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Abstract
Introduction The ability to maintain good performance with low cognitive load is an important marker of expertise. Incor-
porating cognitive load measurements in the context of simulation training may help to inform judgements of competence.
This exploratory study investigated relationships between demographic markers of expertise, cognitive load measures, and
simulator performance in the context of point-of-care ultrasonography.
Methods Twenty-nine medical trainees and clinicians at the University of Toronto with a range of clinical ultrasound
experience were recruited. Participants answered a demographic questionnaire then used an ultrasound simulator to per-
form targeted scanning tasks based on clinical vignettes. Participants were scored on their ability to both acquire and
interpret ultrasound images. Cognitive load measures included participant self-report, eye-based physiological indices,
and behavioural measures. Data were analyzed using a multilevel linear modelling approach, wherein observations were
clustered by participants.
Results Experienced participants outperformed novice participants on ultrasound image acquisition. Ultrasound image
interpretation was comparable between the two groups. Ultrasound image acquisition performance was predicted by
level of training, prior ultrasound training, and cognitive load. There was significant convergence between cognitive load
measurement techniques. A marginal model of ultrasound image acquisition performance including prior ultrasound training
and cognitive load as fixed effects provided the best overall fit for the observed data.
Discussion In this proof-of-principle study, the combination of demographic and cognitive load measures provided more
sensitive metrics to predict ultrasound simulator performance. Performance assessments which include cognitive load can
help differentiate between levels of expertise in simulation environments, and may serve as better predictors of skill transfer
to clinical practice.
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What this paper adds

High cognitive load during simulation training is associ-
ated with impaired learning and incomplete skill transfer to
clinical practice. Measuring cognitive load can thus help to
identify individuals whose skills are not fully consolidated.
Using cognitive load measures in this way requires a higher
standard of validity evidence than currently exists in the lit-
erature. Using point-of-care ultrasonography as a model,
this study provides a proof-of-principle for how multiple
cognitive load measures can be incorporated to strengthen
validity claims. Across the expertise continuum, ultrasound
simulator performance was most sensitively predicted by
a combination of prior ultrasound training and cognitive
load.
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Introduction

Simulation-based surgical and procedural skills training of-
fers the ability to ensure patient safety while providing
a standardized learning environment that is useful for both
trainees and their clinical teachers. While the benefits of
simulation-based training can exceed those of traditional
clinical education for the acquisition of specific skills [1],
evidence for inferring clinical competence on the basis of
simulation training alone remains limited [2, 3]. Though
commonly used, time and error-based metrics have shown
to be insufficient for predicting transfer from the simulation
environment to clinical practice [4, 5]. Establishing rigor-
ous criteria to make judgements about trainee competence
represents a key ongoing priority in simulation research [6].

Trainees’ ability to learn complex skills may depend on
the level of cognitive load they experience during simula-
tion training. Cognitive load refers to the degree to which
a learner’s limited working memory is occupied during
a learning task [7]. Working memory is used to process
new information from the instructional environment and en-
code it into long-term memory in organizational structures
known as schemas. Cognitive load theory proposes that an
instructional design contributes to two principal types of
cognitive load: intrinsic and extraneous [8]. Intrinsic load
represents the working memory resources required to com-
plete the learning task, and is influenced by both the element
interactivity of the task (i. e. the number of essential task
elements that must be processed simultaneously) and the
sophistication of the learner’s existing schemas [7]. Tasks
with a greater number of interacting elements are associated
with higher levels of intrinsic load. For example, perform-
ing a procedure on a task trainer while simultaneously com-
municating with a standardized patient has a higher intrinsic
load than performing the procedure alone [9]. As expertise
develops, task schemas become automated and occupy less
space in working memory [10]. This implies that achieving
equivalent performance on a task will be associated with
less intrinsic load for an expert than for a novice. Extrane-
ous load refers to the working memory resources allocated
towards processing aspects of the instructional design that
do not contribute to task performance. Extraneous load can
arise from multiple sources including how the task is pre-
sented [8], the physical environment [11], and the learner’s
emotions [12].

