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Abstract
Diffusion MRI fiber tractography has been increasingly used to map the structural connectivity of

the human brain. However, this technique is not without limitations; for example, there is a grow-

ing concern over anatomically correlated bias in tractography findings. In this study, we

demonstrate that there is a bias for fiber tracking algorithms to terminate preferentially on gyral

crowns, rather than the banks of sulci. We investigate this issue by comparing diffusion MRI

(dMRI) tractography with equivalent measures made on myelin-stained histological sections. We

begin by investigating the orientation and trajectories of axons near the white matter/gray matter

boundary, and the density of axons entering the cortex at different locations along gyral blades.

These results are compared with dMRI orientations and tract densities at the same locations,

where we find a significant gyral bias in many gyral blades across the brain. This effect is shown

for a range of tracking algorithms, both deterministic and probabilistic, and multiple diffusion mod-

els, including the diffusion tensor and a high angular resolution diffusion imaging technique.

Additionally, the gyral bias occurs for a range of diffusion weightings, and even for very high-

resolution datasets. The bias could significantly affect connectivity results using the current gener-

ation of tracking algorithms.
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1 | INTRODUCTION

It has long been recognized that a detailed map of the structural connec-

tions in the brain would be of great value for understanding cognition,

brain function, normal development, and aging, as well as neurological

disease and disorders (Schmahmann & Pandya, 2007, 2009; Sporns,

2013). Thus, creating a comprehensive description of the neuronal con-

nections in the brain (i.e., the human connectome (Sporns, Tononi, &

Kotter, 2005)) has been amajor scientific goal for decades (Schmahmann

& Pandya, 2007). Early investigators relied on techniques performed on

postmortem tissue that limit analysis to small brain areas, or one system

of pathways at a time (see Schmahmann & Pandya, 2007, 2009 for his-

torical reviews). The advent of diffusion MRI (dMRI) (Le Bihan et al.,

1986) and dMRI fiber tracking (Mori, Crain, Chacko, & van Zijl, 1999)

opened up the possibility of studying white matter anatomy on living

subjects, and across the entire brain, in a matter of minutes.

The ability to noninvasively study the human brain has made dMRI

one of the main tools used in connectomics research for inferring

anatomical pathways connecting brain regions. Significant progress has

been made in modeling the network architecture of the brain

(Hagmann et al., 2007, 2008; Honey et al., 2009), parcellating the cor-

tex into functionally and anatomically distinct subregions (Behrens &

Johansen-Berg, 2005; Mars et al., 2011), and making detailed measure-

ments of white matter microstructure (Dyrby, Sogaard, Hall, Ptito, &

Alexander, 2013; Gong et al., 2005; Miller et al., 2011). However,

despite its widespread use in inferring the “connectedness” between

brain regions, dMRI fiber tracking is not without its limitations (Jones,

Knosche, & Turner, 2013).

For an accurate connectivity map of the brain, estimated dMRI

fiber trajectories (streamlines) must be able not only to follow major

fiber bundles through the deep white matter, but must also correctly

follow fibers as they cross the white matter/gray matter (WMGM)

boundary. This is particularly problematic in areas of the cerebral cortex

that exhibit complex folding and convolutions. Recently, it has been

shown that tractography streamlines have a tendency to terminate pri-

marily on gyral crowns, rather than the walls of sulci, or the sulcal fundi
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(Chen et al., 2013; Kleinnijenhuis et al., 2015; Nie et al., 2012; Reveley

et al., 2015). These results could have significant implications regarding

cortical development and morphogenesis (Chen et al., 2013; Nie et al.,

2012). However, it has been suggested that, rather than an anatomical

reality, this likely reflects a bias in fiber tracking algorithms (Van Essen

et al., 2014). Clearly, a tendency for streamlines to track toward certain

regions of the brain could significantly bias quantitative connectivity

studies using dMRI, including network connectome profiles and brain

parcellation results.

The observation that tractography streamlines are denser in gyri

than in sulci could have several explanations. For one, it could have

genuine anatomical underpinnings. Due to their convexity (Peters &

Jones, 1984; Van Essen & Maunsell, 1980), the cortical volume (per

unit surface area of the WMGM boundary) at gyral crowns would be

greater than at the relatively flat sulcal walls or concave fundi (Van

Essen et al., 2014). If the axonal density associated with a unit volume

of the cortex were to be relatively homogenous, as is often assumed

(Donahue et al., 2016; Rockel, Hiorns, & Powell, 1980; Van Essen et al.,

2014), this would imply that the number of axons crossing the WMGM

boundary at the gyral crowns would have to be higher than those along

the banks or fundus of sulci (Van Essen et al., 2014).

On the other hand, the “gyral bias” could be an artifact of tracking

algorithms, due either to technical limitations or inherent simplifying

assumptions. Analysis of myelin-stained sections has shown that many

fibers follow a sharply curved trajectory as they enter the cortex, par-

ticularly those near the sulcal walls (Budde & Annese, 2013; Sotiropou-

los et al., 2013a; Van Essen et al., 2014). Because of the large voxel

size of dMRI acquisitions (typically 2–3 mm), these areas are prone to

partial volume effects. This could bias orientation estimates along the

WMGM border to point in the direction of the adjacent white matter

(which is often tangential to the boundary (McNab et al., 2013; Van

Essen et al., 2014)), rather than correctly pointing toward the sulcal

cortical surface (Van Essen et al., 2014). Because these orientation esti-

mates form the input of most tracking algorithms, any fiber tracking

would subsequently exhibit a bias.

Even if fiber orientations were estimated perfectly, tracking algo-

rithms might still not be able to propagate correctly into the cortex.

Tracking usually involves choosing a curvature threshold, a maximum

angle that the trajectory is able to turn through over a certain distance

(Jones et al., 2013). This parameter is often justified on the basis that

fibers in the brain typically do not exhibit sharp bends; however, this

will clearly preclude accurately tracking fibers that truly exhibit curva-

tures greater than this threshold. Similarly, in voxels where multiple

“crossing” fibers are detected, many algorithms will propagate in the

direction with the least angular deviation from the previous tracking

step. Again, along the cortex, this could lead to streamlines continuing

to follow the direction of the white matter bundles, rather than exiting

the white matter to enter the cortex (Van Essen et al., 2014), even if

these fibers were correctly detected.

In addition to limitations of the dMRI acquisition and tracking algo-

rithm, bias can be introduced in part by the strategy used to begin

streamline propagation. Some of the most common seeding strategies

include propagating streamlines from every voxel in the brain (“whole

brain” seeding), or seeding from every voxel in the white matter (“white

matter” seeding). Because longer white matter pathways occupy a

greater volume from which to seed, these pathways tend to be over-

represented in streamline reconstruction (Smith, Tournier, Calamante,

& Connelly, 2013; Yeh, Smith, Liang, Calamante, & Connelly, 2016). If

these pathways were to terminate more frequently in specific regions

(i.e., gyral crowns), this could, again, lead to a larger number of stream-

lines entering this area. To compensate for this, it is common in many

brain network studies to heuristically scale the contribution of each

streamline to the overall connection density by the reciprocal of the

streamline length (Hagmann et al., 2008, 2010). Several groups have

attempted to bypass this potential source of bias by seeding only from

the WMGM boundary (Girard, Whittingstall, Deriche, & Descoteaux,

2014; Smith, Tournier, Calamante, & Connelly, 2012). However, it is

unclear what effect the seeding strategy, and subsequent quantifica-

tion, have on potential gyral biases in diffusion tractography.

