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Abstract
Brain maturation through adolescence has been the topic of recent studies. Previous works have

evaluated changes in morphometry and also changes in functional connectivity. However, most

resting-state fMRI studies have focused on static connectivity. Here we examine the relationship

between age/maturity and the dynamics of brain functional connectivity. Utilizing a resting fMRI

dataset comprised 421 subjects ages 3–22 from the PING study, we first performed group ICA to

extract independent components and their time courses. Next, dynamic functional network

connectivity (dFNC) was calculated via a sliding window followed by clustering of connectivity

patterns into 5 states. Finally, we evaluated the relationship between age and the amount of time

each participant spent in each state as well as the transitions among different states. Results

showed that older participants tend to spend more time in states which reflect overall stronger

connectivity patterns throughout the brain. In addition, the relationship between age and state

transition is symmetric. This can mean individuals change functional connectivity through time

within a specific set of states. On the whole, results indicated that dynamic functional connectivity

is an important factor to consider when examining brain development across childhood.

1 | INTRODUCTION

It is well-established that even during rest the spatiotemporal organiza-

tion of the brain reveals information about different functional

domains, such as motor function (Biswal, Yetkin, Haughton, & Hyde,

1995). Brain structure also undergoes structural change through matu-

ration with the neonate brain being a quarter the size of an adult brain.

While the size of the brain grows rapidly reaching 85% of the weight

of an adult brain by age three additional structural changes occur

throughout childhood. For example, (Giedd, 2008) found that cortical

gray matter (e.g., thickness) peaks in children and generally decreases

throughout adolescence. On the other hand, it was shown that children

have less myelination compared to adults (Klingberg, Vaidya, Gabrieli,

Moseley, & Hedehus, 1999). An important question then, is how func-

tional brain networks/domains change during maturation. Answering

this question is increasingly important, as many mental illnesses are

now understood to be neurodevelopmental disorders in the sense that

the root of the disease process begins in childhood. Recent studies

have focused primarily on altered static functional connectivity in

patients with psychiatric disorders, and have identified significant

changes. A recent study performed one of the first whole brain

dynamic connectivity analyses in a group of subjects diagnosed with

autism and identified changes in multiple control networks (de Lacy,

Doherty, King, Rachakonda, & Calhoun, 2017). Supekar et al. (2013)

linked brain hyper connectivity to Autism spectrum disorder although

other studies have reported reduced functional connectivity in autism
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(Just, Cherkassky, Keller, & Minshew, 2004). For a recent review,

please see Hull, Jacokes, Torgerson, Irimia, and Van Horn (2016).

Over the past decade, several studies have examined the develop-

ment of brain networks during both task and resting states (for a recent

review, see Stevens, 2016). Two main themes emerged from these

findings. First, many papers have reported that during maturation short

range networks get weaker, while long range networks get stronger. In

other words, brain circuitry moves from segregation to integration

(Allen et al., 2011; Dosenbach et al., 2010; Fair et al., 2008; Lopez-

Larson, Anderson, Ferguson, & Yurgelun-Todd, 2011). It has been

reported that while short range networks are dominant in infants

(Damaraju et al., 2010; Gao et al., 2011), short-range networks tend to

weaken while long range networks strengthen as individuals move

toward adulthood (Kelly et al., 2009; Supekar, Musen, & Menon, 2009).

Second, many studies have examined the weakening or strengthening

of specific networks. For example, Anderson, Ferguson, Lopez-Larson,

and Yurgelun-Todd (2011) studied interactions between default mode

and attention control networks and found decreasing correlation

between these two networks with age. In another study functional

connectivity between the ventral tegmental area with limbic regions

and default mode network was found to be stronger in older subjects

(Tomasi & Volkow, 2014). Farrant et al. reported that children show

greater connectivity between ventral frontal cortex and salience

network when compared to adults (Farrant & Uddin, 2015). In addition

to studies that identified a general trend between two networks, some

studies have determined that different regions of a network experience

different changes with age, for example, Yang et al. showed that

precuneus-dorsal posterior cingulate cortex shows a stronger relation-

ship with age compared to default mode network (Yang et al., 2014).