Cognitive load theory focuses on how to design instruc-
tion such that maximal working memory resources are de-
voted towards increasingly expert-like schema construc-
tion. According to this theory, learning can be impaired
if a learner’s total cognitive load (intrinsic load + extra-
neous load) exceeds his or her working memory capacity
[7]. Empirically, simulation training under high cognitive
load conditions has been associated with impaired learn-

ing and incomplete skill transfer to other simulated tasks
and environments [12, 13]. Measuring cognitive load dur-
ing simulation training may thus help to identify individuals
whose skills are not fully consolidated [4, 13]. Using cogni-
tive load measurement to inform judgements of competence
demands a high standard of validity evidence [14]. To date,
the measurement of cognitive load in simulation settings
has been reliant on retrospective, self-reported data [14],
with some preliminary validity evidence for more objective
measures such as secondary tasks [15] and physiological
indices [16].

This exploratory, proof-of-principle study investigated
the correspondence of multiple cognitive load measures
within the specific context of simulation-based point-
of-care ultrasonography (POCUS). POCUS in internal
medicine involves limited examinations that are performed
at the bedside in support of specific diagnostic or proce-
dural aims [17]. In contrast to the comprehensive training
required by radiologists and sonographers, there is cur-
rently little consensus as to the training and competency
requirements for internists to use POCUS safely in the clin-
ical environment [18]. While preliminary evidence suggests
that training with a high fidelity simulation is effective in
preparing trainees for simulation-based POCUS assessment
[19], there is little evidence to support direct clinical trans-
fer. In this study, we set out to understand whether cognitive
load measures could inform our understanding of the cor-
respondence between clinical expertise and performance
on simulated POCUS tasks. Specifically we examined re-
lationships between: a) demographic markers of clinical
expertise (i. e., level of training, prior clinical point-of-care
ultrasound experience); b) measures of cognitive load; and
c) ultrasound simulator performance.

Methods

Participants

A sample (n = 29) of trainees and clinicians affiliated with
the University of Toronto and currently practising in inter-
nal medicine, emergency medicine or intensive care was
recruited via emails sent by a research coordinator. Partic-
ipants included medical students (n = 3), junior residents
(n = 4), senior residents (n = 14), and staff physicians (n = 8)
with varying levels of clinical experience with point-of-care
ultrasound. While this was primarily a convenience sample
based on participant availability, we purposefully selected
for variation in clinical experience. The majority of partic-
ipants (24, 83%) were primarily affiliated with general in-
ternal medicine. This study was approved by the Research
Ethics Board at the University of Toronto and participants
were offered a $10 gift card as compensation for their time.
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Procedure

This study adopted a single-group repeated measures de-
sign. Participants were tested individually in a simulation
laboratory. After obtaining written consent, all partici-
pants completed (1) a demographic questionnaire to assess
their level of prior ultrasound training, clinical point-of-
care ultrasound experience, and prior simulator exposure;
and (2) a brief, paper-based structure-labelling exercise of
a clinical ultrasound image to assess baseline ultrasound
interpretation skills. Thereafter, each participant put on
a pair of head mounted eye tracking glasses (SensoMotoric
Instruments GmbH, Teltow) and was led through a 3-point
calibration exercise according to manufacturer instructions.
We were unable to obtain eye tracking data for one partic-
ipant due to a technical malfunction with the eye tracking
glasses.

Binocular eye data were collected continuously at a fre-
quency of 30Hz. Video and audio recordings of each partic-
ipant were obtained through two cameras (one mounted on
the eye tracker and another mounted on a stand). Ultrasound
scanning tasks were performed using the Vimedix Ultra-
sound Simulator (CAE Healthcare, Saint-Laurent), which
includes a mannequin and a haptic probe. The diagnostic
labels of the pre-programmed pathologies were concealed
on the ultrasound monitor (stealth mode). To conclude the
data collection protocol, all participants completed a feed-
back questionnaire about their perceptions of the realism of
the ultrasound simulator (0 = not realistic; 4 = extremely
realistic) and their opinion on whether simulators should
be a standard part of an ultrasound curriculum. The aver-
age time required to complete the data collection protocol
was 25min.