Taken together, it is clear that dMRI tractography has limitations

that could produce significant bias in certain anatomical regions, and

prevent creation of accurate connectivity maps of the brain. Hence,

there is a need to better understand to what extent, and under which

circumstances, these biases occur.

In this study, using histology as a validation tool, we compared

dMRI fiber tractography to myelin histology performed on a Rhesus

macaque brain to investigate gyral bias. We first asked how the true

(histologically defined) density of fibers entering the cortex varies along

the gyral blade, and if this “fiber density profile” varies between differ-

ent gyri. Next, we asked whether fiber tracking using the very com-

monly used diffusion tensor imaging (DTI) model is biased toward the

gyral crowns, relative to histological measurements, and if this bias is

dependent on seeding or fiber quantification strategies. We then inves-

tigated the axonal trajectories near the WMGM boundary along gyral

blades by assessing fiber curvature, the effects of the tractography cur-

vature threshold, and the agreement with dMRI estimated fiber orien-

tations. We then assess whether the b-value, or diffusion-weighting,

affects the results in any way. In addition, intuition suggests that

increasing the spatial resolution of dMRI images would lead to more

accurate fiber tracking (Heidemann, Anwander, Feiweier, Knosche, &

Turner, 2012; Van Essen et al., 2014) and a reduced gyral bias. Hence,

we analyze different tractography methods using data-sets acquired at

varying spatial resolutions to test this hypothesis. Finally, we then

move away from the commonly used diffusion tensor and assess trac-

tography based on a higher order algorithm (constrained spherical

deconvolution (Tournier, Calamante, & Connelly, 2007)) for estimating

fiber orientation, and use this to construct 3D fiber pathways.

2 | METHODS

2.1 | MRI acquisition

All animal procedures were approved by the Vanderbilt University Ani-

mal Care and Use Committee. MRI experiments were performed on a

single hemisphere of an adult Rhesus macaque (Macaca Mulatta) brain

that had been perfused with physiological saline followed by 4%
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paraformaldehyde. The brain was then immersed for 3 weeks in

phosphate-buffered saline (PBS) medium with 1 mM Gd-DTPA in order

to reduce longitudinal relaxation time (D’Arceuil, Westmoreland, & de

Crespigny, 2007). The brain was placed in liquid Fomblin (California

Vacuum Technology, CA) and scanned on a Varian 9.4 T, 21 cm bore

magnet. A structural image was acquired using a 3D gradient echo

sequence (TR550 ms; TE53 ms; flip angle5458) at 200 lm isotropic

resolution.

Diffusion data were then acquired with a 3D spin-echo diffusion-

weighted EPI sequence (TR5340 ms; TE540 ms; NSHOTS54;

NEX51; Partial Fourier k-space coverage5 .75) at 400 lm isotropic

resolution. Diffusion gradient pulse duration and separation were 8 ms

and 22 ms, respectively, and the b-value was set to 6,000 s/mm2. This

value was chosen due to the decreased diffusivity of ex vivo tissue,

which is approximately a third of that in vivo (Dyrby et al., 2011), and is

expected to closely replicate the signal attenuation profile for in vivo

tissue with a b-value of �2,000 s/mm2. A gradient table of 101 uni-

formly distributed directions (Caruyer, Lenglet, Sapiro, & Deriche,

2013) was used to acquired 101 diffusion-weighted volumes with four

additional image volumes collected at b50. Unless otherwise noted,

all fiber tractography was performed on this dataset.

To assess the effects of the diffusion weighting on any potential

gyral bias, the full diffusion acquisition was repeated with b-values of

3,000, 9,000, and 12,000 s/mm2, while keeping all other acquisition

parameters (including diffusion times) constant. Higher b-values have

been shown to be beneficial for several advanced diffusion (and fiber)

reconstruction algorithms (Alexander & Barker, 2005; Dyrby et al.,

2011; Tournier, Calamante, & Connelly, 2013). Finally, to assess the

effects of image resolution, the full acquisition was repeated with reso-

lution ranging from 300 lm isotropic to 800 lm isotropic, in 100 lm

increments. Here, all b-values were set to 6,000 s/mm2. Again, all

acquisition parameters were kept constant (including diffusion times),

except for field-of-view and number of phase-encoding and readout

points required to achieve the intended resolution.

The signal-to-noise ratio in the white matter of the non-diffusion

weighted images ranged from �36 in the 300 lm isotropic images to

�310 in the 800 lm isotropic images, values much higher than those

typical of diffusion MRI on clinical scanners (�16–20). Comparing the

macaque and human brain based on volume only (�80 and 1200 mL

(Allen, Damasio, & Grabowski, 2002), respectively), our 300 lm iso-

tropic voxels would be roughly equivalent to �740 lm isotropic in the

human, while our 800 lm isotropic scans would resemble human vox-

els at �2 mm isotropic.

2.2 | Histology

After imaging, the brain was embedded in dry ice and sectioned on a

microtome at a thickness of 25 lm in the coronal plane. Using a Canon

EOS20D (Lake Success, NY, USA) digital camera, the tissue block was

digitally photographed prior to cutting every twelfth section, resulting

in a through-plane photographic resolution of 300 um. Thirty five sli-

ces, with an effective slice gap of 1.8 mm, were selected for this study.

The tissue sections were then stained for myelin using the silver

staining method of Gallyas (Gallyas, 1971) and mounted on glass slides.

Whole-slide bright-field microscopy was performed using a Leica

SCN400 Slide Scanner at 203 magnification, resulting in an in-plane

resolution of 0.5 lm/pixel.

2.3 | Registration

To transfer the MRI information into high-resolution histological space

(or vice-versa), a multistep registration procedure was used (Choe et al.,

2011). Briefly, each 2D histological slice was registered to the corre-

sponding block-face image using a mutual information based 2D linear

registration followed by 2D nonlinear registration using the adaptive

bases algorithm (ABA)(Rohde, Aldroubi, & Dawant, 2003). Next, all

block-face photographs were assembled into a 3D block volume, which

was registered to the mean MRI b50 image using a 3D affine transfor-

mation followed by 3D nonlinear registration with ABA. The block to

MRI registration was performed for all MRI acquisitions separately.

Concatenation of these two deformation fields allows any scalar MRI

information (i.e., labels for the crown and walls) to be transformed into

histological space. For orientation information derived from MRI, the

data were transformed and reoriented appropriately using the preser-

vation of principal directions (PPD) strategy (Alexander & Barker,

2005).

2.4 | Data processing

From the histological and MRI datasets, six pieces of information were

obtained (Figure 1).

2.4.1 | Definition of gyral blades

Gyral blades were defined on the histological sections. Manual labeling

of 24 gyral blades across all slices (Figure 1a) was performed by a neu-

roanatomist (IS), with the help of existing macaque atlases (Bakker,

Tiesinga, & Kotter, 2015; Paxinos, Huang, & Toga, 2000). Each gyral

region of interest was represented on a minimum of 4 slices, and all

described procedures were performed for all regions on all slices.

Gyral blades and abbreviations are as follows: superior frontal

gyrus (SFG); medial frontal gyrus (MFG); inferior frontal gyrus (IFG);

frontal orbital gyrus (FOG); lateral orbital gyrus (LorG); medial orbital

gyrus (MorG); gyrus rectus (Gre); anterior cingulate gyrus (ACgG); pre-

central gyrus (PrG); superior temporal gyrus (STG); insula (INS); middle

temporal gyrus (MTG); inferior temporal gyrus (ITG); postcentral gyrus

(PoG); posterior cingulate gyrus (PCgG); supramarginal gyrus (SMG);

fusiform gyrus (FuG); posterior parahippocampal gyrus (PPhG); superior

parietal lobule (SPL); angular gyrus (AnG); inferior occipital gyrus (IOG);

lingual gyrus (LiG); cuneus (CUN); occipital gyrus (OG). Note that one

gyrus, PPhG, was removed from analysis as it was determined to be

defined only on gyral crowns (see Section 2.4.2), and had no data from

sulcal walls for comparison.

