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Abstract

Across the expanse of vertebrate evolution, each species produces multiple forms of hemoglobin 

in erythroid cells at appropriate times and in the proper amounts. The multiple hemoglobins are 

encoded in two globin gene clusters in almost all species. One globin gene cluster, linked to the 

gene NPRL3, is preserved in all vertebrates, including a gene cluster encoding the highly divergent 

globins from jawless vertebrates. This preservation of synteny may reflect the presence of a 

powerful enhancer of globin gene expression in the NPRL3 gene. Despite substantial divergence 

in noncoding DNA sequences among mammals, several epigenetic features of the globin gene 

regulatory regions are preserved across vertebrates. The preserved features include multiple DNase 

hypersensitive sites, at least one of which is an enhancer, and binding by key lineage-restricted 

transcription factors such as GATA1 and TAL1, which in turn recruit coactivators such as P300 

that catalyze acetylation of histones. The maps of epigenetic features are strongly correlated with 

activity in gene regulation, and resources for accessing and visualizing such maps are readily 

available to the community of researchers and students.
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Globin genes: a model system for developmental regulation of high-level, 

tissue-specific gene expression

Hemoglobins play a central role in the physiology of species with multiple organs by 

carrying oxygen from a source, such as lungs or gills, to peripheral organs, such as muscles, 

that use the oxygen for aerobic metabolism. Hemoglobins also help carry the product of 

aerobic metabolism, carbon dioxide, back to the organ from which the carbon dioxide is 

expired, and they can modulate the effects of nitrogen oxides. The hemoglobins transport 
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these gases within cells called erythrocytes (or red blood cells); indeed the hemoglobins are 

highly abundant in these cells – and only these cells.

These critical functions of hemoglobins can be understood as an adaptation of multi-organ 

species to the opportunities of an oxygen-rich environment. Globins and the genes encoding 

them are ancient, being found in all three major kingdoms of life [1]. The ancestral heme-

globin complex likely had catalytic oxidation-reduction activity in nitrogen oxide 

metabolism [2–4]. However, this catalytic activity is suppressed in some hemoglobins, 

thereby allowing the hemoglobins to function in gas transport without catalyzing chemical 

reactions. This is the case for vertebrate and invertebrate hemoglobins. The familiar α2β2 

tetrameric structure predominates among vertebrate hemoglobins, but a variety of 

hemoglobin tertiary structures have been described in invertebrates [5]. Furthermore, several 

globins in addition to the classic tetrameric erythroid hemoglobins have been discovered in 

vertebrates. These include myoglobins, cytoglobins, and neuroglobins [6]. Thus the globin 

superfamily is large and pervasive across the biosphere, and members of the superfamily are 

responsible for a wide range of activities [4]. In this review, we will focus on the vertebrate 

hemoglobins (and their genes) responsible for gas transport in the blood.

A remarkable feature of vertebrate hemoglobins is that multiple forms of this protein are 

used for oxygen transport at different stages of development. In placental mammals 

(eutherians), one form of hemoglobin is dominant in erythrocytes circulating in embryos 

(primitive erythrocytes) while a different form is used in adult erythrocytes, and in some 

cases a distinct fetal form is also produced. The different hemoglobins may be adaptive for 

the differences in oxygen tension at the source organs, e.g. needing a higher oxygen affinity 

hemoglobin at the fetal placenta than at the adult lung. However, this production of different 

hemoglobins at progressive developmental stages is not limited to eutherians. To our 

knowledge, every vertebrate organism examined makes different forms of hemoglobin, and 

when they have been studied in a developmental context, distinct forms are made at different 

stages of development. While the full physiological significance of the developmental 

diversity of hemoglobins is not yet understood, it is clear that the multiplicity of 

hemoglobins produced in a developmentally controlled manner is a strongly conserved 

feature across vertebrates, including the jawless vertebrates (agnathans), which are the most 

distantly related extant vertebrate relatives to humans.

The production of different hemoglobins at progressive stages of development has particular 

importance for human health. Hemoglobinopathies such as sickle cell disease and 

thalassemias are the most common forms of inherited disease world-wide [7]. The 

pathophysiology of each of these diseases almost always involves the hemoglobins produced 

during adult life. Thus an enduring hope for potential therapies has been the strategy of 

reactivating the production of hemoglobins that were previously made in fetal life. Recent 

progress in this strategy is based on our understanding of the mechanisms of gene regulation 

in the families of genes encoding the globins.

This review will cover the general themes emerging about regulation of globin gene families 

from an evolutionary and mechanistic perspective. The evolutionary studies are revealing 

common features of hemoglobin gene regulation, which can be understood best by 

Philipsen and Hardison Page 2

Blood Cells Mol Dis. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combining the DNA sequence comparisons of evolutionary approaches with comparisons of 

additional biochemical features, such as chromatin accessibility, histone modifications, and 

transcription factor (TF) occupancy. These latter features are referred to as epigenomic, 

meaning that they are proteins (e.g. TFs) or biochemical modifications (e.g. DNA 

methylation or histone acetylation) that lie on top of (epi-) the genetic material (DNA), but 

do not alter the DNA sequence as such. This review will illustrate how comparisons of 

genomes and epigenomes lead to insights about regulation and human disease. We also will 

point readers to resources for examination of epigenomic data for any gene in human or 

mouse erythroid or related cell types, so that the approaches discussed here can be applied to 

other genes and gene families.

