcal
organisms into a patient with inoperable cancer and observed the
disappearance of the tumor.27 Bacillus Calmette-Guerin, which
was developed and licensed for the treatment of superficial uro-
thelial carcinoma of the bladder,28 was applied to the treatment
of GBM in 1980,29 and soon after, another clinical study reported
that this therapy could prolong patient survival.30 Subsequently,
physicians treated glioma patients concurrently with ImuVert
(which is derived from the bacterium Serratia marcescens) and
radiotherapy, and those patients tolerated this therapeutic regi-
men well with a certain degree of efficacy.31 At the turn of the
century, infecting human tumor cells with Newcastle Disease
Virus (NDV) (act as an oncolytic virus in addition to immuno-
modulation) resulted in the upregulation of HLA, which induced
the production of interferon and ultimately resulted in apoptosis;
NDV was then applied for treating patients with recurrent
GBM.32,33 These non-specific vaccines achieved an anti-tumor
response by stimulating the immune system, which was similar
to a postoperative infection as previously reported.34 The existing
vaccine studies exploring GBM are listed in Table 1.

Peptide vaccines

Tumor-specific antigens are antigens that are present on tumor
cells and generally absent from normal tissues. These antigens
are often proteins that are encoded by mutant genes in the
tumor, which are relatively conserved among different types of
cancers and patients and can serve as targets for immunother-
apy.35 Peptide vaccines induce immune responses through an
injection of tumor-specific antigens, which leads to the destruc-
tion of tumor cells.36

EGFRvIII-targeted peptide vaccines

EGFR expression plays a key role in tumorigenesis. EGFR,
along with ErbB-2 (HER2), ErbB-3 (HER3) and ErbB-4
(HER4) constitute the ErbB family of receptor tyrosine kin-
ases37 and form dimers when activated.38 The ErbB family is
closely related to many downstream pathways (e.g., the PI3K/
AKT/mTOR and RAS/RAF/MEK pathways), and the mutation
or continuous activation of these pathways results in the devel-
opment of GBM.39 EGFR is overexpressed in 50% to 60% of
patients with GBM,40 but EGFR-targeted drugs, such as nimo-
tuzumab, do not prolong the progression-free survival (PFS) or
OS of patients.41

EGFRvIII (type III epidermal growth factor receptor muta-
tion), which is present in 20% to 30% of patients with GBM, is
formed due to the deletion of exons 2»7 of EGFR, which leads
to an extracellular truncation of EGFR and allows EGFR to be
continuously activated in the absence of ligand.40

The earliest study investigating an EGFRvIII-targeted pep-
tide vaccine was reported in 1997 by Moscatello et al., who
obtained the peptide vaccine PEP-3-KLH (generic name: Rin-
dopepimut, also known as CDX-110) by conjugating PEP-3,
which is a 14-amino-acid peptide that comprises an EGFRvIII-
specific mutant part (amino acid sequence: LEEKKG-
NYVVTDHC), to keyhole limpet hemocyanin (KLH).42 They
induced the corresponding antibody and observed an immune
response in cytotoxic T cells in a mouse model.42 Heimberger
et al. observed that the PEP-3-KLH vaccine significantly pro-
longed the median survival time in an EGFRvIII-expressing
murine brain tumor model.43,44 In 2008, Schmittling et al. first
reported that the PEP-3-KLH vaccine could induce newly diag-
nosed patients with GBM to produce an EGFRvIII-specific
antibody.45 Sampson et al. found a significant inverse correla-
tion between the frequency of Treg and PEP-3-KLH-stimulated
humoral immunity during combined treatment with the anti-
IL-2Ra MAb daclizumab, TMZ and PEP-3-KLH, which
explains the role of the PEP-3-KLH vaccine.46 Saraswathula
et al. observed that the administration of the vaccine plus TMZ
did not stimulate regulatory B cells and further inhibited the
secretion of IL-10 and TGF-b to a certain extent, which disin-
hibited the activation of effector T cells and APCs.47