The gyral labels were transferred to MRI space (Figure 1b, bottom)

using the transformations described above (see Section 2.3). Trans-

ferred labels were visually inspected, and manually corrected as

necessary.
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2.4.2 | Defining gyral crowns and sulcal walls

Labels for gyral crowns and sulcal walls were defined from the struc-

tural MRI data. Taking advantage of the 3D architecture provided from

MRI, many groups have developed methods to reconstruct gyral and

sulcal parcellations using mesh-based, or surface-based, analysis

derived from either mean curvature or convexity measures (Dale,

Fischl, & Sereno, 1999; Desikan et al., 2006; Destrieux, Fischl, Dale, &

Halgren, 2010; Fischl, Sereno, & Dale, 1999; Fischl et al., 2004; Li, Guo,

FIGURE 1 Data processing pipeline. From the histological (left column) and MRI (right column) datasets, six pieces of information are extracted.
Twenty-four gyral blades are manually defined on histological slices (a), while labels for the crown, walls, and fundi are defined based on convexity
measures from 3DMRI data (b). The 3DWMGM surface colored with the crown/wall/fundus labels are shown on top, while the gyral labels trans-
ferred to MRI space are shown below (note color scheme is same from part 1). Structure tensor analysis (c, left) is used to extract the myelinated, or
ground truth, axon orientations (c, right), for comparisons with dMRI estimated fiber orientations (d) after transformation to histological space. A
count of axons entering the cortex is made along the entire gyral blade, in gyral crowns and sulcal walls (left) for the myelinated tract density mea-
surement (right) (e), for comparisons with the dMRI tractography connectivity and fiber density measures (f). Shown on top are a select slice from
the b0 image, the WMGM boundary, and gyral labels segmented into crowns, walls, and fundi. On bottom are shown results from various tractogra-
phy algorithms (from left to right: DTI, M1; DTI, M2; CSD, M1) [Color figure can be viewed at wileyonlinelibrary.com]
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Nie, & Liu, 2009; Li et al., 2010). Traditionally, the crown of the gyrus is

defined by its convexity (negative curvature) (Fischl et al., 2004; Peters

& Jones, 1984). The sulcal walls, or banks of the sulci, are the areas of

cortex along opposing sides of adjacent gyri (Peters & Jones, 1984) and

are characterized by a low curvature (Fischl et al., 2004). Finally, the

fundus describes the deepest part of the sulcus (Peters & Jones, 1984)

and are regions with positive curvature (Fischl et al., 2004). In this

study, we began with a joint segmentation and bias field correction

based on integrated local intensity clustering (Li et al., 2008) to create a

white matter mask. Next, a mesh of the WMGM boundary was cre-

ated, and for every vertex, the mean curvature (Dale et al., 1999; Fischl

et al., 1999) is calculated. Then, a simple threshold was applied at the

33rd and 66th percentile of the mean curvatures to segment the sur-

face into crown, walls, and fundi (Figure 1b, top). After registration, the

labels derived from 3D MRI data were transferred into 2D histological

space (Figure 1b, bottom). At this point, we have labels for gyral blades

defined in both histolgical and MRI space, and each blade is segmented

into crown(s), wall(s), and fundus (fundi).

2.4.3 | Myelinated fiber orientations

The ground truth fiber orientations were defined on histological

myelin-stained slices using structure tensor (ST) analysis (Bigun & Gran-

lund, 1987). The ST has been employed on histological sections in 2D

on rat (Budde & Frank, 2012) and human (Budde & Annese, 2013;

Ronen et al., 2014) brains, and in 3D on macaque (Khan et al., 2015)

and squirrel monkey (Schilling et al., 2016) brains. ST analysis is a tech-

nique based on the dyadic product of the image gradient vector with

itself, and results in an orientation estimate for every pixel in the image

(Figure 1c, left). Downsampling of the high-resolution orientation esti-

mates was employed to determine the primary fiber orientation in

150 lm2 areas (Figure 1c, right). These were then used for comparison

with the primary orientation estimated from MRI using the diffusion

tensor model (see Section 2.4.4), and for analysis of fiber curvature

along the WMGM boundary. For visualization, ST values of orientation,

anisotropy, and staining intensity are displayed as hue, saturation, and

brightness (HSB) images (Figure 1c, left), respectively, at native resolu-

tion (Budde & Frank, 2012).

2.4.4 | dMRI estimated fiber orientations

We chose to use the tensor model for comparisons of orientation with

histology (although any local reconstruction algorithm can be processed

and compared in a similar way). The tensor was estimated using a NLLS

DT fit (Jones & Basser, 2004). After transformation to and reorientation

in histological space (see Section 2.3), the primary eigenvector of the

diffusion tensor was projected onto the 2D histological plane (Choe,

Stepniewska, Colvin, Ding, & Anderson, 2012; Figure 1d). This 2D pro-

jection was then compared to the histological fiber orientations esti-

mated using ST analysis.

2.4.5 | Myelinated “tract density”

An automatic count of the axons leaving the white matter and entering

the cortex was made along the entire WMGM boundary mesh surface

for every gyral blade (Figure 1e). This was performed by dilating the

WMGM boundary 50 lm into the cortex (to ensure we were not

counting axons in the white matter) and taking the intensity profile

along this band. Because the myelinated axons appear as low inten-

sities, the intensity values were inverted, and a count of the number of

peaks meeting an (empirically derived) intensity threshold was made.

This threshold was kept constant across the entire slice, and for all sli-

ces. The fiber density was then the average axon count over a specific

distance. For each gyral blade, this measurement was summarized by

taking the ratio of the average fiber density at the crown(s) over the

average fiber density at the wall(s). We refer to this quantity as the

“connectivity profile” of each gyral blade. For statistical analysis, we

took the natural log of this ratio. This makes the ratios additive, the var-

iance homogenous, and the distribution symmetric (Aitchison, 1986),

which allows for standard parametric hypothesis testing. A positive log-

ratio (ratio>1) suggests higher fiber connectivity at the crown(s), while

a negative value (ratio<1) suggests higher connectivity at the wall(s).

2.4.6 | Diffusion MRI tract density

We begin our study by choosing fiber tractography based on (arguably)

the most commonly used local reconstruction technique, diffusion ten-

sor imaging (Basser, Mattiello, & LeBihan, 1994a,b). Three tracking

strategies that are ubiquitous in the field are employed, distinguished

largely by the strategy for seeding streamlines. Each method is per-

formed using both deterministic and probabilistic propagation techni-

ques. Finally, for each method, four connectivity “scaling” measures are

performed.