Apart from these two themes, some papers have recently studied

changes in the hierarchical modular structure of networks through ado-

lescence. Fransson, Aden, Blennow, and Lagercrantz (2011) showed

that cortical hubs and their respective networks are mostly seen in pri-

mary sensory and motor areas in infants. In another study, it was found

that while the functional hubs are mostly stable from late childhood to

early adulthood links between these hubs continue to develop (Hwang,

Hallquist, & Luna, 2013). Modularity has been defined as “the extent to

which a network can be decomposed into internally integrated, yet

globally segregated communities” (Betzel et al., 2014).

One shortcoming of studies examining maturation of brain net-

works is that most of them have utilized only static connectivity meas-

ures with fMRI over a 5–10 min rest scan. However, multiple studies

have demonstrated that various aspects of connectivity between dif-

ferent parts of the brain can change within a single scanning session

(Calhoun, Miller, Pearlson, & Adali, 2014; Chang & Glover, 2010;

Hutchison, Womelsdorf, Gati, Everling, & Menon, 2013b; Preti, Bolton,

Van, & Ville, 2016; Sakoglu et al., 2010). Various studies have now

shown that time-varying estimated within short scan sessions is highly

replicable (Abrol et al., 2017) and also predictive of individual subject

brain disorders (Rashid et al., 2016; Vergara, Mayer, Damaraju, & Cal-

houn, 2017). Of the studies that have used dynamic connectivity to

examine brain maturation, one (Qin et al., 2015) showed that an indi-

vidual’s chronological age can be predicted accurately using brain

dynamics variability. In another study, a dynamic connectivity measure

was defined and it was shown that this measure is more stable for

older subjects (Sato et al., 2015) within cognitive control and default-

mode networks. Similar to this study, Hutchison and Morton (2015)

also examined the dynamics of the brain through development, but

their number of subjects was low (N551) compared to our study.

Brain development itself is a highly dynamic process that impacts

different parts of the cortex across development, with sensory cortices

developing first, followed by posterior association regions, and finally

by frontal cognitive control regions. Although multiple studies have

examined subjects in the older age range, for example, 85 years old

(Zuo et al., 2010), there have been fewer studies of the younger age

range, and very few studies have included participants younger than 7

years old (Song, Zhu, Li, Wang, & Liu, 2015; Supekar et al., 2009). By

including younger participants, the effect of age on brain circuitry can

be examined more thoroughly, especially in regard to the early devel-

opmental trajectory. To our knowledge, only one functional connectiv-

ity study has included participants as young as 4 years of age;

however, the total number of participants was relatively low (N558)

in that study (Gabard-Durnam et al., 2014).

To address the aforementioned limitations of previous studies, in

this study, we use data from the large Pediatric Imaging, Neurocogni-

tion and Genetics (PING) cohort, which included a broad age range of

participants (3–21 years) who were imaged using resting state fMRI

(rsfMRI). The data were decomposed into maximally independent com-

ponents using group independent component analysis (GICA; (Calhoun

& Adali, 2012; Calhoun, Adali, Pearlson, & Pekar, 2001)). A subset of

components were then selected and grouped into functional domains.

After calculating dynamic functional network connectivity (dFNC) in

the form of time varying correlation matrices, k-means clustering was

used to extract patterns of connectivity that were present to differing

degrees across individuals and ages.

2 | METHODS

2.1 | Subjects and preprocessing

The data used for this study were part of the Pediatric Imaging, Neuro-

cognition, and Genetics (PING) dataset (http://ping.chd.ucsd.edu). All

experimental procedures were approved by human research protec-

tions programs and institutional review boards of all universities

involved in this project, and all participants or their legal guardian gave

informed consent. Participants were screened for any medical condi-

tions that may have impacted development such as major developmen-

tal, psychiatric, or neurological disorders and/or brain injury.

Participants were told not to close their eyes throughout the scanning

session. For this specific study, only participants with complete rsfMRI

scans were used. This resulted in 421 participants between 3 and 21

years old (mean513.9, SD55.0, 216 male). For more detailed infor-

mation about data acquisition in the PING study, see Jernigan et al.