Globin genes are located in multi-gene loci containing embryonic/fetal and 

adult genes

Vertebrates have diversified remarkably since they arose about 550 million years ago (MYA) 

in the early Paleozoic era (Figure 1). An early divergence separated the jawless vertebrates 

(agnathans such as lamprey and hagfish) from those with jaws (gnathostomes). The latter 

large group contains many of the animals familiar to us, including fish (cartilaginous and 

ray-finned), amphibians, reptiles and birds, and mammals. Each major group had separated 

from the others by around 250 MYA, in the early Mesozoic era. Diversification of the 

eutherian mammals is thought to have occurred primarily in the past 65 MY.

Despite the long evolutionary time and striking differences between species, some aspects of 

the arrangements of globin genes have been preserved. Such strong conservation of gene 

arrangement is indicative of a function, such as regulation, that requires the observed 

arrangement. When we observe less change than expected, either in DNA sequence or gene 

arrangement, we infer that changes are disadvantageous and therefore removed from the 

relevant populations; i.e. we infer that the feature was under purifying or negative selection. 

Thus mapping the arrangements of globin genes and their neighbors has been of 

considerable interest for decades. As we will see, the inference that gene arrangement is 

important has been borne out by the discovery that major regulatory elements are located in 

genes or intergenic regions distal to the globin genes.

The first preserved feature of vertebrate hemoglobin genes is their presence in multi-gene 

clusters. The genes encoding hemoglobins have now been mapped across the wide diversity 

of vertebrates [8–19]. In all cases, multiple hemoglobin genes are found together (Figure 2). 

For reptiles, birds, and mammals, the genes encoding α-like globins are clustered together 

on one chromosome, while the genes encoding the β-like globins are clustered on a different 

chromosome. We refer to the former locus as the α-like globin gene cluster or HBA cluster, 

and the latter as the β-like globin gene cluster or HBB cluster. In all cases that have been 

investigated thoroughly, genes at the left side of HBA and HBB clusters (as diagrammed in 

Figure 2) are expressed in embryonic erythrocytes, while genes on the right side of the 

clusters display a broader developmental expression pattern and include the globins 

expressed in adult erythrocytes. While many of the globin genes encode polypeptide 

components of hemoglobin, no protein product has been discovered from the genes labeled μ 
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and θ in Figure 2, despite the presence of orthologous genes in multiple species [6]. Thus a 

role for these genes, if any, remains to be determined.

In fish and amphibians, the genes encoding α-like globins are clustered together with the β-

like globin genes, frequently appearing as pairs of an α-like and a β-like globin gene. In 

zebrafish, the set of α-βgene pairs expressed in early developmental stages is at one end of 

the gene cluster, while those expressed at later stages are at the other end [10]. A similar 

pattern is observed in frogs; the globin genes expressed in tadpoles are separated from those 

expressed in adult frogs [12, 14, 20]. The genome assembly of the frog Xenopus tropicalis is 

not sufficiently complete to address the gene arrangements unambiguously. One possibility 

inferred from the current assembly is shown in the model in Figure 2. The current genome 

assembly of the genome of the elephant shark, representing cartilaginous fish, shows at least 

one cluster with genes encoding α-globin, β-globin, and cytoglobin.

The most distant vertebrate with a genome sequence assembly is the lamprey, an agnathan. 

The globins of lampreys are monomeric and appear to be more closely related to vertebrate 

cytoglobins than to vertebrate hemoglobins, leading to the inference that the gas-transporting 

activity of erythrocyte hemoglobins has arisen twice by convergent evolution [11]. Notably, 

the agnathan hemoglobin genes are arranged as clusters in two different loci (Figure 2, [18]).

The second preserved feature of vertebrate globin gene clusters is the presence of more than 

one multi-gene cluster. In almost all species, two multi-gene clusters have been identified. 

For shark and frog, no clear evidence is available for a second multi-gene cluster, but this 

could reflect the incompleteness of the genome assemblies and correlated work.

The genes flanking the globin multi-gene clusters are conserved across 

vertebrates

Examination of the genes flanking the globin gene clusters reveals three distinct loci, two of 

which are used in each species. In almost all mammals and birds, the HBA cluster is located 

between the NPRL3 and LUC7L genes. The mouse HBA cluster no longer has LUC7L 
downstream of the globin genes (to the right in Figure 2) because of a chromosomal 

rearrangement, but NPRL3 has been retained upstream [8, 13]. The HBB cluster in birds and 

mammals is embedded in a large cluster of OR genes encoding olfactory receptors. Single-

copy genes can be far away from the HBB cluster, but in all cases with sufficient contiguity 

to the genome assembly, the DCHS1 gene is located upstream and the RRM1 and STIM1 
genes are located downstream of the HBB cluster in birds and mammals. A similar 

arrangement appears to be present for the HBA and HBB clusters in turtle, except for an 

inversion downstream of the HBA cluster that may obscure the presence of LUC7L.