Method 1 (M1) is based on whole-brain seeding. This means seeds

are initiated from all voxels in the brain, and terminate only when they

exit the brain, or exceed the maximum curvature threshold. This

method is consistent with analysis based on tract-density imaging (Cal-

amante, Tournier, Jackson, & Connelly, 2010), and most commonly

applied in studies where whole-brain seeding is used in combination

with waypoints to select specified white matter pathways (Knosche,

Anwander, Liptrot, & Dyrby, 2015; Yeatman, Dougherty, Myall, Wan-

dell, & Feldman, 2012). For each region of interest (i.e., the crowns and

walls for each gyral blade), the number of streamlines ending within the

region volume are counted. Method 2 (M2) is seeded throughout the

white matter. White matter seeding is the most common strategy for

studies mapping the human connectome (Clayden, 2013; Hagmann

et al., 2007; Parker et al., 2014), and again, is also commonly performed

before addition of inclusion/exclusion masks for extracting specific

fiber pathways. For M2, tracking is stopped once the voxel leaves the

WM (crosses the WMGM boundary), and the number of pathways ter-

minating on the surface of each label is counted. Method 3 (M3) then

seeds from the interface of the WMGM boundary. The method has

been proposed as a way to bypass potential seeding biases (Girard

et al., 2014; Smith et al., 2012), and is gaining in popularity in structural

connectivity pipelines. Again, tracking is terminated when the pathway

crosses the WMGM boundary, and the number of pathways terminat-

ing on the surface of each label is counted. In all cases, tracking was

performed using the publically available software package MRTrix3

(Basser, Pajevic, Pierpaoli, Duda, & Aldroubi, 2000; Tournier, Cala-

mante, & Connelly, 2012), and seeding was repeated until 2,500,000
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streamlines were created. Streamlines that did not meet the minimum

length criteria of 53 the voxel size were discarded.

The four connectivity scaling measures are as follows. The first

option is no normalization at all. This number then represents the raw

“count” of streamlines entering each region of interest. The second

scaling mechanism is to scale the contribution of each streamline to the

total count by the reciprocal of its length. As described above, this is

intended to compensate for biases introduced by homogenous seeding

throughout the brain, which leads to over-representation of the long

fiber pathways. Third, the number of streamlines can be scaled by the

reciprocal of the total node volume. This is intended to compensate for

the fact that larger target regions are more likely to be intersected by

an overall greater number of streamlines. The results are traditionally

interpreted as a connection density (count per volume), which is more

of an analogue to our histological measurements (fiber density). (Note

that, for M2 and M3, the data are normalized by GMWM surface area,

rather than volume.) The final scaling option we assess is to scale the

contribution of each streamline by the streamline length (exactly the

inverse of the second normalization mechanism). Although not as com-

monly used in literature, this scaling could be justified on the basis that

longer connections are harder to reconstruct than shorter ones due to

tract dispersion (uncertainty) and tract deviation (errors in orientating

estimation) (Anderson, 2001; Chang, Koay, Pierpaoli, & Basser, 2007;

Lazar & Alexander, 2003). Thus, this scaling would emphasize these

longer, harder to reconstruct connections as an attempt to correct for

the path-length dependency inherent in fiber tractography (Donahue

et al., 2016; Liptrot, Sidaros, & Dyrby, 2014).

To assess the effects of curvature criteria on DTI tracking, tractog-

raphy was performed with no stopping criteria other than curvature

threshold, or leaving the brain mask. The curvature thresholds chosen

for analysis were 158, 308, 458, 608, 758, 908, 1358, and 1808 (equivalent

to no stopping criterion). Similarly, the effect of b-value and resolution

were assessed by performing repeating tractography for all b-values

(3,000–12,000 s/mm2) and for the entire range of resolutions (300–

800 lm isotropic). In order to eliminate the effects of the step size on

analysis of acquisition resolution, the step size was fixed for all tracking

algorithms, at all resolutions, to 10% of the smallest voxel size (i.e.,

30 lm step size). Finally, to test tracking biases using a reconstruction

method capable of resolving multiple fiber populations, we have cho-

sen a commonly used higher order algorithm, constrained spherical

deconvolution (CSD) (Smith et al., 2012), implemented in MRTrix3.

Figure 1f shows the WMGM boundary used for seeding and stop-

ping, the gyral blades segmented into crowns, walls, and fundi, and 3

representative tractograms.

3 | RESULTS

3.1 | Histological density profile

The results of histological analysis are shown in Figure 2. We find that

many gyral crowns do have more dense connectivity than neighboring

sulcal walls. Eleven of the 23 regions of interest have a significantly

higher fiber count at the crowns, and all but one have a higher average

fiber count at the crown (one-sample t test; p< .05). Across all gyri, we

find an overall log-ratio value of 0.12 (average ratio of 1.13) suggesting

an average 13% increased fiber density at the crowns relative to walls.

Finally, a 1-way ANOVA with the gyral blades as factors suggests that

the histological fiber density profile is not the same across all gyri

(F53.27, p< .001).

3.2 | DTI tractography

Figure 3 shows the tractography-derived fiber density profiles (ratio of

crown measure to wall measure) for all gyral blades. Results are shown

for all 3 seeding methods, each with both deterministic and probabilis-

tic propagation, and with 4 scaling methods applied to each. It is clear

that DTI streamlines are biased toward the gyral crown relative to his-

tology in many gyral blades, for all 3 tracking strategies. No combina-

tion of seeding method and quantification is consistently non-biased

across all gyral blades. In fact, many gyral blades show a bias of as

much as much as 123 more “connectivity” at crowns that at the corre-

sponding walls.

Condensing this information across all gyri (Figure 4) shows that

across the whole brain, all algorithms are significantly biased relative to

histology, and consistently overestimate connectivity at the gyral

crowns by a factor of between 1.5 and 5. Several trends are apparent.

First, bias is dependent on seeding method (p< .001, F517.64, df55),

FIGURE 2 Histological density profile across 23 gyral blades. Average log-ratio (circles) and 95% confidence intervals (lines) are shown for
each region of interest. The value of 0 (ratio51) is shown as a horizontal dotted line. Asterisks indicate that log-ratio is significantly >0
(*p< .05; **p< .01; ***p< .001), which means the gyral crown has significantly higher density than neighboring sulcal wall(s)
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for example, M1 (whole-brain seeding) has significantly higher bias

than M2 and M3. Second, there is no significant difference between

deterministic and probabilistic DTI tractography. Finally, there are

significant effects of scaling mechanism on the gyral bias (p< .001,

F527.89, df55). For all cases, scaling by length leads to the largest

bias, followed by no normalization, then inverse length and inverse

FIGURE 3 DTI streamlines are biased toward gyral crowns in many gyral blades, for all tracking strategies. The ground truth density profile
is shown as horizontal lines (mean695% confidence interval). DTI tractography-derived densities for whole-brain seeding (top), white mat-
ter seeding (middle), and WMGM boundary seeding (bottom) are shown for each gyral blade, for both deterministic (light gray) and probabil-
istic (dark gray) propagation. Data are shown as (1) no normalization (circle), normalized by length (star), inverse length (square), and inverse
node volume (diamond). Log-ratio scale is shown on left vertical axis, while the ratio measure is shown on the right. A tractography-derived
value greater than the histological range indicates a bias toward the gyral crowns

FIGURE 4 DTI streamlines are denser in gyri than sulci for all three seeding strategies, regardless of subsequent fiber quantification. Mean
(circle) and 95% confidence intervals (vertical line) are shown over all gyri for each DTI tracking algorithm. Four quantification strategies
include (1) no scaling, (2) scaling by length (3) inverse streamline length, and (4) inverse node volume. Histological mean and 95%
confidence intervals across all gyri are shown as horizontal solid and dotted lines
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node volume. It is important to point out that the methods resulting in

a fiber profile most similar to histology—M3 with scaling by inverse

length—has no biological, anatomical, or technical basis for scaling by

inverse length. This scaling mechanism is tailored to address biases

inherent to homogenous white matter seeding, which is not performed

in M3. Thus, this combination of seeding and quantification is unlikely

to be performed in literature.