The first clinical trial investigating the PEP-3-KLH vaccine
was reported in 2009. Twelve patients with newly diagnosed
GBM received three consecutive intradermal vaccinations with
PEP-3-KLH and dendritic cell injections. The toxicity was min-
imal and limited to grade 2 toxicities. Although some patients
showed a small increase in the erythrocyte sedimentation rate
(33% of patients) and rheumatoid factor level (10% of patients)
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after vaccination, no associated clinical symptoms were
observed.48 In a subsequent phase II clinical trial (ACTIVATE),
18 patients with newly diagnosed EGFRvIII-expressing GBM
received a PEP-3-KLH vaccination, and the median PFS and
OS in the treatment group were 14.2 and 26 months, respec-
tively, which were significantly longer than those in the control
groups who were on TMZ (PFS: 6.3 months; OS:
15.0 months).49 In a phase II clinical trial (ACT II) investigat-
ing PEP-3-KLH vaccination in 22 patients with newly diag-
nosed EGFRvIII-expressing GBM, the median PFS and OS
were 15.2 and 23.6 months, respectively, which was also signifi-
cantly longer than historical data (PFS: 6.3 months; OS:
15.0 months).50 Furthermore, the authors observed that when
patients were simultaneously treated with TMZ and vaccines,
the dose intensity of TMZ caused lymphopenia, while the vac-
cine resulted in increased tumor-specific lymphocytosis.50 No
autoimmune reactions were documented in ACTIVATE or
ACT II, and adverse events in the two trials were mostly limited
to grade 2, most of which were related to injection-site reac-
tions (e.g., erythema and pruritus). Some patients in ACT II
had allergic reactions, including grade III skin and gastrointes-
tinal allergic reactions.49,50

In 2015, a multicenter, single-arm phase II clinical trial
(ACT III) investigated the efficacy of PEP-3-KLH plus standard
adjuvant TMZ chemotherapy in 65 patients with newly diag-
nosed EGFRvIII-expressing GBM.51 As the treatment pro-
gressed, the expression of the serum anti-EGFRvIII antibody
increased significantly, but no T cell immune response was
observed due to the cytotoxic effect of TMZ on immune cells.51

The median PFS and OS were 12.3 and 24.6 months, respec-
tively, which was similar to the results observed in ACTIVATE
and ACT II.51 The methylation status of the MGMT promoter,
which was a predominant predictor of GBM prognosis and the
response to TMZ,52 also serves as a prognoses factor in ACT
III.51 A phase II clinical trial (ReACT) investigating PEP-3-
KLH plus bevacizumab in patients with recurrent GBM
reported an improved prognoses at the Society of Neuro-oncol-
ogy Annual Meeting in 201553. However, the article was with-
drawn due to subsequent data analysis.54,55 Adverse events in
ACT III and ReACT were similar to those in ACTIVATE and
ACT II, with mild-to-moderate injection-site reactions occur-
ring in nearly all patients. Grade 3 or 4 events, including back
pain, convulsion, headache, and hypertension, were relatively
rare and limited to single patients.51,53

A multicenter, double-arm phase III clinical trial (ACT IV)
investigating PEP-3-KLH was recently completed. This clinical
trial enrolled 700 patients with newly diagnosed GBM. Patients
in the treatment arm were treated with PEP-3-KLH plus TMZ,
and individuals in the control arm were treated with KLH plus
TMZ, with the patients’ OS as the primary efficacy endpoint.
However, at the Society of Neuro-oncology Annual Meeting in
November 2016, Weller et al. reported a result of experimental
failure. PEP-3-KLH was sufficiently safe in ACT IV, with 80%
of patients showing grade 1 or 2 injection-site reactions (pri-
marily erythema, pruritus, or rash). Fatigue, nausea, headache,
and constipation also occurred in �20% of patients but were
mostly limited to grade II toxicities. The patients showed a
good humoral immune response, but compared to the control
group, patients with minimum residual disease (MRD) and all