The linkage to NPRL3 is also observed for an amphibian (frog) and every species of ray-

finned fish examined (three are shown in Figure 2). These cases can be viewed as a 

combined cluster of HBA and HBB genes adjacent to NPRL3. A second globin gene cluster 

is found on a different chromosome in the ray-finned fish. This cluster is smaller, sometimes 

with three genes, but both α-like and β-like globin genes are found in the smaller cluster 

[10, 21]. This second cluster is adjacent to the genes ARHGAP17 and LCMT1 on one side, 
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and frequently the gene RHBDF1 is on the other side. A paralogous copy of RHBDF1 (i.e. a 

related gene generated by duplication) is also frequently close to the first gene cluster 

containing NPRL3. This second locus is clearly distinct from the OR cluster harboring the 

HBB complex in mammals. The annotation and assembly of the shark genome is less 

complete than for the genomes of ray-finned fish, and while NPRL3 has not been mapped 

unequivocally to the globin gene cluster, the genes RHBDF1 and LUC7L flank the cluster. 

Thus it is possible that the shark globin gene cluster has an arrangement of flanking genes 

similar to that in other vertebrates.

Remarkably, one cluster of agnathan globin genes is also flanked by NPRL3, and the other is 

flanked by RHBDF1 [18]. Therefore even in these distantly related species, two different 

loci harboring globin genes are present, and those loci show similar flanking genes to those 

in the jawed vertebrates.

Examination of globin gene clusters across the full span of vertebrates consistently shows 

that the NPRL3 gene is adjacent to one of the hemoglobin multi-gene clusters. In almost 

every species examined, NPRL3 is located adjacent to the HBA complex or to a combined 

HBA-HBB complex. Current apparent exceptions such as the shark may simply reflect 

incomplete assembly and annotation. Furthermore, NPRL3 is adjacent to a globin gene 

cluster in agnathans [18], despite the substantial divergence of these monomeric 

hemoglobins from the tetrameric hemoglobins in gnathostomes [11].

In summary, a striking picture is emerging of conservation of synteny, clustering, and gene 

order around globin gene loci. Two or more genes present on the same chromosome are 

syntenic, and when such genes are retained in the same order (and often the same 

orientation) in different species, we can be confident in concluding that an ancestral 

arrangement of genes has been preserved over evolution. However, over a large enough span 

of evolutionary distance, chromosomal rearrangements will break synteny. In fact, for 

comparisons across major groups of vertebrates (e.g. mammals and birds), the conservation 

of synteny does not extend much further than the regions shown in Figure 2 [8, 13]. 

Importantly, the phylogenetic span over which synteny and gene order surrounding globin 

gene clusters is conserved appears to be greater than for many other loci. We infer from this 

strong conservation that the surrounding genes are important, and as we will examine later, 

one important function attributed to this arrangement is regulation of globin gene expression.

The HBB cluster in birds and mammals arose by a transposition

The linkage of a globin gene cluster to NPRL3 is found in all vertebrates, and thus we infer 

that this is a characteristic derived from the same arrangement in the ancestral vertebrate. 

The evolutionary history of the other globin gene clusters is more complex. The HBB cluster 

in birds and mammals is in a different locus from the non-NPRL3-linked cluster in fish, and 

thus they do not share a common ancestral arrangement. It is therefore likely that the HBB 
cluster transposed into the DCHS1-OR-RRM1-STIM1 locus in the last common ancestor to 

reptiles, birds, and mammals (Figures 1 and 2, [6, 17]). The source of those globin genes is 

unclear. It could be the genes that were linked to LCMT1. In mammals, no globin genes are 

present around ARHGAP17-LCMT1, and thus one could propose movement from that locus 
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to the OR locus. However, it is also possible that one or more HBB genes from the HBA-

HBB combined locus, linked to NPRL3, was the source. In either scenario, genes were lost 

from one or more of the globin gene loci now seen in contemporary fish, and the transposed 

HBB genes underwent a series of duplications and divergences to form the contemporary 

HBB gene cluster with developmentally regulated genes.

The evolutionary rationale for having separate HBA and HBB gene clusters is thought to be 

that this precludes gene conversion events between HBA and HBB genes, thus promoting 

fine-tuning of the developmental expression patterns and protein sequences of the α-like and 

βlike globins. An instructive example is provided by the two γ-globin genes, encoding fetal 

β-like globins, which have been recently acquired through duplication events in Old World 

monkeys including humans.

Proximal and distal regulation in the multi-gene clusters

The globin genes are expressed exclusively in erythroid cells, they are expressed at 

extremely high abundance when activated, and different genes are expressed at different 

developmental stages. All three aspects of regulation, viz. tissue-specificity, high abundance, 

and developmental control, have been studied intensively, often using groundbreaking 

biochemical, genetic, and genomic approaches. For this review, we will discuss some aspects 

of globin gene regulation that correlate with the evolutionary analyses.