Inspection of the resulting fiber pathways gives insight into poten-

tial sources of the bias. Figure 5 shows a select coronal slice, with labels

for the crown and walls highlighted. For M1, the most striking feature is

the densely populated gray matter in the crown, with sparse fibers

throughout the wall. Even more striking, there are areas of the fundus

(dotted arrow), where no fibers are able to propagate, a characteristic

described in (Reveley et al., 2015), and attributed to the superficial U-

shaped fibers just beneath the infragranular layers of the cortex. In addi-

tion, we see relatively sharp curvature into the cortex at the walls (solid

arrow), a feature similar to that described in histological sections (Budde

& Annese, 2013; Sotiropoulos et al., 2013a; Van Essen et al., 2014). This

motivates an analysis of the effect of curvature threshold on tractogra-

phy results (described later). M2 shows features similar to M1. As in M1,

it is clear there is an over-representation of some of the longer pathways

which tend to orient toward the gyral crown. For example, seeding any-

where in the oval leads to an excessively dense representation of tracts

in the stalk of the gyrus, which all terminate in the same vicinity.

To confirm that the dominant source of bias comes from the longer

fibers, we separate streamlines by length into short, medium, and long

fibers (binned by 33rd and 66th percentiles), and repeat the analysis. Fig-

ure 6 shows the results (without scaling), for all algorithms. In all cases,

the longer fibers are more biased toward the crowns than medium and

short fibers. In agreement with known anatomy (Schmahmann & Pan-

dya, 2009), the short streamlines consist of the short association fibers

(U-fibers) connecting the same or adjacent gyri, while the medium and

long fibers are composed of the long association fibers (connectivity of

different lobes) and commissural fibers. However, unlike the results of

anterograde and retrograde tracer studies (Schmahmann & Pandya,

2009), there is a clear penchant for the association and commissural

streamlines to terminate on the gyral crowns. Despite the fact that

increased seeding in longer pathways is the dominant source of bias,

applying inverse-length scaling does not eliminate the bias (Figure 6).

3.3 | Fiber curvature at the cortex

Two examples highlighting a potential anatomical cause of this bias are

shown in Figure 7. Here, we focus on the curvature of fibers as they

enter the cortex, taking as examples a slice showing the SFG (a–c) and

a slice containing the IFG and FOG areas (d–f). Figures a and d show

the WMGM boundary (blue voxels) along the gyral blades and the nor-

mal to the boundary (yellow sticks). ST analysis, along with the HSB

images, qualitatively highlights the high curvature of fibers entering the

cortex along the sulcal wall (b and e), and the relatively low curvature

at the crown (c and f).

To quantify the fiber curvature (g and h), the angle the fibers make

relative to the normal to the WMGM boundary is plotted as they tra-

verse from white (negative distance) into gray matter (positive dis-

tance). In these regions, fibers at the crown stay relatively parallel to

the normal (red arrows) throughout the entire path, and are curving at

only 58 and 68 per 400 lm as they enter the cortex. At the wall, the

fibers bend from nearly perpendicular to the normal, to almost parallel,

within a distance of <1.5 mm. In these specific slices, the wall of the

SFG (g) is curving at a larger 228/400 lm entering the cortex, while the

FIGURE 5 Subset of DTI streamlines for each tracking strategy.
Labels for crown, wall, and fundi are shown with a zoomed in view
of the SFG. DTI streamlines are shown for M1 (whole brain
seeding), M2 (WM seeding), and M3 (WMGM boundary seeding),
and are colored based on streamline orientation. The dashed arrow
highlights a fundus, where no streamlines are able to propagate.
The solid arrow points toward the increased curvature of
streamlines entering the GM. And the oval highlights a large,
homogenous, area of WM, where seeding will contribute to over-
representation of fibers terminating at the crown [Color figure can
be viewed at wileyonlinelibrary.com]
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highest curvature happens just inside the white matter at nearly 498/

400 lm. For the wall of the IFG and FOG (h), the highest curvature

takes place about 400 lm into the cortex, curving at �398/voxel. Thus,

in these two examples, the fibers curve more at the sulcal walls than

they do at gyral crowns.

While these examples highlight two slices with high curvature at

the walls, there is high variability across slices and across gyral blades.

Figure 7i shows the mean and standard deviation of the angle relative

to the WMGM normal across all analyzed gyral blades. Despite the

wide range, two trends are apparent. Fibers at the crown enter the cor-

tex at a smaller angle (relative to the WMGM normal) than those at the

walls (2286158 and 5086178, respectively), and curve less upon

entering the cortex than those at the walls.

3.4 | Effects of curvature threshold

We next test the effects of curvature threshold on the gyral bias,

by performing tractography with varying curvature thresholds

(Supporting Information, Figure 1). We find that for all 3 methods,

with all 4 quantification techniques, there is no significant effect of

pathway curvature threshold on the bias (F ranged from 0.50–0.81,

p> .05).

3.5 | Angular agreement between histology and dMRI

To assess whether the diffusion orientation estimates are biased

toward the gyral crowns relative to the true fiber orientations, we

compared the primary diffusion directions (projected onto the 2D his-

tological plane) with the histological fiber orientations estimated using

ST analysis (calculated in the 2D plane). Figure 8 (top) shows the

angular differences for all voxels along the WMGM boundary, in

each of the gyral blades. A positive angular difference indicates that

the fiber orientation from diffusion is angled more toward the apex

of the gyral blade (relative to ST orientation), while a negative angular

difference means it is angled away from the apex. The first, second

(median), and third quartiles of this dataset are 28.68, 2.28, and 13.78,

respectively. This indicates a slight bias for estimated fiber orienta-

tions, the inputs for fiber tracking algorithms, to be oriented slightly

more toward the crown than they should be. However, as the ten-

sors become more isotropic, particularly near the cortex, the ambigu-

ity in fiber orientation increases, and could account for much of the

angular differences measured.

Figure 8 (bottom) shows the absolute angular deviation of voxels

in the white matter (this does not include all white matter, only that

which is contained within the gyral stalks). The median absolute angular

difference in the white matter is 9.28, indicating that, on average, the

tensors differ from the true fiber orientation by <108, a value in good

agreement with previous histological validation studies (Choe et al.,

2012; Leergaard et al., 2010).

3.6 | Effect of b-value

Next, DTI tractography was repeated for all acquired b-values (Sup-

porting Information, Figure 2). For all methods, and all quantification

strategies, the diffusion weighting did not have a significant effect on

the gyral bias (F ranged from 0.02–0.33, p> .05).

3.7 | Effect of image resolution

Figure 9 shows the results (over all gyri) of running all tractography

algorithms for all acquired resolutions ranging from 300 lm isotropic to

800 lm isotropic voxels (shown ranging from light to dark grays). It is

interesting that for M2, increasing the resolution (i.e., reducing voxel

size) does not improve the fiber density profile along the gyral blades.

In fact, the opposite happens—the observed bias consistently decreases

as the resolution decreases. This, however, does not mean the stream-

lines produced from lower resolution data are more anatomically accu-

rate (see Discussion, Section 4.2), only that the measured tractography

density along the WMGM border more closely approximates the histo-

logical densities as the voxel size increases. In contrast, the observed

bias in M1 and M3 trend in the opposite direction.

FIGURE 6 The effects of fiber length on gyral bias. The (unscaled)
fiber-density profile across all gyral blades is shown for long, medium,
and short fibers (top). A subset of long, medium, and short fibers is
shown for each of the three tracking strategies for a select coronal slice
(bottom) [Color figure can be viewed at wileyonlinelibrary.com]
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3.8 | Effect of higher order diffusion model

We next ask whether the ability to detect multiple fiber orientations in

a voxel enables more anatomically correct streamline propagation into

the cortex. CSD has been shown to be both accurate and consistent in

resolving multiple intravoxel fiber populations, and has been used

extensively to study crossing fibers throughout the brain(Jeurissen,

Leemans, Tournier, Jones, & Sijbers, 2013; Tournier et al., 2007, 2008).