intention-to-treat (ITT) patients exhibited only a small differ-
ence in the median OS (PEP-3-KLH vs. control: MRD:
20.1 months vs. 20 months; ITT: 17.4 months vs. 17.4 months).
Only patients with bulky disease exhibited a significant differ-
ence in the 2-year OS between individuals who received a ther-
apeutic regimen of PEP-3-KLH plus TMZ and the controls
(30% vs. 19%, P D 0.029).56 Weller et al. also found that the
prognosis of the control group was significantly beyond expect-
ations, which suggested there was an existing problem with the
use of historical data as a control in the previous single-arm
phase II clinical trials.56 Although PEP-3-KLH exhibited suffi-
cient safety in the clinical trial, its efficacy in the phase III clini-
cal trial was unsatisfactory. The extent of tumor resection and
the threshold for ‘EGFRvIII-positive’ criteria may be critical
factors that impeded the effectiveness of the PEP-3-KLH vac-
cine.57 Nevertheless, the current results of ACT IV failed to
demonstrate the efficacy of the PEP-3-KLH vaccine, and sub-
group analyses of ACT IV are necessary to determine the clini-
cal role of the peptide vaccine.

The failure of ACT IV terminated the development of
EGFRvIII-targeted peptide vaccine. Despite, EGFRvIII still
serves as a tumor-specific antigen for GBM in many other
immunotherapy studies, such as the antibody-drug conjugates
(ADCs) AMG 595 and ABT-414, although does not constitute
vaccination therapy. In addition, a phase I clinical trial of
ADU-623, a live-attenuated Listeria Monocytogenes Strain
expressing the EGFRvIII-NY-ESO-1 vaccine, is underway
(NCT01967758).58 The ongoing clinical trials investigating
therapies with GBM vaccines are listed in Table 2.58

Heat shock protein vaccines

Heat shock proteins (HSPs) are a family of proteins that
respond to temperature changes and are widely distributed in
bacteria, plants and animals. Due to their molecular chaperone
activity, HSPs can inhibit the biomacromolecular denaturation
induced by temperature, oxygen, and ions.59 The molecular
weights of HSPs range from 10 to over 100 kDa and are closely
related to the locations of HSPs in the cell.60 The expression of
HSPs is regulated by many pathways,61,62 and HSPs are overex-
pressed in many cancers and are associated with cancer cell
proliferation, differentiation, invasion and metastasis.62,63 HSPs
can serve as therapeutic targets and prognostic indicators for
several tumors.63–65 HSP27, HSP72, HSP73/HSP70, and HSP90
have been confirmed to be overexpressed in glioblastoma cell
lines and mouse models.66,67

HSP vaccines are composed of HSPs and autologous tumor-
antigenic peptides.68 Neither individual HSPs nor autologous
tumor-antigenic peptides can elicit an immune response, but
HSP-peptide complexes (HSPPCs) can mediate endocytosis by
binding to APC membrane receptors and activating CD4C and
CD8C T cells and certain APC signaling pathways to trigger
immune responses to tumor-antigenic peptides by antigen pre-
sentation.68,69 Compared to antigen-specific peptide vaccines
(e.g., EGFRvIII-targeted vaccines), HSP vaccines can harbor
multiple tumor antigens and respond to the poor outcomes
induced by tumor heterogeneity and immunoediting, but their
specificity for tumor antigens differs from that of antigen-spe-
cific peptide vaccines.68
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HSPPC vaccines mainly use HSPPC-96 (generic name:
Vitespen), which is a composite of a tumor antigenic peptide
and HSP glycoprotein-96, and clinical trials investigating its
efficacy in renal cell carcinoma and melanoma have been per-
formed.70,71 The first clinical trial investigating HSPPC-96 in
autologous tumor-derived peptides was reported in 2013 by
Crane et al., who conducted a phase I clinical trial involving 12
patients with high-grade recurrent glioma.72 The authors
obtained non-necrotic tumor tissues from a sample of surgi-
cally resected tumors from each patient, and the HSPPC-96
protein was mixed with the tumor antigens, purified and devel-
oped into a vaccine.72 No distinct toxicity was found in the
patients after the vaccination, and a significant peripheral
immune response specific to the tumor antigens was observed
in the peripheral blood and tumor in 11 of 12 patients after the
vaccination, which suggests that the HSPPC-96 vaccine was
effective.72