Outcomemeasures

Ultrasound image acquisition

Our primary performance outcome was participants’ abil-
ity to acquire a clinically interpretable image using the
ultrasound simulator. Participants were presented with six
scenarios of variable difficulty, each of which prompted
them to scan the mannequin for a pre-programmed rele-
vant pathology. The scenarios were designed to assess ul-
trasound skills pertinent to internal medicine training and
were finalized following a series of pilot studies. For exam-
ple, easy scenarios required visualization of a major organ
such as the liver or kidney. Easy scenarios were low in el-
ement interactivity in that the essential task elements could
be processed sequentially: placing the ultrasound probe on
the mannequin at a known landmark position, recognizing
a defined structure with typical anatomy, and perhaps ad-
justing the probe position slightly if the image was unclear.

More difficult scenarios required participants to scan for
a pathological finding such as a small pocket of ascites or
a pleural effusion. These scenarios were higher in element
interactivity, in that the participant was required to move
the probe over a larger area of the mannequin while simul-
taneously comparing the acquired image against schemas
for both typical and atypical anatomy. During the study, the
task stems were projected on an adjacent laptop computer
screen in a standardized but random order in terms of diffi-
culty to minimize any carryover effect secondary to practice
and learning. Participants were asked to verbalize relevant
findings and commit to a diagnosis within the 2min allo-
cated for each task. Image acquisition quality was scored in
real-time by a single rater (SA) utilizing a 3-point checklist
(0 = could not visualize; 1 = acceptable view; 2 = excellent
view). A second rater (RBC) scored video recordings of
a randomly selected subset of 8 participants, representing
28% of the total data set.

Ultrasound image interpretation

To ensure that any performance deficits in ultrasound image
acquisition were not due to lack of anatomical knowledge,
we independently assessed participants’ ability to interpret
ultrasound images. Following each of the six scenarios, we
displayed a clear image of the target pathology that we
had previously acquired from the ultrasound simulator and
asked participants to verbally identify the relevant anatom-
ical structures. The number of structures for each scenario
ranged from 1 to 4 and each structure was scored as either
correct or incorrect. The total image interpretation score for
each task ranged from 0 to 1 and represented the average
number of correct structure identifications.

Cognitive load

We used two self-report questionnaires to measure the sub-
jective total cognitive load of each scenario: the Paas scale
[20] and the NASA Task Load Index (NASA-TLX) [21].
The Paas scale is a single-item measure of invested mental
effort (1 = very, very low mental effort; 9 = very, very high
mental effort). The NASA-TLX provides an overall work-
load score (range: 0–120) that is calculated as the sum of six
20-point subscales: mental demand, physical demand, tem-
poral demand, performance, effort and frustration. Partici-
pants completed both questionnaires immediately after each
scenario. Physiological measures of total cognitive load in-
cluded left pupil diameter (mean and range) and blink rate
[22]. Based on pilot data, we also investigated whether total
scanning time and the rate of gaze shifts between the hap-
tic probe and the ultrasound monitor were associated with
other cognitive load measurements.
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Data analysis

All data analyses were carried out in SPSS version 22 (IBM,
Redmond). Statistical significance was interpreted as a p-
value less than 0.05.