Globin genes have a canonical promoter structure that directs transcription to start at the 

appropriate location. The sequences conferring this promoter-proximal regulation are found 

in common for many globin genes, and include a TATAA box at −30bp from the 

transcription initiation site [22], a CCAAT box at −50bp [23], and a CACCC box at −80bp 

[24]. The TATAA box is a landing platform for the general transcription factor complex 

TFIID, and is considered a hallmark of strong tissue-specific promoters. The CCAAT box is 

a potential binding site for an array of transcription factors, such as the ubiquitously 

expressed hetero-trimeric NF-Y transcription factor [25] and α-CP1 [26]. The CACCC box 

element is recognized by members of the specificity protein/Krüppel-like factor (SP/KLF) 

transcription factor family [27]. This element confers tissue-specificity as it is bound by 

KLF1, the only erythroid-specific member of the 26-strong mammalian SP/KLF family [28, 

29]. The importance of these motifs for high-level globin expression is illustrated by 

promoter variants leading to thalassemic phenotypes in patients [24, 30, 31], and by 

systematic analysis of transgene expression in cultured cells and transgenic mice [9].

By themselves the promoters are insufficient to drive high-level transcription of the globin 

genes in all erythroid cells [32–34]. To achieve this, a series of erythroid-specific enhancer 

elements is typically required. These enhancer elements are also clustered and located 

distally from the globin genes. The globin gene loci provided the earliest evidence for long-

distance regulation in addition to proximal control [35–37]. A series of DNaseI 

hypersensitive sites (DHS) upstream of the human embryonic ε-globin gene (HBE, Figure 

3) [37] was shown to confer position-independent, high-level expression to a linked globin 

gene in transgenic mice [35]. This region was termed the Locus Control Region (LCR) and 

is a defining feature of all mammalian HBB clusters studied to date (orange dots in Figure 

Philipsen and Hardison Page 6

Blood Cells Mol Dis. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2). For the human HBA locus, a major regulatory element was identified located in intron 5 

of the NPRL3 gene [36], which is now referred to as Multispecies Conserved Sequence R2 

(MCS-R2) [13, 38]. Similar to the LCR, the MCS-R2 is also part of a series of erythroid-

specific DHS (Figure 3) [8, 39]. Genetic dissection of the distal regulatory elements has 

shown that both MCS-R1 and MCS-R2 are major regulatory elements [39, 40]. This 

arrangement of multiple DHS is typical for mammalian HBA clusters (Figure 3).

Interestingly, it was found that the importance of the NPRL3 intron 5 MCS-R2 element for 

high-level activation of the globin genes differs between species. Deletion of the 

homologous element in mice resulted in only a modest reduction in α-globin expression 

[40]. We now know that the clustered DHS work together in an additive fashion [39, 41, 42]; 

the NPRL3 intron 5 MCS-R2 element appears to have a more dominant role in α-globin 

gene activation in humans than it does in mice.

The origin of the HBB LCR remains obscure. It could have been derived from the HBA 
MCS-R2, if that part of NPRL3 were included in the transposition. Regulation of the fish 

globin clusters flanked by the ARHGAP and RHBDF genes has not been studied in detail 

yet [10, 21]. One or more DHS have been mapped in this globin gene locus in both Fugu and 

in zebrafish [10, 21], and it is possible that this could be an important regulatory element 

(orange dots in Figure 2). Thus the LCR could also have been be derived from this element. 

Alternatively, the HBB LCR could have arisen de novo, in which case it acquired binding 

sites for an array of transcription factors very similar to those seen in the globin loci linked 

to NPRL3 (Figure 3).

Epigenomic features across mammalian HBA and HBB loci

Despite the different evolutionary paths of the HBA and HBB loci, many aspects of their 

regulation are conserved. Indeed, not only are the genes in both clusters subject to control of 

tissue-specificity, high abundance, and developmental switches, but the production of 

proteins from each locus must be balanced to make the globin polypeptides for the α2β2 

hemoglobin tetramer. Maps of epigenetic features associated with gene regulation have been 

produced across the genomes of erythroid-related cell types in mouse and human, both from 

individual labs and from large consortia. Examination of these maps reveals substantial 

similarities between the HBB and HBA loci, and strong conservation between mouse and 

human (Figure 3). These similarities in maps suggest similarities in regulatory mechanisms.

A cluster of regulatory elements, marked by DHS, is distal to the globin genes in both loci 

(Figure 3). This cluster is referred to as the locus control region, or LCR, for the HBB locus. 

At least one of the DHS in each distal regulatory region is a strong enhancer as assayed by 

gain-of-function reporter gene assays or by deletional analysis. In humans, such strong 

enhancer activity is associated with MCS-R1 and MCS-R2 in the HBA locus and 5′HS2 in 

the HBB LCR. Activated globin genes are marked by a DHS at the promoter and often 

broader, proximal nuclease cleavage sensitivity.