(2016). Because of the multisite nature of the study, data were col-

lected using several different scanning protocols. TRs were one of 2,

2.5, or 3 s. This resulted in different scan lengths (390 or 600 s). To
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account for these variable parameters in this study, all data were

resampled to the shortest TR and then time series were cropped to the

minimum scan length (minimum scan length after resampling).

The preprocessing used here was part of a pipeline developed at

the Mind Research Network (MRN), which uses the SPM software as

follows. First, to allow the signal to reach a stable state, the first 4 vol-

umes were discarded. Then, the images were realigned using an

approach which minimizes bias towards global brain activity (Freire,

Roche, & Mangin, 2002) and slice timing correction was performed

using the middle slice as the reference. Using a nonlinear registration,

EPI data were spatially normalized to Montreal Neurological Institute

space and interpolated to a voxel size of 3 mm 3 3 mm 3 3 mm (an

approach which has been shown to work better than a linear coregis-

tration to the T1 image followed by nonlinear T1 normalization (Cal-

houn et al., 2017)). Visual inspection of the images showed good

registration with the template. Spatial smoothing was then performed

with a Gaussian kernel (FWHM510 mm). Finally, data were intensity

normalized to have a voxel wise mean of 100. This step has been

shown to improve the test–retest reliability of GICA (Allen, Erhardt,

Eichele, Mayer, & Calhoun, 2010).

2.2 | Group ICA analysis

Spatially independent sources in the form of component maps with

their respective time series were extracted from the data using the

group ICA method implemented in the GIFT toolbox (http://mialab.

mrn.org/software/gift). Group ICA is a data driven method that can be

used to achieve a data driven parcellation of brain activation. The pipe-

line used here is based on the one employed by (Allen et al., 2014)

which decomposed data into 100 components. First, preprocessed

data for each subject were passed through PCA for subject specific

dimension reduction; retaining 120 principle components for each sub-

ject (following an earlier recommendation that the first level model

order should be greater than the second level model order; Erhardt

et al., 2011). Next, subject data were appended along the time dimen-

sion and this single matrix was passed through another PCA for group

level dimension reduction; for this step, 100 components were

retained. After that, ICA was run using the infomax algorithm. The ICA

algorithm was run 10 times, clustered via ICASSO (http://research.ics.

aalto.fi/ica/icasso/) and the most central solution was utilized to ensure

stability. Using the GIG-ICA back-reconstruction approach (Du et al.,

2015, 2016), subject specific spatial maps and time courses were

extracted (Erhardt et al., 2011). After visually checking all 100 compo-

nents, those with a peak in white matter, ventricles, brain stem, or cere-

bellum, or those with a spatial map and time course dominated by high

frequency fluctuations (likely due to motion or physiologic effects),

were removed. After this step, 48 components remained and were uti-

lized for further analysis. The 48 components were then visually

grouped into 8 functional domains based on the literature (Allen et al.,

2014).

Subjects used for this study have different TRs and number of vol-

umes; therefore, prior to postprocessing, the component time courses

were resampled temporally to the shortest TR (2 s) and cropped to the

shortest volume number (shortest after resampling). To further reduce

the impact of different artifacts on the data, all components were

passed through despiking, detrending (linear, cubic, and quadratic),

regression (to regress out motion using the 12 estimated motion

parameters and their temporal derivatives (Allen et al., 2011)), and

low pass filtered (0.15 Hz). For despiking, the 3dDespike algorithm

implemented in AFNI was used. This algorithm replaces outliers in

components time courses with a third-order spline fit.

Next, a sliding window approach was used to calculate dFNC as

implemented in GIFT (Allen et al., 2014). A window size of 30 TRs

(60 s) was used to follow the recommendation that, to effectively cap-

ture dynamic information, a window length between 30 and 60 s

should be used (Damaraju et al., 2014; Hutchison et al., 2013a). A

tapered window was created by convolving a Gaussian (r53) with a

rectangular function. For each window, a full correlation matrix was cal-

culated. The graphical LASSO method was then used to regularize the

covariance matrices; it has been shown that this method can reduce

the effect of noise caused by the low number of timepoints (Friedman,

Hastie, & Tibshirani, 2008). This resulted in data dimensions of 155

(number of sliding windows) 3 1128; due to the symmetric nature of

correlation matrices, only half of off-diagonal elements are unique for

each matrix (i.e., 48 3 (4821)/25 1128 unique elements).