Figure 10 shows the voxel-wise reconstruction results for both DTI

and CSD in two gyral blades. For DTI (middle column), 3D ellipsoids are

shown representing the average diffusion distance in each direction.

WM glyphs show the typical “cigar” shape, while more isotropic ellip-

soids are apparent along the WMGM boundary along with a lower FA,

likely indicating larger geometric fiber dispersion or multiple fiber popu-

lations. The CSD glyphs (right column) show the estimated fiber orien-

tation distributions. Many areas in both WM and GM show multiple

FIGURE 7 Fibers typically curve more at the sulcal wall than they do at gyral crowns. A histological slice containing the SFG (a) is shown,
along with the WMGM border (blue) and the normal to the border (yellow lines). Arrows are shown at the wall (blue) and crown (red) going
from white matter into gray matter. Both arrows are perpendicular to the WMGM boundary. High-resolution HSB images in the same pla-
ces at the wall b) and crown (c) demonstrate the high curvature of fibers entering the cortex at the walls (b) and the long, straight fibers at
the crown (c). A myelin-stained slice containing IFG and FOG regions (d), and high-resolution HSB images at the wall (e) and crown (f), show
similar trends. The fibers from (a) to (c) are tracked from white matter, into gray matter, and the angle these fibers make with the normal to
the WMGM border is recorded (g) for the wall (blue) and crown (red). The slope of this curvature is marked in various locations. The fibers
from (d) to (f) are similarly tracked, and the angle at these locations from the wall (blue) and crown (red) are plotted (h). Finally, the results
from all gyral blades analyzed (i) are shown for the crown (red) and wall (blue) with the mean (solid line) and standard deviations (vertical
lines) plotted for each [Color figure can be viewed at wileyonlinelibrary.com]
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fiber populations. In addition, in agreement with previous studies

(Dyrby et al., 2011; Leuze et al., 2014; Miller et al., 2011), we see fibers

largely oriented radially (perpendicular) to the WMGM boundary, par-

ticularly in the crowns (solid arrows), and crossing fibers oriented

tangentially to the boundary that are especially prevalent in the walls

(solid arrows). Also of note, the short U-shaped fiber tract occurring

between the faces of adjacent sulci (white brackets) are apparent in

both diffusion techniques. Even here, CSD often shows the presence

of second fiber population oriented perpendicular to the surface,

although occupying a much smaller volume fraction in each voxel (see

Discussion, Section 4.1).

Figure 11 shows the results of CSD (Tournier et al., 2007, 2008,

2012) with both deterministic and probabilistic tractography. Compar-

ing these results with Figure 4, CSD has a modest reduction of gyral

bias (�1%–20% reduction) compared to DTI. In addition, multiple com-

binations of seeding and scaling strategies are no longer (statistically)

significantly biased. However, these results still tend to overestimate

the density at the crowns relative to walls. In other words, although

the bias is reduced below a statistically detectable level, there is still a

numeric difference between the tractography results and the ground

truth histology, but we did not have sufficient power to detect a signifi-

cant difference.

Qualitatively, the tractography results show high levels of similarity

with those from DTI (Supporting Information, Figure 3); however, the

ability of streamlines to propagate in multiple directions is now appa-

rent in both WM and GM. Similarly, the dominant source of bias from

these tractography results comes from the longer fibers (Supporting

Information, Figure 4), where, in all cases, longer fibers are more biased

toward the crowns than medium and short fibers. However, this bias is

reduced (for all lengths) when compared to DTI tractography (compare

to Figure 6). Angular agreement in CSD orientation estimates was also

assessed (Supporting Information, Figure 5). The angular differences

along the WMGM boundary were slightly improved compared to DTI,

with first, second, and, third quartiles of 28.58, 20.78, and 7.38, respec-

tively, a reduction likely due to the reduced partial volume effects of

multiple fiber orientations along the boundary. The median absolute

angular difference in WM was 7.98, again, a slightly better value than

for the diffusion tensor.

FIGURE 8 Histograms of measured angle differences. The
differences between the true fiber orientation measured with high-
resolution micrographs and the fiber orientation estimated from
diffusion imaging are shown for both the voxels comprising the
WMGM boundary (top), and those that are in pure WM (bottom).
The top figure shows both positive and negative angular differen-
ces along the WMGM border, indicating estimated orientation
error toward and away from the gyral crown, respectively. The bot-
tom figure shows the absolute value of angular differences in white
matter regions contained within the gyral blades

FIGURE 9 Gyral bias is dependent on MRI resolution. Fiber tracking is performed using three tracking strategies, at image resolutions
ranging from 300 lm isotropic to 800 lm isotropic. The log-ratio of density at the gyral crowns to that at the walls is shown for all algo-
rithms, and all resolutions. Results are shown without subsequent quantification (i.e., no scaling factor)
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4 | DISCUSSION

Using dMRI tractography to map the neuronal connections of the brain

requires accurately estimating connections between large numbers of

gray matter regions. In this study, we have shown that there is a signifi-

cant bias for dMRI tractography streamlines to terminate on gyral

crowns, relative to the sulcal banks—an artifact that could significantly

affect the results of any quantitative estimates of connectivity using

dMRI. It appears that this gyral bias is significant in many gyral blades

across the entire brain, and occurs even with exceptionally high-quality

ex vivo data. This effect was shown for a range of tracking algorithms,

including both deterministic and probabilistic, and varying model com-

plexities, from the simple diffusion tensor (Figures 3 and 4), to a model

capable of describing a complex fiber orientation distribution (Figure

11). Additionally, this gyral bias occurred for a range of diffusion

weightings (Supporting Information, Figure 2), and even for exception-

ally high-resolution datasets (Figure 9).

These results have several implications for current tractography

practices. As described in (Jones et al., 2013), the use of the “fiber

count” and similar terminology is likely an inaccurate metric to describe

the true connection strength between two regions derived from diffu-

sion tractography. However, these measures are widely used in the

FIGURE 10 CSD shows evidence of multiple fiber populations along the WMGM boundary. DTI ellipsoids (middle column) and CSD fiber
orientation glyphs (right column) are shown for SFG (top row) and PRG (bottom row). WMGM boundary is shown as a yellow line. Fibers
are largely perpendicular to the WMGM surface at the crowns (solid arrow), while crossing fibers (not detectable using DTI) are prevalent
along the walls and in GM (dashed arrow). Dense U-fibers just below the cortical surface are visible between adjacent sulci (white brackets)
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 CSD streamline bias is reduced compared to DTI (compare to Figure 4), but is still greater than histological ground truth. Mean
(circle) and 95% confidence intervals (vertical line) are shown over all gyri for each CSD tracking algorithm. Four quantification strategies
include (1) no scaling, (2) scaling by length, (3) inverse streamline length, and (4) inverse node volume. Histological mean and 95%
confidence intervals across all gyri are shown as horizontal solid and dotted lines
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literature (Jones et al., 2013), particularly in mapping connectomes

(Hagmann et al., 2007, 2008, 2010; Honey et al., 2009). Here, we have

shown that a “count” of the streamlines crossing the WMGM boundary

does not accurately represent the fiber count in the same regions

derived from histological measurements. In fact, no fiber quantification

strategy consistently yielded a connectivity measure that was not

biased relative to histology. This does not, however, invalidate existing

connectivity studies; rather than true measures of connectivity, these

graph-theoretical measures and streamline connections reflect some

characteristics of the underlying white matter microstructure, with

some level of uncertainty and bias. This work focuses on one of several

potential sources of fiber tracking bias.