The regulatory elements marked by distal and proximal DHS are occupied by the co-

activator P300 (Figure 3). This enzyme catalyzes the acetylation of lysine 27 of histone H3, 
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leading to a strong signal for H3K27ac, spreading from the positions occupied by P300. Co-

activators are recruited by transcription factors bound to specific sequences. The maps show 

binding by key transcription factors such as GATA2 and GATA1 (at different stages of 

erythroid differentiation) and TAL1 to many of the regulatory elements. Indeed, co-binding 

by GATA factors and TAL1 is strongly predictive of induced expression of target genes [43]. 

Furthermore, more selective binding of NFE2 is observed for strong enhancers, in keeping 

with previous observations that the DNA binding motifs for NFE2 were critical for 

erythroid-specific transcriptional enhancement [8, 36, 44]. Selective binding by the erythroid 

transcription factor KLF1 is also observed at regulatory elements [45–47]. The protein 

CTCF is bound at the extremities of the HBA and HBB loci. Some CTCF-bound sites are 

also bound by components of cohesin, suggesting that they are involved in forming distinct 

structures within the chromatin, which may in turn play roles in demarcating domains of 

regulation [48–50]. Overall, the epigenomic maps at the HBA and HBB loci are strikingly 

similar.

Maps such as those shown in Figure 3 are available genome-wide for a large number 

features, including chromatin accessibility, multiple histone modifications, and many 

transcription factors [51–62]. Expression data for protein-coding and noncoding genes, 

largely from RNA-seq approaches, are also available from a large number of cell types. 

These data can be powerful resources to generate hypotheses about regulation that can be 

tested experimentally by individual investigators. Thus it is important to provide easy access 

to the data. A list of some of these resources, along with URLs, is provided in Table 1. A 

multi-investigator project, called VISION (for ValIdated Systematic IntegratiON of 

epigenomic data in hematopoiesis) is an ongoing effort to compile, integrate and model the 

effects of candidate regulatory elements on expression, to validate those models 

experimentally, and provide the results freely to the community. Figure 3 was generated by 

using a subset of the data compiled and displayed by VISION.

Common epigenomic features across fish and mammalian HBA and HBB 

loci

Similar regulatory landscapes for globin loci are observed across large phylogenetic 

distances. In the time since mammals and ray-finned fish diverged, the genome sequences 

have become quite different. Only a very small subset of the human genome aligns to any 

fish genome, and the alignments are largely confined to protein-coding exons. The 

exceptions of noncoding regions conserved between mammals and fish have proven to be 

dramatic examples of conserved regulatory regions, but these are rare. Not even all protein-

coding exons are conserved between human and fish.

This sparse conservation makes the conserved synteny of HBA loci in mammals with the 

NPRL3-linked globin genes in fish (Figure 2) even more striking. However, when the intron 

in Fugu or zebrafish NPRL3 that should be orthologous to the mammalian intron harboring 

MCS-R2 was searched for alignments with human NPRL3, no meaningful matches were 

detected above the background of random matches [8]. Reasoning that short matches such as 

the binding site motifs for transcription factors may not be detected by large-scale 
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alignments, the relevant introns from Fugu and zebrafish NPRL3 were tested experimentally 

and shown to be active erythroid enhancers [8, 10] (Figure 4). Furthermore, these introns 

have matches to binding sites for the battery of erythroid transcription factors found in 

mammalian globin gene regulatory elements, and ChIP-seq experiments confirm binding. 

This inability to find regulatory elements by interspecies sequence alignments even applies 

within the clade of ray-finned fish. The Fugu Nprl3 intron 5 harboring MCS-R2 aligns with 

the orthologous sequence from several fish, but not zebrafish. Despite the lack of alignment, 

both the Fugu and zebrafish introns have enhancer activity and appear to bind a similar set of 

transcription factors [8, 10, 21]. These examples illustrate the power of epigenomic analysis 

for deep interrogation of regulatory mechanisms. Indeed, conservation of epigenomic 

features may be a particularly effective means of finding active regulatory elements.

The collection of transcription factors binding to MCS-R2 in ray-finned fish is strikingly 

similar to those observed at distal regulatory elements in mammals (Figure 4, C and D). 

High resolution DNase sensitivity maps show footprints, i.e. regions of protection 

(presumably from transcription factor binding) separated by regions of higher cutting [63, 

64]. Those footprints correspond well to the binding site motifs for transcription factors, 

each of which has been shown by ChIP-seq or other assays to be bound. While the exact 

number and pattern of binding sites differs among the regulatory elements, the transcription 

factors bound at the active elements tend to be the same.