Demographic measures

The first quartile value (35) of the self-reported number
of clinical point-of-care ultrasound procedures performed
(range: 0–300) was used to classify participants into expe-
rienced (n = 8, ≥35 procedures) and novice (n = 21, <35 pro-
cedures) groups. Four-point ordinal scales were constructed
for level of training (0 = medical student; 1 = junior res-
ident; 2 = senior resident; 3 = staff) and prior ultrasound
training (0 = none; 1 = informal; 2 = brief; 3 = extensive).
Prior simulator exposure was scored as a dichotomous vari-
able (0 = no; 1 = yes). Independent samples t-tests were
used to compare mean levels of each demographic vari-
able. We corrected for degrees of freedom when the Lev-
ene’s test for equality of variances resulted in a p-value
less than 0.05 (i. e., variances were significantly different
between groups).

Comparisons and predictors of ultrasound simulator
performance

We used multilevel linear modelling (MLM) to analyze re-
peated measures data. MLM is an extension of multiple
linear regression that can account for correlations between
observations and errors as well as unbalanced designs and
unequal variances between groups [23–25]. In MLM, the
dependent variable is modelled as the sum of fixed effects of
one or more independent variables, random effects owing
to the particular sampling strategy employed, and errors.
Our modelling approach included testing for both random
slope and random intercept effects [26]. If random effects
were not significant, we substituted marginal, also known
as population-averaged, models that included scenario as
a repeated effect [27].

We analyzed 4 of the 6 scenarios for performance dif-
ferences between experienced and novice participants. We
excluded the first scenario to minimize any performance
or cognitive load effects associated with simulator famil-
iarization and excluded an additional scenario due to the
presence of a simulator artefact that was interpreted incon-
sistently across the participant group. Inter-rater reliability
for ultrasound image acquisition performance was assessed
based on the intraclass correlation coefficient (ICC, two-
way random model, single measure, absolute agreement)
and Cronbach’s alpha (α). We constructed separate mod-
els for ultrasound image acquisition and ultrasound image
interpretation performance and tested the fixed effect of

expertise, coded as a dichotomous variable (0 = novice;
1 = experienced). Each model contained 116 observations
(29 participants × 4 tasks).

We then tested predictors of our primary outcome vari-
able, ultrasound image acquisition performance. We first
tested the fixed effects of individual predictors (i. e., level
of training, prior ultrasound training, cognitive load) and
then tested all possible combinations of predictors, using
the likelihood ratio criterion to select the best fitting model.
Using this criterion, a smaller value indicates a better fitting
model [25].

Processing of eye tracking data

Following data collection, all data files from the eye tracker
were imported into the BeGaze 3.5 software package (Sen-
soMotoric Instruments GmbH, Teltow). To determine the
precise start and end points of each scenario, we reviewed
all videos in the Scan Path data view, which displays the
gaze position of the participant plotted on a video of the
scene. The start point of the task was interpreted as the first
video frame in which the gaze position was superimposed
on the ultrasound monitor after the participant placed the
probe on the mannequin. The end point of the task was the
moment after the participant stated his or her finding or
abandoned the task. Both values were recorded in seconds
to 3 decimal places. We subtracted the start time from the
end time to obtain the total scanning time in seconds. The
number of gaze shifts represented the number of separate
instances the participant’s gaze fixated on the ultrasound
monitor. We divided this number by the total scanning time
in seconds and multiplied it by 60 to arrive at a value for
gaze shift rate per minute.

For each scenario, a raw data file including a time-
stamp, left and right pupil diameter in mm, and type of
event (i. e., fixation, saccade, or blink) for each eye mea-
surement sample was exported from BeGaze in ASCII text
format. These files were then imported into SPSS version 22
(IBM, Redmond). The timestamp value was converted to
time in seconds and filtered according to the start and end
times recorded for each task. Blink rate was recorded as
the percentage of samples that were labelled as blinks by
a proprietary algorithm in BeGaze. Following literature-
based practices, we calculated means and standard devia-
tions of samples labelled as fixations where the left pupil
diameter was greater than 0 [28, 29]. Outlying samples
greater than 3 standard deviations from the trial mean were
removed and means and standard deviations were recalcu-
lated. Means, standard deviations and ranges for left pupil
measurements were recorded for each scenario.