The results from this study should also provide guidance for future

generations of tracking algorithms. Specifically, we have shown that

nearly orthogonal bending over the range of a millimeter, particularly

along sulcal walls, is not uncommon. While the average curvature of

axons crossing the WMGM border is relatively small (�208/voxel, see

Figure 7), there is tremendous variation across the brain, as the gyral

blades take a variety of different geometries and sizes (see Figure 1).

Thus, there is a tradeoff when choosing a curvature threshold parame-

ter. A liberal threshold is necessary to track properly into the cortex,

but too high a threshold may result in a loss of tracking specificity

(Thomas et al., 2014), and potentially anatomically unrealistic tracks.

Even so, very liberal thresholds (including no curvature threshold) still

numerically overestimated the connectivity at the gyral crowns. Alter-

natively, there is a possibility to modify the rules of fiber tracking, pos-

sibly at the cortex (Van Essen et al., 2014). Some groundwork has

already been laid toward a histology-informed model of diffusion near

the cortex by Cottaar et al. (2015, 2016), but as of yet, no fiber tracking

results using modified rules have been reported. However, applying

anatomically informed constraints to fiber tracking algorithms termina-

tions and rejection criteria was proposed in (Smith et al., 2012), which

shows encouraging results, including a more homogenous density of

streamlines along the cortical ribbon (see figure 6 in Smith et al., 2012).

In addition, there is a class of emerging tractography methods in

the literature (Daducci, Dal Palu, Lemkaddem, & Thiran, 2015; Qi,

Meesters, Nicolay, Ter Haar Romeny, & Ossenblok, 2016; Smith et al.,

2013) in which whole-brain streamline reconstruction is forced to

match the diffusion imaging data, ensuring that the streamline density

in each voxel is more reflective of the underlying biological fiber den-

sity at that location. If the streamlines approaching any surface of the

WMGM boundary have an appropriate spatial density distribution, the

gyral bias should disappear (Yeh et al., 2016). While these methods

have been shown to result in more accurate streamline quantification

in simulation, phantom, and in vivo studies, they have not been vali-

dated against histologically defined fiber densities. Results from these

techniques, and future tracking strategies, can be compared to our his-

tological results to ensure plausible connectivity measures that are ana-

tomically meaningful.

Finally, although this observed bias causes both false positive

(overestimation of fiber termination on gyri) and false negative (under-

estimation on sulci) connectivity measures, it may not present a signifi-

cant issue in studies of the human connectome. Because many

connectome analyses study regional differences in connectivity at the

scale of the entire gyral blade, biases in connection patterns and subse-

quent graph theoretical measures may be mitigated by coarse parcella-

tion schemes. For example, a parcellation scheme based on gyral-based

regions of interest (Desikan et al., 2006), or a relatively low number of

regions (�30–70) (Destrieux et al., 2010; Fischl et al., 2004) will prob-

ably be less affected by gyral bias than a scheme with �1000 cortical

nodes (Hagmann et al., 2008).

4.1 | Sources of bias: Seeding, curvature, partial

volume effects, and fiber propagation

Overall, it appears that the observation that streamlines are denser in

gyral crowns than along the sulcal banks may be influenced by a variety

of factors. The dominant source of gyral bias is the over-representation

of longer fibers due to whole brain and white matter seeding. We

show that these long and medium length fibers tend to terminate on

gyral crowns, and contribute most to the bias (Figure 6). Importantly,

scaling the connectivity profile by the inverse fiber length does not

eliminate the observed gyral bias. While this empirical normalization

does reduce the gyral bias relative to histology, applying this scaling

de-emphasizes almost all neighborhood and long association pathways,

as well as all commissural fibers—fibers which form important compo-

nents of the brains connectome. While seeding from the WMGM

boundary partially alleviates this problem (Figure 4), there still exists a

bias toward the gyral crown in many gyral blades (Figure 3), with an

average 23 higher connectivity at the crowns that walls. It is important

to note that because scaling by inverse fiber length is specifically

intended to compensate for homogenous white matter seeding, the

application of this metric (although it reduces bias) is not appropriate

with WMGM seeding. With DTI tractography, no combination of seed-

ing and subsequent scaling matches the profiles obtained with histolog-

ical analysis.

Our analysis of myelin-stained sections showed a higher overall

curvature of fibers at the sulcal wall compared to the relatively low cur-

vature at the crowns (Figure 7). We hypothesized that a higher curva-

ture threshold would allow more streamlines to enter the cortex,

resulting in a reduced gyral bias. However, we found that the curvature

threshold did not affect the overall bias (Supporting Information, Figure

1), although it almost certainly does affect anatomical accuracy (which

we did not assess). Analysis of individual gyral blades (Figure 7, G and

H) shows that myelinated axons can curve by as much as 50 degrees

per voxel (over 400 lm in this dataset) as they enter the gray matter.

This means that (assuming perfect orientation estimates), the curvature

threshold should be set to at least 50 degrees, and likely even higher

with lower resolution datasets.

Partial volume effects due to subcortical white matter could cause

a bias in orientation estimates along the WMGM boundary to point

toward the gyral crown, which would result in a gyral bias in subse-

quent tractography (Van Essen et al., 2014). Our validation of orienta-

tion information on a voxel-by-voxel basis shows that there is a slight

propensity for the estimated orientations to be biased toward the gyral

crown (by a median value of just 2.28). This is observed in data acquired

SCHILLING ET AL. | 1461



at 400 lm isotropic resolution, and is likely to be even worse in human

datasets at 21 mm voxel sizes.

Finally, in the case of a local reconstruction algorithm that is able

to reconstruct complex fiber geometries, biases could result due to

assumptions inherent in the propagation method of choice. For exam-

ple, high angular resolution diffusion imaging techniques are able to

resolve multiple fiber orientations along the WMGM boundary (Figure

10), in agreement with histology (Sotiropoulos et al., 2013a). However,

most tracking algorithms will choose to follow the path with least angu-

lar deviation, rather than make the sharp turns necessary to exit the

white matter (even if the curvature threshold allows for it). This

explains, at least partially, why a gyral bias is still observed in Figure 11,

where we have chosen to use CSD for local reconstruction. Similar dif-

ficulties of fiber tracks reaching certain cortical areas have been previ-

ously documented in the macaque brain (Reveley et al., 2015). Using

dMRI from high resolution ex vivo specimens, Reveley et al. find that a

large portion of the cortical surface is inaccessible to fiber tractography.

They attribute these results to dense sheets of white matter axons par-

allel to the WMGM boundary and just beneath the cortex (for example,

the U-fibers seen in our Figure 10), which inhibit appropriate cortical

termination. Even if dMRI is able to detect multiple fiber populations in

these superficial white matter bundles (Figure 10), the tracking algo-

rithm is unlikely to follow the correct orientation, which may have not

only a larger deviation angle, but a smaller volume fraction component

in that voxel. The large areas of the cortex inaccessible to tracking are

also visible in our data (see Figure 5, dashed arrow), and lie predomi-

nantly in sulci. Here, we find that the gyral bias is not only caused by

intervoxel (superficial white matter bundles) and intravoxel (crossing

fibers) WM geometries, but is modulated by seeding and stopping

strategies, and subsequent track weighting and scaling strategies.