Distal regulatory elements are required for high-level expression of the 

globin genes

The mechanism by which the promoters of the globin genes are activated by the distal 

regulatory elements was the subject of fierce scientific debates during the 90s of the previous 

century. A fairly bewildering variety of models were proposed, and while some models were 

more credible than others, most were not mutually exclusive. Even to date, a detailed time-

resolved description of the molecular mechanism is lacking; this will require further 

development of advanced high-resolution microscopy to follow the dynamic changes in 

three-dimensional organization of the globin loci in living cells. One model proposed release 

of RNA polymerase II from the LCR, which would then track along the DNA and start 

transcription at the first available promoter it encountered [65]. For the chicken HBA locus, 

a full locus transcript including all the globin genes was reported [66]. Linking of the LCR 

to the globin promoters via extended protein bridges was another model for transcriptional 

activation [67]; local repression of embryonic/fetal promoters would prevent activation of 

these genes in adult erythroid cells. An alternative model, not necessarily excluding a role 

for most of the other proposed mechanisms, was derived from observations made in bacterial 

systems in which the formation of DNA loops was observed to accommodate protein-protein 

interactions between DNA-bound transcriptional regulators [68]. Indirect support for the 

looping model was obtained from transgenesis experiments in which the position and/or 

order of genes and regulatory elements was changed [69–72]. The first direct support was 

obtained using RNA-fishtrap, a method that tags and recovers chromatin in the immediate 

vicinity of an actively transcribed gene. This revealed that 5′HS2 of the LCR is in close 

physical proximity to the actively transcribed β-globin gene [73]. Development of 

Philipsen and Hardison Page 9

Blood Cells Mol Dis. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chromosome Conformation Capture (3C) enabled investigation of the three-dimensional 

structure of loci inside the nucleus independent of transcriptional status [74]. Initially 

developed in vitro [75], then in yeast [74], adaptation of 3C to analysis of mammalian cells 

showed that, in adult erythroid cells, the DHS of the LCR come in close spatial proximity 

with the promoter of the β-globin gene, with the intervening DNA looping out [76]. No such 

interactions were observed in non-erythroid cells. The LCR-promoter interactions were 

developmentally regulated, leading to the proposal that the DHS form a holo-complex which 

facilitates activating interactions preferentially with the nearest accessible globin promoter 

[77]. Binding of repressors to embryonic/fetal globin promoters in adult erythroid cells 

would exclude participation in this structure, which was termed the active chromatin hub 

(ACH). Key erythroid transcription factors KLF1 [78] and GATA1 [79] were found to be 

required for ACH formation in adult erythroid cells. Remarkably, tethering the self-

association domain of the GATA1 cofactor LDB1 to the γ-globin promoter forced LCR 

looping to the γ-globin promoter and resulted in significant reactivation of the fetal gene in 

adult erythroid cells [80]. For the HBA locus, similar mechanisms are operational [39]. Of 

note, a single nucleotide polymorphism (SNP), located between the upstream DHS and the 

α-globin genes, was shown to create a decoy promoter interfering with normal activation of 

the downstream α-globin genes. This single SNP is the cause of α-thalassemia in 

individuals from Melanesia, illustrating that altered chromatin loop formation can be the 

underlying cause of human disease [81].

How loop formation is achieved remains to be elucidated. Looping requires that regulatory 

elements sample the nuclear space in order to come in close proximity to each other. We 

know that the likelihood of in cis enhancer – promoter interactions decreases with distance 

[69, 70, 82]. Recent investigations of the three-dimensional organization of the genome have 

revealed that chromatin is compartmentalized by several mechanisms, such as association 

with the nuclear lamina [83, 84] and division in topologically associated domains [85]. In 

addition, the high local densities of proteins and nucleic acids at enhancers and promoters 

may result in the formation of membraneless organelles, called cellular bodies, which are 

formed by a process termed phase separation. It has been proposed that the formation of 

such phase-separated multi-molecular assemblies are an essential feature for the function of 

super-enhancers [86], clusters of DHS such as those found in the HBA and HBB loci.

Super-enhancers for robust regulation

Recently, clusters of hypersensitive sites such as those found in the HBA and HBB loci have 

been re-branded as super-enhancers [87]. The multiple DHS and extensive histone 

modifications in the super-enhancers have been interpreted as indicating a large, interacting 

complex of regulatory elements that together produce a stronger regulatory effect than the 

individual elements acting separately. Such a model predicts that the regulatory elements in 

a super-enhancer would act synergistically. However, a recent study examining the effects of 

deleting each of the five DHS of the HBA locus super-enhancer, singly and in combination, 

demonstrated that individual DHS act independently of the other four elements. The DHS 

operated in an additive fashion with respect to hematological phenotype, gene expression, 

chromatin structure, and chromosome conformation [39]. These results are entirely 

consistent with earlier studies on the HBB LCR [41, 42, 88–94]. The magnitude of the 
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effects of the deletions of individual elements differed widely. In the HBA complex, deletion 

of each of two of the candidate regulatory elements with all the hallmarks of enhancers 

(DNase hypersensitivity, histone modifications indicative of active chromatin, binding by 

key transcription factors, enhancer RNAs, interactions with promoters, interspecies sequence 

conservation) had almost no impact on expression [39]. This result shows that these 

candidate regulatory elements are dispensable for globin gene expression in a laboratory 

setting, but it does not preclude a role under other conditions.