In 2014, the first phase II clinical trial investigating the
HSPPC-96 vaccine in GBM was completed. Investigators per-
formed tumor resections in patients with recurrent GBM and
produced the HSPPC-96 vaccine. The vaccine was adminis-
tered every week for 4 weeks, followed by every 2 weeks thereaf-
ter until tumor recurrence; the median PFS and OS reached
19.1 and 42.6 weeks, respectively.73 Compared to the efficacy of
the bevacizumab/CCNU regimen for recurrent GBM (the
median PFS and OS were 7.2–24.4 and 24.8–33.1 weeks, respec-
tively),74–76 HSPPC-96 displayed a certain degree of efficacy.73

Investigators also studied the relationship between patients’
absolute lymphocyte count and their prognosis and found that
patients with an above-average lymphocyte count had a signifi-
cantly better prognosis.73 The patient’s enrollment status (oper-
ation tolerance and no relapse during the first follow-up
period) may also have affected the improvement in the progno-
sis.73 The toxicity associated with the vaccine was minimal,
mostly grade 1 or 2 injection-site reactions (erythema or indu-
ration). A single-arm, phase II clinical trial investigating
HSPPC-96 (NCT00905060) was completed, but the results
have not been published.58 In this trial, 46 patients with newly
diagnosed GBM were treated with HSPPC-96 plus TMZ, and
the safety profile of this therapy and the patients’ OS were con-
sidered the primary outcome measures. The results of this trial
will provide an important reference for the application of
HSPPC-96 and a phase III clinical trial.

To date, several ongoing phase I and II clinical trials have
investigated HSPPC-96 (see Table 2).58 The purpose of the
phase I clinical trial (NCT02722512) was to determine the
safety profile of the HSPPC-96 vaccine in 20 patients with
newly diagnosed high-grade gliomas or recurrent resectable
high-grade gliomas and ependymomas. The clinical trial
NCT02122822, which was conducted in Beijing Tiantan Hospi-
tal in 2013, investigated the safety and effectiveness of an autol-
ogous gp96 treatment in 20 patients with GBM. Furthermore, a
phase II clinical trial (NCT01814813) investigated the effective-
ness of HSPPC-96 when combined with bevacizumab to treat
patients with recurrent GBM. In this trial, 165 patients were
assigned to the following three groups: HSPPC-96 C concomi-
tant bevacizumab; HSPPC-96 with bevacizumab at progression;
and bevacizumab alone, with the patients’ OS serving as the
primary outcome. The conclusion of this trial may provide

insight into resolving the difficulty of treating recurrent GBM.
Clinical trial NCT03018288 investigated whether HSPPC-96
improves the efficacy of radiotherapy, TMZ and pembrolizu-
mab during combination therapy. In addition to HSPPC-96,
HSP47, which is a glioma-associated antigen, could be a poten-
tial target for vaccine therapy.77 HSP70, however, induced an
immune response in a murine model.78

Peptide vaccines specific to other targets

IDH mutation, the most important molecular marker in glio-
mas, has important effects on multiple pathways, metabolisms
and prognoses of gliomas.79 IDHmutations have been observed
in approximately 80% of low-grade gliomas, of which the most
common was the R132H mutation in IDH1 (accounting for
70% of all IDH mutations).79 In GBM, mutations in IDH1 tend
to indicate that the tumor has evolved from a low-grade glioma,
and a small fraction of primary GBM cases exhibit mutations in
IDH1.80 In 2014, Schumacher et al. designed a 15-amino-acid
polypeptide targeting R132H mutations in IDH1, found that it
was present on MHC II and induced mutation-specific CD4C

responses, and detected its antibody in a mouse model.81 Two
phase I clinical trials investigating the IDH1 peptide vaccine
(NCT02193347 and NCT02454634) are ongoing, and their
aims are to verify the safety of the vaccine and the immune
response in patients with gliomas.58