To verify that the eye tracking glasses could detect varia-
tions in pupil diameter related to changing mental demands,
we performed an additional calibration task with 18 partic-
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Table 1 Demographic characteristics of study participants

Demographic variable Experienced
(n = 8)
mean ± SD

Novice
(n = 21)
mean ± SD

t-test comparisons Effect size

t df p-value d 95% CI

Level of traininga 2.75 ± 0.46 1.62 ± 0.87 –3.49 27 <0.01 1.45 0.55 to 2.35

Prior ultrasound trainingb 2.25 ± 0.71 1.71 ± 0.64 –1.95 27 0.06 0.81 –0.03 to 1.65

Prior clinical point-of-care
ultrasound procedures

107 ± 94 12 ± 11 –2.83 7.07d 0.03 0.99 0.13 to 1.84

Prior simulator exposurec 0.75 ± 0.46 0.43 ± 0.51 –1.63 13.85d 0.13 0.66 –0.18 to 1.49

SD standard deviation, df degrees of freedom, d effect size (Cohen’s d), CI confidence interval
a0 medical student, 1 junior resident, 2 senior resident, 3 staff physician
b0 none, 1 informal, 2 brief, 3 extensive
c0 no, 1 yes
ddf corrected to account for unequal variances

ipants. While wearing the eye tracking glasses, participants
were instructed to verbally respond to two multiplication
questions administered in an easy-to-difficult sequence. Be-
tween question 1 (2 × 5) and question 2 (16 × 32), we noted
an average increase in maximum pupil size of 0.53mm,
which was in line with expected variation [22].

Comparison of cognitive load measures

To test for agreement between the different cognitive load
measures, we constructed a separate MLM model for each
measure (i. e., NASA-TLX, pupil diameter mean, pupil di-
ameter range, blink rate, total scanning time, gaze shift
rate). In each model, the dependent variable was the Paas
scale rating and the measure to be tested was modelled as
a fixed effect. Observations from the four scenarios were
clustered by participant. The NASA-TLX model was based
on 116 observations (29 participants × 4 tasks), while the
remainder of the models were based on 112 observations
(28 participants × 4 tasks).

Participant feedback

An independent samples t-test was used to compare percep-
tions about the realism of the ultrasound simulator between
the novice and experienced participants.

Results

Demographic measures

Experienced participants were significantly more advanced
in their training and had completed a significantly greater
number of clinical point-of-care ultrasound procedures (Ta-
ble 1). These participants also tended to have higher lev-
els of prior ultrasound training and simulator exposure,
though comparisons did not reach levels of statistical signif-

icance. Experienced participants outperformed novices on
the structure labelling pretest (MExperienced = 0.97/1.00, SD =
0.09;MNovice = 0.71/1.00, SD = 0.35; t25.29 = –3.11, p < 0.01,
d = 1.28, 95% CI 0.41 to 2.16).

Comparisons and predictors of ultrasound simulator
performance

Fig. 1 illustrates performance comparisons between the two
groups across the 4 scenarios analyzed. Using marginal
models with scenario included as a repeated effect, we
found a significant fixed effect of expertise on ultrasound
image acquisition performance. The marginal model in-
cluded an intercept, B = 1.59, SE = 0.13, 95% CI 1.33
to 1.86, t114 = 11.90, p < 0.001, and a significant fixed ef-
fect of being classified a novice, B = –0.34, SE = 0.16,
95% CI –0.66 to –0.03, t114 = –2.18, p = 0.03. The average
experienced participant score can be interpreted as the in-
tercept estimate of 1.59 (out of a maximum score of 2) and
the average novice score can be calculated as 1.25 (i. e.,
1.59–0.34). The covariance estimate for repeated measures
was significant, B = 0.57, SE = 0.08, 95% CI 0.44 to 0.74,
Wald Z = 7.55, p < 0.001, supporting our choice of model.
Inter-reliability for a single measure of image acquisition
was acceptable, ICC(2,1) = 0.61, 95% CI 0.34–0.79; α =
0.76. The model for image interpretation performance in-
cludes an intercept, B = 0.89, SE = 0.05, 95% CI 0.79 to
0.98, t114 = 18.70, p < 0.001, and a non-significant fixed ef-
fect for having a novice classification, B = –0.05, SE = 0.06,
95% CI –0.16 to 0.06, t114 = –0.87, p = 0.38. The covariance
estimate for repeated measures was again significant, B =
0.07, SE = 0.01, 95% CI 0.06 to 0.09, Wald Z = 7.55, p <
0.001.