We suggest that, rather than facilitating synergistic interactions or higher-order effects on the 

3D structure of the hemoglobin loci, the super-enhancer architecture in the HBA and HBB 
loci provides robustness to the system. Such robustness may be the main force driving 

evolutionary selection on the complex enhancers of the globin loci. Multiple regulatory 

elements acting independently ensure that expression of the globin genes is fully activated in 

the vast majority of red cells being produced [95]. Given that an adult human needs to 

produce over 2 million new erythrocytes every second to replenish worn-out erythrocytes, 

this is not a trivial consideration.

Developmental regulation of globin gene expression: hemoglobin 

switching

The recent insights in molecular control of hemoglobin switching elegantly combine the 

concept of activation of the individual globin genes by the distal regulatory elements via 

interactions with the globin promoters. The appearance of specific repressor proteins during 

development renders the promoters of the embryonic/fetal globin genes inaccessible for 

activation, shifting the DHS-promoter interactions to the adult globin genes. Notably, in the 

vast majority of cases the embryonic/fetal globin genes are located closer to the DHS along 

the genomic DNA, with the adult genes located more distally in the locus. Experimentally, 

the importance of gene order, direction, and distance to the DHS has also been demonstrated 

using a variety of transgenic approaches in mice [69–72]. The essential role of repressor 

proteins in orchestrating the switch from embryonic/fetal to adult globin gene expression has 

now been firmly established with the identification of a regulatory circuit involving MYB 

[96], KLF1 [97, 98], BCL11A [99] and LRF (also called Pokemon or ZBTB7A) [100]. In 

adult erythroid cells, MYB activates expression of KLF1, a major activator of terminal 

erythroid differentiation [101]. KLF1 is a positive regulator of BCL11A [97, 98] and LRF 

[102] expression, two transcription factors which act as direct repressors of the embryonic/

fetal globin genes. Since KLF1 preferentially activates adult globin genes [103, 104], this 

MYB-KLF1-BCL11A-LRF regulatory circuit results in high-level expression of adult globin 

genes and very efficient repression of the embryonic/fetal genes in adult erythroid cells. 

Clinically, this regulatory circuit provides rational targets for directed genome editing in 

somatic cells or development of novel drugs aimed at reactivation of the fetal β-like globin 

genes in patients with β-thalassemia and sickle cell disease. A promising recent study 

showed that removal of a repressor binding site upstream of the γ-globin genes led to 

substantial increase in fetal hemoglobin and reduced sickling in cells derived from sickle 

cell patients [105]. While classical transcription factors lack domains with catalytic activity 

and are therefore as such not very attractive drug targets, they are known to require a host of 
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co-factors in order to exert their functions. These co-factors include histone- and DNA 

modification enzymes and chromatin remodelers, for which an arsenal of pharmacologic 

inhibitors is available. Thus, targeting (a combination of) these co-factors is currently a very 

active area of research. An early example is provided by treatment of a β-thalassemia patient 

with the DNA methyltransferase inhibitor 5-azacytidine, which resulted in increased fetal 

hemoglobin expression [106, 107]. This experimental treatment was stopped because of 

concerns about toxicity, and it remains controversial whether the effects of 5-azacytidine are 

directly related to inhibition of DNA methylation or due to other metabolic changes in the 

erythroid cells [108]. Mixed results have been reported on the fetal hemoglobin inducing 

activities of inhibitors of histone deacetylases [109, 110] and the histone demethylase LSD1 

[111, 112]. It is nevertheless encouraging that the increasingly detailed knowledge of the 

developmental regulation of globin gene expression provides guidance to the development of 

desperately needed novel pharmacological regimes for the treatment of β-hemoglobinopathy 

patients. In addition, successful gene therapy of β-hemoglobinopathy patients has been 

reported for a small number of cases [113, 114]. The gene therapy vectors are based on what 

could be viewed as an ultra-condensed version of the HBB locus, depending entirely on the 

inclusion of core regulatory elements of the LCR and the β-globin gene to drive high-level 

erythroid-specific expression of the therapeutic globin gene [115].

In conclusion, the study of globin loci across the vertebrate kingdom has yielded a wealth of 

information about developmental regulation of multigene loci and provided a paradigm for 

understanding spatio-temporal transcriptional control of more complex gene clusters such as 

the HOX loci [116]. Furthermore, the detailed studies on evolution of the globin gene 

clusters have helped to reveal the molecular mechanisms underlying gene regulation in 

higher eukaryotes. This has profoundly contributed to our understanding of human genetic 

disease in general, and paved the way for development of novel treatments of the 

hemoglobinopathies, the most common monogenic disorders in the human population.
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Figure 1. Major events in globin gene clusters during vertebrate evolution
The branching pattern for major vertebrate groups is shown along with a time scale for 

divergences (millions of years ago, MYA). The labels indicate the inferred times and 

phylogenetic spans of the presence or movement of specific globin gene clusters.
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Figure 2. Globin gene clusters across a wide span of vertebrate species
The arrangement of globin genes and their flanking genes are shown for contemporary 

species ranging from the jawless vertebrate lamprey to humans. Each gene is shown as a 

rectangle; those positioned above the lines are transcribed from left to right, those positioned 

below the lines are transcribed from right to left. Orthologous genes are indicated by 

rectangles of the same color; boxes for α-like globin genes are yellow and those for β-like 

globin genes are red. Genes flanking the globin genes are named at their first appearance 

from the top of the diagram, and names of genes diagnostic for the types of clusters are 

repeated at the bottom. Almost all species have two of three major clusters. The cluster 

containing NPRL3 is found in all species, and is indicated by flanking genes in shades of 

purple and orange. The cluster containing LCMT1 is found in ray-finned fish, and is 