Due to the specific location and limited treatment, patients
with diffuse intrinsic pontine gliomas (DIPG) exhibit a median
OS82 of less than one year. Since the H3.3 K27M mutation acts
as a molecular marker of DIPG, and H3.3-derived peptides that
encompass this mutation can induce immune responses in
HLA-A2C mice,82,83 the phase I clinical trial NCT02960230
investigating H3.3 K27M is currently being conducted.58

Another phase I clinical trial investigating a long peptide vac-
cine (SurVaxM) targeting Survivin (BIRC5) was recently com-
pleted,84 and the phase II clinical trial NCT02455557 is
underway.58

Cell-based vaccines

Cell-based vaccines have long attracted researchers’ attention.
Autologous or allogeneic cells are re-injected into patients’ bod-
ies after in vitro modifications and trigger specific immune
responses for tumor killing. This method mainly comprises
dendritic cell (DC) vaccines, tumor cell vaccines and other cell-
based vaccines.

DC vaccines

DCs are cells with the strongest antigen presentation in the
human body, which stimulate the conversion from innate
immunity to acquired immunity. DCs are generated from
hematopoietic stem cells, mature during migration to the
lymph nodes, and play important roles in the immune
response, differentiation, and exogenous/endogenous antigen
presentation of lymphocytes.85

The production of DC vaccines includes the isolation of DCs
from the patient’s body, the loading of the tumor antigen, the
maturation of DCs via cytokines, and the re-injection of DCs
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into the patient’s body.86 Sipuleucel-T is the only approved
APC vaccine for the treatment of tumors and has been shown
to prolong the median OS in patients with prostate cancer by
4 months.87 The culture of DCs for a DC vaccine for the treat-
ment of GBM began with CD-14-positive monocytes isolated
from the peripheral blood. The monocytes differentiated into
immature DCs in the presence of granulocyte macrophage col-
ony-stimulating factor (GM-CSF) and IL-4.88 Tumor antigens,
including polypeptides, RNAs, DNAs and tumor lysates, can be
loaded onto immature DCs and presented on MHCs,89 and
they mature in the presence of many cytokines (e.g., GM-CSF,
IL-4, TNF-a and IL-6).88 In addition to tumor antigens, DCs
loaded with Cytomegalovirus phosphoprotein 65 (pp65) RNA
show a significant improvement in lymph node homing after
the vaccine site is pre-conditioned with tetanus/diphtheria,
which is a potent recall antigen.90 The migration process and
the effects of pp65 DCs are currently being investigated in
phase I and II clinical trials (NCT00639639, NCT02465268,
and NCT02366728).58

The use of DC vaccines in GBM was first reported in 2000
by Liau et al., who enabled a patient with recurrent brainstem
glioblastoma to survive for 21 months.91 In 2001 and 2004, Yu
et al. loaded DCs with peptides eluted from the surface of autol-
ogous glioma cells and tumor lysates and separately investi-
gated their safety profiles and immune responses,92,93 and the
median OS for the 8 recurrent GBM patients in the 2004 study
reached 133 weeks.93 In 2007, Okada et al. loaded tumor lysates
into DCs and created a vaccine along with TFG-IL4-Neo-TK-
transfected fibroblasts, which produced a better safety profile
and a certain immune response.94 Currently, the results of
more than 10 phase I/II trials (see Table 1) have indicated the
feasibility of DC vaccines, most of which were tumor lysate-
pulsed DCs as well as DCs pulsed with polypeptides and
nucleic acids.95–111 Grade 1 or 2 toxicities, including fever (and/
or flu-like symptoms), nausea and vomiting, and enlarged
lymph nodes, were the most frequently observed adverse events
in these studies. Lymphopenia and hematological adverse
events were also reported in some studies and were most likely
the result of maintenance TMZ therapy.95–111 The clinical trial
involving the largest number of patients was the HGG-2006
trial, which was published in 2012. Ardon et al. prepared DC
vaccines with tumor lysates and treated 77 patients with newly
diagnosed GBM.104 The authors integrated the vaccination into
the Stupp regimen as follows: the patients first received 60 Gy
of radiotherapy for 6 weeks and daily administration of TMZ,
followed by vaccination once per week for 4 weeks; the patients
received a 5-day administration of TMZ and were vaccinated
once during the subsequent six cycles of a 28-day course.104