To examine the reoccurring FC patterns, k-means clustering (using

the Manhattan distance metric) was used on the time-varying covari-

ance matrices to cluster into 5 states. The number of clusters was cho-

sen based on the elbow criterion of the cluster validity index (calculated

by dividing within cluster distance by between cluster distances). As

mentioned previously, we had 1128 features for each data set. Dwell

time was defined as the average number of timepoints each subject

remained in each state once entering that state. Transition matrix was

defined as the number of times a subject transitioned from one state to

another. This resulted in an asymmetric 53 5 matrix for each subject.

Subjects with a framewise displacement above 3 mm for more

than 10% of their total volume numbers were omitted from further

analysis. In addition, subjects diagnosed with attention-deficit/

hyperactivity disorder (ADHD) or learning impairments based on the

questionnaires completed by the parents (for minors), or the partici-

pants themselves (>18 years old), were removed. This resulted in 389

participants being included in all post processing analysis. As we have

used GIG-ICA for back reconstruction, the impact of omitted subjects

has very little effect on the ICA results (Du & Fan, 2013).

For dynamic connectivity, partial correlations were used between

age and both dwell time and each element of transition matrix,

separately. We controlled for motion, sex, and scanning site in all these

correlations. To account for multiple comparisons, both analyses were

FDR corrected at p< .01.

3 | RESULTS

As mentioned previously, group ICA was used to extract maximally

independent components of resting brain activity. The 48 nonartefac-

tual components were first selected from the group data and dynamic

connectivity matrices were calculated for each subject separately using

a sliding tapered window approach. Using k-means clustering, the
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dynamic connectivity matrices were clustered into 5 states. Then

partial correlations were calculated between age and both state dwell

time and the state transition matrix.

No difference was found between mean age of male and female

subjects (p5 .23). But a significant difference was found between

mean framewise displacement between males and females (p5 .046),

with males moving more than females.

Figure 1 depicts all 48 components grouped into 8 domains of

interest: auditory (AUD), cognitive control (CC), default mode (DM),

limbic (LIM), salience (SAL), subcortical (SC), somatomotor (SM), and

visual (VIS). These network groupings were identified manually based

on previous work (Allen et al., 2014).

Following network groupings, dFNC was clustered into 5 states

and then the average amount of time each subject remained in each

state was calculated (i.e., dwell time). Each state can be represented by

its centroids as seen in Figure 2 (intradomain connectivity) and Figure 3

(inter-domain connectivity). In both figures, only component pairs with

absolute correlation above 0.6 are shown (for simplicity). For compari-

son purposes, static connectivity is shown at the same threshold in Fig-

ure 4. As can be seen in Figures 2–4, no negative correlation was

stronger than 20.6. It is typical for connectivity matrices to have

stronger positive elements compared to negative ones. This pattern

has been reported in prior studies (Allen et al., 2014; Hutchison &

Morton, 2015).

Results depicting the correlation of dwell time with age are shown

in Figure 5. The correlation is significant for all states except state 5

after correcting for multiple comparisons (FDR corrected p< .01). As

can be seen, there was a significant negative correlation between age

and dwell time in states 2 and 4, meaning that older participants spend

less time in these two states than younger participants. As there was

intradomain connectivity for visual areas present in all states, we

refrain from mentioning this for each state individually. State 2 had

weaker connectivity between all 48 components overall compared to

the other states. In other words, both inter- and intradomain connectiv-

ity between different networks was the weakest in this state compared

to all other states. Moreover, dynamic interdomain connectivity in state

2 was very similar to static connectivity (Figure 4). In state 4, there was

strong intradomain connectivity in the salience domain in addition to

significant connectivity between the salience domain and each of the

three sub cortical, default mode and cognitive control domains. The

connection between cognitive control and default mode network were

also stronger and more complex in this state compared to all other

FIGURE 1 Functional domain spatial maps. Forty-eight selected components were visually inspected and grouped into 8 functional domains
based on the literature. Some of these components span across several functional domains. These components were assigned to the most promi-

nent domain. Each component is shown with a specific color in each domain [Color figure can be viewed at wileyonlinelibrary.com]
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states. Finally, it is interesting to note that all states had almost all of

the links present in state 2 except state 4 (including both inter- and

intradomain connections).