4.2 | Resolution

Because the dimensions of the dMRI voxel are orders of magnitude

larger than the structures the technique aims to trace (2–3 mm vs 1–

20 lm, respectively), image resolution is a clear limitation when it

comes to brain connectivity studies (Jones et al., 2013). Thus, it is

advantageous to increase the spatial resolution (at the expense of SNR)

as much as possible to minimize the partial volume effects of crossing

or bending fibers, and, hopefully, better identify white matter insertion

points into the cortex. Results from the Human Connectome Project

(Sotiropoulos et al., 2013b; Sporns, 2013; Ugurbil et al., 2013), and

other studies pushing the current resolution limits of dMRI (Heidemann

et al., 2012; Jeong, Gore, & Anderson, 2013), including ex vivo imaging

(D’Arceuil et al., 2007; McNab et al., 2009), show promise in more

accurately tracking white matter pathways into the cortex.

The results for M2 in our studies seems contradictory (Figure 9),

where the gyral bias becomes worse as voxel size decreases. This could

have two potential explanations. First, is the over-representation of

large white matter tracks (as previously described), which are now

seeded more frequently due to smaller voxel volumes. Second, the

larger voxel size may cause the fibers within the cortex to have an

increased influence on fiber orientations sampled in the WM. This can

be due to both partial volume effects between WM and GM, and due

to interpolation of orientation information during the tracking process

itself. Because the cortical fiber orientations are largely tangential to

the WMGM boundary (Figure 7), the estimated fiber orientations in

larger voxels may be rotated toward the cortex, causing streamlines

entering gyral blades to exit the WM along the sulcal bank before they

reach the crowns. It is interesting that M1 does not show share the

same trend, even though it will also be affected by homogenous WM

seeding. The only difference between M1 and M2 is the inclusion of

the GM as a seed region for M1. This suggests that a large source of

the bias comes from seeding in the cortex itself. For example, seeds

placed in the sulcal wall or fundi may only propagate a few voxels

before encountering orthogonal fibers of the underlying WM and ter-

minate propagation due to excessive curvature. Because this propaga-

tion is (at most) the length of the cortex, these fibers often do not

meet the minimum length threshold. In contrast, fibers seeded from

the crown can easily propagate into the deep WM (Figure 5). Both con-

trasting effects on gyral bias are, in part, partially alleviated with

WMGM boundary seeding (Figure 9).

4.3 | Histology

This study is important also from a purely histological perspective. The

(non)uniformity of the cortex has implications for evolution, cortical

organization, connectional architecture, and cerebral development or

morphology. Rather than a structurally uniform cortex (Braitenberg,

Schu€Z, & Braitenberg, 1998; Carlo & Stevens, 2013; Rockel et al.,

1980), it has recently been shown that there is variation of neuronal

density both across species (Herculano-Houzel, Collins, Wong, Kaas, &

Lent, 2008), and within-species across major cortical areas (Charvet,

Cahalane, & Finlay, 2015; Collins, 2011; Herculano-Houzel et al.,

2008). Here, we show that the density of axons entering (or leaving)

the white matter actually varies even within-gyrus, from gyral crown to

sulcal walls. Using a similar parcellation scheme based on convexity,

Hilgetag and Barbas (2006) found an increase in neuron number in the

deep layers (cortical layers V and VI) of the gyrus compared to the

same layers of the sulcal and intermediate (sulcal banks) regions, results

that are in agreement with our studies. Because the architectural con-

nections of cortical areas are influenced by their location within the

gyral blade, the potential exists for future parcellation schemes to fur-

ther distinguish cortical areas based on structural connectivity.

4.4 | Study limitations

There are a number of potential limitations to this study. The most sig-

nificant is the method for counting histological fibers crossing the

WMGM boundary—if the boundary is too deep into white matter, the

estimated density would be too high, and too shallow a boundary

would make the fiber count too low. To limit errors in fiber counting,

we’ve made these measurements across the entire gyral blade in each

section, as well as across multiple independent sections (>4) per region

of interest. Further, it can be seen (Figure 3) that the variability in these

histological density measurements is much less than that estimated
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from dMRI fiber tracking. Another major limitation is the 2D nature of

the histological sections. Recent work has extended histological analy-

sis to 3D (Jespersen, Leigland, Cornea, & Kroenke, 2012; Khan et al.,

2015; Schilling et al., 2016), however, analysis is limited to small fields-

of-view, and characterization of multiple whole slices in 3D is a signifi-

cant technological challenge. In addition, because we are only staining

and imaging myelin, our histology is not sensitive to nonmyelinated tis-

sue structures (including unmyelinated axons, dendrites, and glial cells)

that may contribute to diffusion anisotropy, particularly in the cortex

(Jespersen et al., 2012). In addition, our measurements are simply quan-

tifying the agreement (or lack thereof) between the histological

“myelinated axon count” and diffusion tractography “fiber count,” with

the common assumption that streamline density should be in some

way related to the number or density (or some measure of connectiv-

ity) of axons (in our case, myelinated axons).

Finally, our histological “fiber density” is a simple count of the

axons entering the cortex. We do not attempt to determine cortico-

cortical connectivity in this study, meaning we have no knowledge of

the specific fiber pathway followed other than the fact that the fiber

left the white matter and entered the gray matter. The myelinated

axons in our study cannot be related or attributed to a specific tract

system. A full characterization of gyral-gyral, gyral-sulcal, and sulcal-

sulcal connectivity would lend significant support (or opposition) to the

various morphogenesis and morphological theories of cortical structure

(Hilgetag & Barbas, 2006; Nie et al., 2012). Similarly, it would be of

interest to be able to determine where in the gyral blade those fibers

entering the cortex came from. For example, do fibers that form the

center of the gyral “stalk” tend to enter the crowns, while those near

the periphery “peel-off” from the stalk as they enter the cortex (Van

Essen et al., 2014)? Visual inspection of myelin-stained or neuron-

stained histological slices suggests this is the case in at least some

regions. However, a full characterization of this organization would

require tracing individual fibers throughout the entire gyral blade, and

could enable the development of future tracking algorithms that use

anatomical priors to enhance the accuracy of these techniques. We not

aware of any studies quantifying the distribution of labeled fibers

which could determine whether long- or short-range fibers are

expected to terminate preferentially on the crown or walls, nor that

determine specific fiber systems that are affected by this bias.

All data, including diffusion MRI, histology, and regions of interest,

are made freely available at https://www.nitrc.org/projects/E39Maca-

que/ for study replication or utilization in future validation studies.

5 | CONCLUSION

In this study, using histology as a tool for validation, we have shown

that there is a bias of fiber tracking algorithms to terminate on gyral

crowns. We first show that many gyral regions in the brain have denser

histological fiber connectivity than do neighboring sulcal walls. Next,

we find that DTI fiber tracking algorithms are significantly biased

toward the gyral crowns in many gyral blades. The source of this gyral

bias is most heavily dependent on seeding strategy and subsequent

connectivity quantification (i.e., scaling). We also find that myelinated

fibers curve more at sulcal walls than they do at crowns. However, the

curvature threshold of DTI tracking algorithms does not have a signifi-

cant effect on the bias. A comparison with histological fiber trajectories

shows that the underlying dMRI estimated fiber orientations are also

biased toward gyral crowns. We then show that this tractography gyral

bias still persists with more advanced diffusion models and tracking

algorithms, and over a wide range of MRI acquisition resolutions. It is

important to keep these limitations in mind when interpreting dMRI

connectivity studies. Tracking algorithms may be able to incorporate

this anatomical information when constructing streamline trajectories

and determining appropriate seeding and stopping criteria. Future

dMRI studies may need to incorporate anatomical priors and con-

straints, or non-dMRI information, to accurately determine the struc-

tural connectivity of the brain.
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