The median PFS and OS were 10.4 and 18.3 months in all
patients, respectively, and patients with a lower EORTC RPA
classification had significantly better outcomes than patients
with a higher EORTC RPA classification; furthermore, patients
with a methylated MGMT promoter had better outcomes.104

The adverse events of HGG-2006 were more severe than in
other DC vaccines studies, with 38 series adverse events (grade
3/4/5) found in 30 patients (39%), including 19 hematological
adverse events in 18 patients.104 In 2013, by comparing the
research results by Prins et al. with the therapeutic effects of
autologous tumor lysate (ATL)-pulsed DC vaccination and

glioma-associated antigen (GAA) peptide-pulsed DC vaccina-
tion, the authors found that both vaccines caused similar
adverse events and activated similar numbers of lymphocytes,
but significantly higher frequencies of NK cells were activated
by the GAA vaccine than those activated by the ATL vaccine.110

However, patients treated with the ATL-pulsed DC vaccine had
significantly better outcomes than those treated with the GAA
peptide-pulsed DC vaccine (PFS D 18.1 vs. 9.6 months; OS D
34.4 vs. 14.5 months).110

Dozens of clinical trials investigating DC vaccines are ongoing
(see Table 2), most of which are phase I or II trials investigating
various DC loads.58 The most noteworthy study is the DCVax
clinical trial (a DC vaccine project by Northwest Biotherapeutics),
which began in 2006112 and has entered a phase III clinical trial
NCT00045968.58 In this trial, 348 patients with newly diagnosed
GBM underwent surgical resection with concurrent radiotherapy
and chemotherapy, and tumor lysate proteins were used to pre-
pare DCVax(R)-L. The treatment cohort was vaccinated on days
0, 10, and 20 and on weeks 8, 16, 32, 48, 72, and 120, and PFS
was measured as the primary outcome. Expanded access to
DCVax is underway (NCT02146066), which will play a critical
role in the application of the DC vaccine for the treatment of
GBM.58

Tumor cell vaccines

In addition to the re-injection of tumor antigen-loaded
immune cells into patients’ bodies, investigators have directly
injected tumor lysates or fixed tumor cells (as antigens) into
patients’ bodies.113,114 Ishikawa et al. reported re-injecting for-
malin-fixed GBM cells into patients’ bodies to treat GBM after
the standard Stupp regimen.113,114 In one study, 24 patients
were treated with nGBM and exhibited a median OS of
22.2 months.114 The authors concluded that the patients with
unchanged p53, higher MHC-I expression or a delayed-type
hypersensitivity (DTH) response had better outcomes.113,114

Clinical trial NCT01400672 is currently investigating the treat-
ment effect of imiquimod/tumor lysate vaccine in brain stem
glioma.58

Other cell-based vaccines

Other immune cells or stem cells are also promising for the
treatment of GBM. Bryukhovetskiy et al. reported that cancer
stem cells (CSCs) were very difficult to destroy and could
recruit other types of stem cells, and they proteomically identi-
fied an interaction between CSCs and hematopoietic stem cells
(HSCs).115,116 An animal model has confirmed this hypothe-
sis,117 and a clinical trial (NCT01759810) investigating concur-
rent HSCs, DC vaccines and cytotoxic lymphocytes in the
treatment of GBM has been conducted.58 In addition to cell-
based vaccines, other cell-based immunotherapies, such as
adoptive cellular therapy (ACT), have shown potential feasibil-
ity for clinical application.118

Others

In addition to peptide and cell-based vaccines, immune adju-
vants are sometimes used in immunotherapy to enhance
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efficacy. Problems such as immunoediting must be overcome to
allow immunotherapy to have a continuous effect.