There was a significant positive correlation between age and the

dwell time of states 1 and 3. Basically, older participants tended to stay

in these states more than younger participants. State 3 had the most

complex intradomain connectivity compared to all other states, as the

somatomotor domain was almost completely intra-connected in this

state. Similar to State 4, this state had a connection to the limbic

domain (which is absent from the other 3 states). State 3 also had a

FIGURE 2 Intradomain cluster centroids. Clustering dynamic connectivity for all participants resulted in 5 clusters and their representive matrix.
These matrices were then thresholded (0.6). Only intradomain correlations are shown [Color figure can be viewed at wileyonlinelibrary.com]
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complex inter-domain connectivity, although it was slightly less

complex than state 4. Last, there was a strong connection between sub

cortical and limbic domain, which was exclusive to this state, and a link

between the somatomotor and cognitive control domains. Compared

to all other states, state 1 had the most intraconnected default mode

domain. This state was very similar to state 2 when looking at

interdomain links (although the links are stronger in this state compared

to state 2), and interestingly all of its interdomain links were present in

states 3 and 5, suggesting a core of auditory, somatomotor, and

salience networks were preserved amidst the dynamical reconfiguration

of the interdomain connections. No negative correlation was strong

enough to pass the threshold.

FIGURE 3 Interdomain cluster centroids. Clustering dynamic connectivity for all participants resulted in 5 clusters and their representive matrix.
These matrices were then thresholded (0.6). Only interdomain correlations are shown [Color figure can be viewed at wileyonlinelibrary.com]
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Last, results showed that 6 correlations between age and the state

transition matrix were significant after correcting for multiple compari-

sons (FDR corrected p< .01). Participant’s age was negatively corre-

lated with state transition between states 4–2 and 2–4, which indicted

that older participants changed from state 2 to 4 and 4 to 2 less than

younger participants. In contrast, age was correlated positively with

state transition from state 1 to 3, 3 to 1, 5 to 1, and 2 to 3. It is also

interesting that the correlation between age and state transition

resulted in an almost symmetric matrix (Figure 6). That is, the

relationship between age and number of transitions from state a to b

resembles the relationship between age and number of transition from

state b to a.

4 | DISCUSSION

As mentioned in the introduction, there has been a considerable

amount of research studying the effect of maturation on brain connec-

tivity. Many studies have been performed based on the assumption

that brain connectivity is static, with only a few studies having explored

the dynamics of brain connectivity and these studies generally had a

small number of participants compared to today’s standards. In this

study, we used a relatively large number of participants with a broad

FIGURE 4 Static functional connectivity. For comparison with
dynamic connectivity, the static connectivity matrix was

thresholded at 0.6 (the same as that used for dynamic connectivity
clusters). The intradomain connectivities are shown at the top, with
the interdomain connectivities below [Color figure can be viewed
at wileyonlinelibrary.com]

FIGURE 5 The partial correlation between age and mean dwell
time for each state. Correlation between age and mean dwell time

was calculated while controlling for mean framewise displacement,
gender, and scanning site. The age bins are only for demonstration
and had no impact on the analysis [Color figure can be viewed at
wileyonlinelibrary.com]
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age range across childhood, adolescence, and early adulthood, com-

bined with a data-driven ICA approach, and examined the effect of age

on time-varying brain connectivity in novel ways.