When tested individually, level of training, prior ultra-
sound training, and cognitive load (Paas scale rating) all
predicted ultrasound image acquisition performance on
MLM analyses (see the Electronic Supplementary Mate-
rial (ESM), Tables A-1, A-2 and A-3). In particular, high
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Fig. 1 Comparisons of experienced and novice performance in: a ultrasound image acquisition; b ultrasound image interpretation. Scenarios:
1 right kidney, 2 large pericardial effusion, 3 fluid in Morison’s pouch, 4 moderate pleural effusion. Notes: Scenarios are ordered here according
to expected difficulty, but were completed in a different order by participants. The y-axes depict the full range of possible performance scores

Fig. 2 Relationships between cognitive load rating (Paas scale) and image acquisition performance for: a Novice participants (n = 21); b Experi-
enced participants (n = 8)

cognitive load was associated with poor performance for
novices, whereas experienced participants were able to
maintain good performance even with a higher cognitive
load (Fig. 2). After testing all possible combinations of
predictors, a marginal model with prior ultrasound training
and cognitive load as fixed effects and scenario as a re-
peated effect provided the overall best fit for the observed
data (Table 2). The value of the likelihood ratio criterion for
the model with both prior ultrasound training and cognitive
load as predictors was 253.21, compared with a 263.74 for
prior ultrasound training alone, and 255.79 for cognitive
load alone.

Comparison of cognitive loadmeasures

We compared different types of cognitive load measures
with the Paas scale to better understand what measures

might be useful indicators of mental effort in simulation
training. Using random intercept models, we found NASA-
TLX rating, pupil diameter range, total scanning time, and
gaze shift rate to be significant predictors of Paas scale rat-
ing (ESM, Table A-4). For example, the NASA-TLX model
includes an intercept, B = 1.48, SE = 0.22, 95% CI 1.04 to
1.93, t65.78 = 6.65, p < 0.001, and a significant fixed effect for
NASA-TLX rating, B = 0.067, SE = 0.004, 95% CI 0.060
to 0.075, t112.89 = 16.93, p < 0.001. A NASA-TLX rating of
100/120 would therefore correspond to a Paas scale rating
of 8.18/9 (i. e., 1.48 + 0.067 × 100). The intercept vari-
ance estimate was significant, B = 0.59, SE = 0.20, 95% CI
0.30–1.15, Wald Z = 2.96, p = 0.003, supporting a random
intercept model. We observed a negative relationship for
gaze shift rate, with an intercept, B = 5.23, SE = 0.35, 95%
CI 4.53 to 5.92, t69.26 = 14.91, p < 0.001, and a significant
fixed effect, B = –0.14, SE = 0.03, 95% CI –0.19 to –0.08,
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Table 2 Parameter estimates for marginal model with ultrasound image acquisition as the dependent variable and prior ultrasound training and
cognitive load (Paas scale rating) as predictor variables

Fixed effect B (SE) df t-value p-value 95% CI

Intercept 1.50 (0.27) 113 5.64 <0.01 0.97 to 2.02

Prior ultrasound traininga 0.22 (0.10) 113 2.34 0.02 0.03 to 0.42

Cognitive loadb –0.14 (0.03) 113 –4.05 <0.01 –0.21 to –0.07

Covariance parameter V (SE) Wald Z p-value

Repeated measures 0.48 (0.06) 7.52 <0.01

B regression coefficient, SE standard error, df degrees of freedom, CI confidence interval, V covariance
a0 none, 1 informal, 2 brief, 3 extensive
b range 1–9

t97.94 = –4.65, p < 0.001, suggesting that each additional
gaze shift per minute was associated with a decreased Paas
scale rating. Fixed effect estimates for pupil diameter mean
and blink rate were not significant.