Immune adjuvants

An immune adjuvant is a substance that does not initially trig-
ger an immune response but enhances the acquired immune
response or changes the type of immune response. If injected
with a vaccine, the body’s immune response can be enhanced,
and the seroconversion rate increases in populations with
reduced responsiveness, which simultaneously allows for the
use of smaller antigen doses and fewer immunizations.119

Immune adjuvants also alter the type of immune response and
increase the generation of memory lymphocytes, the speed of
the initial response, and the specificity of the response.119 Com-
mon immune adjuvants include the double-stranded RNA
derivative Poly-ICLC, oligonucleotide chain CpG, and imiqui-
mod for Toll-like receptors (TLRs) 3, 9 and 7/8.120 In the treat-
ment of GBM, oligonucleotide CpG has been confirmed to
enhance the immune response in an animal model.121 More-
over, poly-ICLC plus radiochemotherapy increased the median
OS in patients with newly diagnosed GBM to 17.2 months,122

and this treatment has been used in several clinical trials
(NCT02754362, NCT02078648, NCT01920191, and
NCT02510950). Imiquimod has been used in several clinical
trials investigating DC and tumor cell vaccines (NCT01171469,
NCT01204684, NCT01808820, and NCT01400672).58

Immunoediting

Immunoediting refers to the remodeling of tumor cells to pro-
mote their motions, invasions and metastases while eliminating
by the immune system.123,124 The relationship between tumors
and the immune system is believed to consist of the following
three phases: during the ‘elimination phase’, the tumor cells are
killed by the immune system; during the ‘equilibrium phase’,
there is a state of equilibrium between the tumor cells and the
immune system; and during the ‘escape phase’, the tumor cells
evade the surveillance of the immune system and eventually
form tumors.123,124 Immunoediting is one of the greatest obsta-
cle in tumor immunotherapy. In phase II clinical trials investi-
gating the EGFRvIII-specific peptide vaccine PEP-3-KLH
(ACTIVATE, ACT II and ACT III), 82%, 91.6% and 66.7% of
patients lost the EGFRvIII mutation at recurrence, respectively,
which suggests that these patients were no longer sensitive to
the PEP-3-KLH vaccine.49–51 Multitarget immunotherapy or
multidrug therapy may be a solution to the immunoediting
problem: clinical trial NCT02078648 investigated the feasibility
of SL-701, poly-ICLC plus bevacizumab for the treatment of
GBM; DCs loaded with six tumor-associated antigens (TAAs),
including HER2, TRP-2, gp100, MAGE-1, IL13Ra2 and AIM-
2, in the ICT-107 vaccine, which produced good phase I results
(median PFS in newly diagnosed GBM was 16.9 months, and
median OS in newly diagnosed GBM was 38.4 months) and is
currently being investigated in a phase III clinical trial
(NCT02546102).58,106 Although clinical trials investigating the
IMA950 multi-peptide vaccine plus poly-ICLC or GM-CSF in
GBM are ongoing (NCT01920191 and NCT01222221),58 a
clinical trial in the UK investigating IMA950 did not find a

difference in prognosis between multi-tumor-associated pep-
tide responders and single-tumor-associated peptide respond-
ers.125 The clinical trial NCT02510950 involved designing
polypeptide vaccines for all individual patients to increase the
intensity and specificity of the immune response, but this trial
is still in the stage of dose exploration and safety experiments.58

In addition to mixed polypeptides, researchers have proposed
that tumor patients could be treated with vaccine therapy in
combination with vaccine adjuvants and immune checkpoint-
specific antibodies (e.g. ipilimumab for anti-CTLA-4 antibod-
ies, pembrolizumab and nivolumab for anti-PD-1 antibodies,
atezolizumab and avelumab for anti-PD-L1 antibodies),126,127

and several clinical trials investigating combined therapies are
currently ongoing (NCT01176474, NCT02515227, and
NCT02897765).58 However, no such clinical trials for the treat-
ment of GBM have been conducted to date.