Many of our findings are in line with the previous literature in this

field. As found in several studies using the same method (Allen et al.,

2014; Hutchison & Morton, 2015), there was a state that closely

resembled the mean functional connectivity (FC; i.e., static connectiv-

ity). Interestingly, this average (or canonical) state’s dwell time shows a

strong negative correlation with age, meaning that older participants

(young adults) remain in this state less than young children. Although

we were able to find this relatively strong age effect on state 2 dwell

times, Hutchison and Morton (2015) did not show this effect. Our

results suggest that through maturation the differences between

participants tended to increase and depart more and more from a

canonical connectivity pattern (i.e., as subjects get older the variability

in their networks increase; Vakorin, Lippe, & McIntosh, 2011). This may

be directly related to the effect of environmental influences that

are known to impact long-term outcomes, including differences in

socioeconomic status, trauma, and social factors. It is also important

to note that some neurodevelopmental disorders may emerge in

adolescence because of variability induced by environmental influences.

Interestingly, there were several links both between and within

domains that were present in almost all states but with different

strengths. This can be interpreted in two ways. First, we can conclude

that network organization in humans does not include only static or

only dynamic connections. It is a combination of both these at the

same time. In addition, we can conclude that organization of human

connectivity patterns do not change drastically through development,

but that the integration of these networks shifts across the age spec-

trum. This view is in line with what is reported in Marek, Hwang, Foran,

Hallquist, and Luna (2015).

We also found that age was negatively correlated with the dwell

time of states that show strong connectivity between cognitive control

and default mode domains (Hutchison & Morton, 2015). This connec-

tion might suggest a more effortful link between the default mode net-

work and some of the nondefault cognitive control networks.

However, this speculation needs further confirmation.

Additionally, older participants remained in the more intra connected

default mode domain longer than younger participants (State 1). Similar to

our results, Fair et al. (2008) reported that older participants tended to

have a more intra-connected default mode network. In our study, the

default mode links that appeared only in state 1 were a lot like the network

identified by Supekar et al. (2010), which was stronger in young adults.

As mentioned previously, correlation between age and state transi-

tion number resulted in an almost symmetric matrix. Essentially subjects

transition between a pair of states equally. Basically, the number of times

a participant leaves State a for State b is very similar to the times he/she

goes back to State b from State a. The actual correlation value between

age and transition number is likely caused by the relationship between

number of occurrences of those states and participant age.

Last, we found that older participants remain longer in states

which have a very strong connection in the somatomotor domain. This

is in line with what has been reported previously (Zuo et al., 2010), and

may reflect continued maturation of this system as participants acquire

more motor-based skills with increasing age.

5 | LIMITATIONS

Perhaps the biggest limitation when studying maturation using fMRI is

that motion is highly correlated with age (Power, Barnes, Snyder, Schlag-

gar, & Petersen, 2012). Although we have tried to reduce the impact of

motion on our results, first by omitting subjects with excessive motion,

and then by utilizing both first and second-level strategies for controlling

motion correction, the impact of motion on our results cannot be com-

pletely ruled out. Another limitation is that a cross sectional study (like

this study) does not provide the same information as a longitudinal one.

We are planning future analyses to follow-up these results with longitu-

dinal data. In addition to the mentioned limitations, we have used a sin-

gle MNI atlas in our preprocessing to spatially normalize all subjects to a

common space. This atlas is not recommended for very young children

(i.e., 3 years old), but because using multiple atlases for normalization

within a single study would introduce artificial age-related difference we

used the MNI atlas for normalization of all subjects and manually

checked to ensure the normalization results were of high quality.

6 | CONCLUSION

These results provide evidence of age-related effects primarily impact-

ing the strength of the connections, instead of the organization of

FIGURE 6 Correlation between age and state transition. The
number of state transitions was calculated for each state pair and
then correlated with age controlling for gender, mean framewise
displacement, and scanning site. Results were corrected for
multiple comparison with FDR (p5 .01) and only significant
correlations are displayed in this figure [Color figure can be viewed
at wileyonlinelibrary.com]
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connections. From our results, we conclude that older participants

(young adults) tend to transition between states, which are different

from the states the young children operate between. In sum, we dem-

onstrated that maturation impacts the time varying aspect of functional

connectivity, consistent with prior results determining age effects on

static connectivity patterns. Most importantly, our results suggest that

analyzing brain connectivity assuming only static or dynamic connectiv-

ity conveys only part of the picture, and thus methods are needed to

extract both types of networks simultaneously.
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