Philipsen and Hardison Page 21

Blood Cells Mol Dis. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicated by flanking genes in shades of green. The cluster containing DCHS1 and RRM1 is 

found in reptiles, birds, and mammals, and it is indicated by flanking genes in shades of 

blue. The latter clusters contain what can be a large number of olfactory receptor (OR) 

genes, and thus only representative OR genes are shown in the figure. An orange dot 

indicates the major distal enhancer for globin gene clusters in species for which 

experimental evidence has been obtained for such activity. The figure summarizes maps 

presented in publications (see references in text) or gleaned from annotations of genome 

sequences.
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Figure 3. Epigenetic features in HBA and HBB clusters in mouse and human
For each gene cluster, the first row shows the positions of genes, followed by tracks for 

known cis-regulatory modules (CRMs, red boxes), accessible chromatin measured by 

ATAC-seq or DNase-seq, occupancy by the co-activator P300, modification of chromatin at 

histone H3 acetylated on lysine 27 (H3K27ac), and occupancy by GATA2, GATA1, TAL1, 

NFE2, KLF1, and CTCF. Numbers to the left of each signal track give the maximum value 

for the signal shown; only peak positions are shown for KLF1 binding in human HUDEP-2 

cells [102]. The values were obtained from different programs and thus are not comparable 

between tracks, but the signal values along each track are meaningful. The orange dots 

indicate major distal enhancers. The transcriptional orientation of globin genes is from left 

to right. Maintaining consistency in orientation of the globin genes required a reversal of 

orientation from the reference genome sequence for the HBB clusters; this is indicated by 

showing the direction to the nearest telomere as TEL>. The epigenetic features were 

determined either in primary erythroid cells and tissues or in cell lines with erythroid 

character. Abbreviations for cell types are: ERY=erythroblast from mouse bone marrow, 

FL=fetal liver (mouse or human), G1E=immortalized erythroid-differentiated mouse ES 

cells with a knockout of the Gata1 gene, K1ER=immortalized erythroid-differentiated 

mouse ES cells with a knockout of the Klf1 gene that have KLF1 restored as a fusion with 

an estrogen receptor domain, K562 or K56=transformed human cell line that has some 

erythroid properties, HUDEP-2=immortalized human erythroid progenitor cell line, and 

PBDE=peripheral blood derived erythroblasts from humans. The data are from many 

sources (see references in text), and can be viewed and downloaded from resources of the 

VISION project (URL is in Table 1).
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Figure 4. Conservation of epigenetic signals versus genome sequences in distal regulatory regions 
of globin gene clusters
(A) Binding of GATA1 and DNase accessibility at the major regulatory element (MCS-R2) 

for the globin gene cluster on chromosome 3 of zebrafish. The signal tracks are from Figure 

4 of Ganis et al. [10]; they are aligned with a gene map from the genome assembly. The 

proteins inferred to be bound at MCS-R2 are shown as colored icons in the zoomed-in view. 

(B) Genome sequence conservation and divergence at MCS-R2 in other fish. The HBA 
cluster from Fugu on chromosome 5 is shown, highlighting the MCS-R2 by showing the 

inferred proteins bound. Underneath the gene map is a track showing the likelihood that 

DNA segments are under purifying selection. That PhyloP Cons score is estimated from 

sequence alignments of multiple species, which are shown as dark rectangles indicating 

aligned sequences. Note that the intron containing the Fugu MCS-R2 aligns with sequences 

from three other fish, but not to zebrafish. (C) DNase footprints for the HBA MCS-R2 in 

humans. The high density DNase-seq analysis [63, 64] was done on highly erythroid human 
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fetal liver (FL) tissues and in K562 cells. Regions of frequent cleavage (greater accessibility 

in chromatin) have a high signal on the tracks. Positions of bound transcription factors, 

determined from other studies, are shown as colored icons. (D) DNase footprints for the 

HBB LCR 5′HS2 in humans.
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Table 1

Resources for obtaining and visualizing epigenetic data

Project Description or goal URL

VISION Generate and compile epigenomic data: integrate, model, and validate. Focus on 
erythro-myeloid lineages

http://www.bx.psu.edu/~giardine/vision/

CODEX Curated collection of epigenomic data in hematopoietic cells and stem cells http://codex.stemcells.cam.ac.uk

ENCODE Generate and integrate epigenomic data across a wide variety of cell types https://www.encodeproject.org

BLUEPRINT Generate epigenomic in human hematopoietic cells http://www.blueprint-epigenome.eu/
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