Summary and prospects

GBM, which was once considered an immune-privileged site
and harbored an immunosuppressive microenvironment,
remains a cancer with an extremely poor prognosis and quality
of life in patients. Immunotherapy is increasing in applicability
as a therapeutic regimen for the treatment of GBM in addition
to surgery, radiotherapy, chemotherapy and targeted therapy.
The failure of the phase III clinical trial investigating EGFRvIII
(ACT IV) set back the prospects for immunotherapy, although
several phase I/II clinical trials investigating active immuno-
therapy (dominated by vaccinations) have shown some promis-
ing results. The study and popularization of immunotherapy,
especially cell-based vaccines, requires robust infrastructure,
including hospitals with sufficient experience in the manage-
ment of glioma and research centers with adequate investiga-
tions in immunotherapy. In addition, expenses may be a
barrier to the study and adoption of immunotherapy (especially
cell-based vaccines) due to the vaccines being produced
individually.

In addition to the resistance of vaccine therapy in GBM that
is caused by the tumor heterogeneity and immunoediting, vac-
cine therapy continues to face many challenges. Patients
require the surgical removal or biopsy of the lesion to identify
their molecular pathology, prepare the vaccine, and increase
the tumor response to the vaccination. Therefore, it is difficult
to administer therapeutic vaccines to patients without indica-
tion based on surgery or biopsy. Molecular imaging can help
identify molecular markers of the tumor to a certain extent
(e.g., PET imaging of D-2HG levels to determine whether IDH
mutations are present in the patient) and may help patients
with surgical limitations in terms of vaccine therapy.

Chemotherapy was once thought to inhibit immune system
function. However, researchers studying other tumors recently
found that although TMZ chemotherapy significantly reduced
the number of T lymphocytes, the ratio of CD8C T cells to total
T cells increased.128 TMZ chemotherapy also generated chemo-
kines (e.g., CXCL9 and CXCL10), which resulted in significant
T-cell accumulation in metastatic melanoma, but not in other
cancers, such as skin tumors.129 The complex relationship
between chemotherapy and the immune system may also affect
the efficacy of immunotherapy.
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Despite the great success achieved in other cancers, immu-
notherapy for the treatment of glioblastoma continues to face
difficulties. The phase III clinical trial CheckMate 143
(NCT02017717) failed to demonstrate improved OS with nivo-
lumab (anti-PD-1 monoclonal antibody) compared to bevaci-
zumab in patients with recurrent GBM, highlighting the
obstacle of passive immunotherapy in glioblastoma.130

Although non-phase III clinical trials investigating immuno-
therapy for GBM have succeeded, studies investigating immu-
notherapy will continue to be conducted (ongoing clinical trials
investigating vaccination in GBM are summarized in Table 2).
Two ongoing phase III clinical trials investigating GBM vac-
cines, i.e., the DCVax (NCT00045968 and NCT02146066) and
ICT-107 vaccines (NCT02546102), as well as the ADC drug
ABT-414 (NCT02343406 and NCT02573324) and the phase III
clinical trial CheckMate 498 (NCT02617589, investigating
nivolumab in combination with radiotherapy § TMZ in
patients with newly diagnosed GBM),58 represent a silver lining
for GBM immunotherapy. Combinations of different therapies,
including combinations of different vaccination strategies,
combinations of vaccinations with immune checkpoint block-
ade, and combinations of surgical resection, chemotherapy,
radiotherapy, targeted therapy, and immunotherapy, are possi-
ble future directions for GBM treatment.
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