Participant feedback

To explore the impact of performing in a simulated setting
we sought participant feedback on realism of the exercise.
Overall, participants reported the experience as moderately
realistic (M = 1.97/4, SD = 1.05). We found no significant
differences between groups in the perception of similarity
with real patient encounters (MExperienced = 2.38/4, SD = 0.52;
MNovice = 1.86/4, SD = 1.01; t(27) = –1.37, p = 0.18, d =
0.57, 95% CI –0.26 to 1.40). The majority of participants in
both groups (85% novices, 100% experienced participants)
felt that simulators should be incorporated into a point-of-
care ultrasound curriculum.

Discussion

In this study we explored the correspondence between mul-
tiple cognitive load measures in the context of simulation-
based POCUS. We classified participants into either novice
or experienced groups on the basis of their prior experi-
ence performing POCUS in a clinical setting. Experienced
participants outperformed novices in simulator-based ul-
trasound image acquisition, while simulator-based ultra-
sound image interpretation was comparable between the
two groups. By adopting a multilevel linear modelling ap-
proach, we found that simulation-based ultrasound image
acquisition performance could be predicted across partici-
pant groups by a combination of prior ultrasound training
and cognitive load.

Findings from this study contribute to the growing body
of literature documenting a negative relationship between
cognitive load and performance in simulation settings [14].
In previous studies of simulation training, trainees report-
ing high levels of cognitive load made more frequent er-
rors and showed impaired transfer during simulation [12,

13]. Using cognitive load theory as an instructional design
framework provides both a means to identify these high
load situations, and specific guidance as to how they may
be ameliorated. For example, intrinsic cognitive load may
be reduced by segmenting tasks into manageable chunks
and/or by providing additional pre-training opportunities
while extraneous cognitive load may be minimized through
the use of worked examples and/or by reducing the need
for learners to split their attention between multiple sources
of information [30]. Our previous work has demonstrated
that a cognitive load approach to instructional design can be
feasible even in the context of short training interventions
[31].

As competency-based assessment becomes more wide-
spread in medical training [32], it becomes increasingly
important to distinguish between those individuals whose
skills are fully consolidated and those who can only main-
tain good performance with significant effort [33]. In mak-
ing competency judgements for individual trainees, we con-
tend that the ability to transfer learning from a relatively
controlled simulation environment to a more complex and
unpredictable clinical environment requires trainees to be
able to consistently perform well with low cognitive load.
This indicates that trainees still have spare working mem-
ory capacity to respond to unexpected changes in a patient’s
condition as well as distracting stimuli, both of which are
common occurrences in the clinical environment. Incorpo-
rating cognitive load measures in simulation-based training
and assessment can provide an objective and reliable stan-
dard for identifying which individuals are working close
to the limit of their abilities in a simulated setting and thus
may benefit from further training and/or remediation before
progressing to unsupervised clinical practice [14, 34].

But which cognitive load measure should we use? Sev-
eral cognitive load measures allow for the practical assess-
ment of working memory usage in a simulated setting [35].
This study demonstrated good convergence between self-re-
port, physiological, and behavioural measures of cognitive
load. To our knowledge, this is the first study to demonstrate
an association between an observed behaviour (gaze shift
rate) and an established measure of cognitive load (Paas
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scale rating) in the context of medical simulation training.
While gaze shift rate is specific to ultrasound simulation,
observer ratings in general are advantageous in that they
provide the means for unobtrusive monitoring of cognitive
load. Further research is necessary to develop and validate
observed measures of behaviour that are more widely appli-
cable across simulation settings, such as breaches in steril-
ity [36]. Such behavioural measures would provide another
easily acquired variable for triangulating measurements of
cognitive load, an important step in ensuring their validity
[14]. Given the consequences associated with judgements
of competence and the inherent limitations of the various
measurement methods, the use of multiple converging mea-
sures may be necessary to establish the necessary evidence
standard [35].

The convergence that we found between the Paas and
NASA-TLX scales may be attributed to both instruments’
sensitivity to intrinsic load variations [15, 37–39], as the
feasibility of measuring extraneous load via self-report has
been repeatedly called into question [37, 38, 40]. Our data
collection protocol was carefully designed to maximize
variations in task-related intrinsic load and minimize vari-
ations in extraneous load. With respect to the intrinsic cog-
nitive load required to complete the scenarios, we devoted
considerable time to designing and piloting tasks to en-
sure that task difficulty was a direct function of ultrasound
image acquisition complexity. We also primarily selected
participants who had a common interest and/or specializa-
tion in general internal medicine. The comparable perfor-
mance between novices and experienced participants in ul-
trasound image interpretation suggests that differences in
prior knowledge did not represent a significant source of
intrinsic load variation. Thus, all participants who were
able to acquire the image had sufficient knowledge to be
able to interpret it correctly. To minimize any environmen-
tal distractions that might contribute to extraneous cognitive
load [40], we collected participant data in a quiet, darkened
room. In addition, all scenarios were short, focused, and
presented in the same format. The voluntary, low-stakes
nature of the study and the positive feedback from par-
ticipants on the realism of the simulator suggest that the
impacts of assessment-related anxiety and fidelity on extra-
neous cognitive load were negligible [37].

Our results regarding eye-based physiological measures
were somewhat conflicting. While pupil diameter range
showed significant concordance with the Paas scale rating,
we failed to observe this relationship for mean pupil diame-
ter or blink rate. In our estimation, the capture and interpre-
tation of physiological measures continues to be hindered
by high levels of inter- and intra-individual variability [14,
35]. We were also unable to replicate the conditions of pre-
vious medical education studies that relied on fixed eye-
trackers and tightly controlled light conditions [16]. While

we were able to observe a change in pupil diameter with our
arithmetic calibration task, this effect could not be detected
with the ultrasound scanning tasks, wherein the participant
was moving and the brightness of the ultrasound monitor
was continually changing. This calls into question the feasi-
bility of pupil-based measures of cognitive load in dynamic
simulation contexts.

Our study has several limitations. As there is no ob-
jective standard for determining expertise in point-of-care
ultrasound, we cannot definitively conclude that our experi-
enced/novice classification generalizes beyond our current
sample. We are also limited by our choice of performance
measure. While we observed adequate inter-rater agreement
[41, 42], results from our image acquisition rating scale are
limited to our specific simulation context and therefore do
not permit direct comparison with scales tested in a clini-
cal setting [43]. Future studies incorporating multiple raters
from the outset would permit analysis using a three-level
model (i. e., participant, measurement, rater). This would al-
low inter-rater reliability as well as other model outcomes
to be assessed simultaneously. We also acknowledge that
the study was small in scale and limited to a single group
of participants at our institution, thereby limiting the gener-
alizability of our findings. Further research is necessary to
replicate these findings across a broad range of participant
groups, simulation environments and tasks.

In conclusion, the results of this study provide a proof-
of-principle for future studies incorporating cognitive load
measures in simulation-based assessment. Using the devel-
opment of point-of-care ultrasonography skills as a model,
we demonstrated that a combination of demographic and
cognitive load measures can be used to predict performance
in a simulated setting. The ability to maintain good perfor-
mance with low cognitive load is an important marker of
expertise. Performance assessments which include cogni-
tive load can help differentiate between levels of expertise
in simulation environments, and may thus serve as better
predictors of skill transfer to clinical practice.
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