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The IAP family member BRUCE regulates
autophagosome–lysosome fusion
Petra Ebner 1, Isabella Poetsch 1, Luiza Deszcz1, Thomas Hoffmann2, Johannes Zuber 2,3

& Fumiyo Ikeda 1

Autophagy has an important role in cellular homeostasis by degrading and recycling cytotoxic

components. Ubiquitination is known to target cargoes for autophagy; however, key com-

ponents of this pathway remain elusive. Here we performed an RNAi screen to uncover

ubiquitin modifiers that are required for starvation-induced macroautophagy in mammalian

cells. Our screen uncovered BRUCE/Apollon/Birc6, an IAP protein, as a new autophagy

regulator. Depletion of BRUCE leads to defective fusion of autophagosomes and lysosomes.

Mechanistically, BRUCE selectively interacts with two ATG8 members GABARAP and

GABARAPL1, as well as with Syntaxin 17, which are all critical regulators of

autophagosome–lysosome fusion. In addition, BRUCE colocalizes with LAMP2. Interestingly,

a non-catalytic N-terminal BRUCE fragment that is sufficient to bind GABARAP/GABARAPL1

and Syntaxin 17, and to colocalize with LAMP2, rescues autolysosome formation in Bruce−/−

cells. Thus, BRUCE promotes autolysosome formation independently of its ubiquitin-

conjugating activity and is a regulator of both macroautophagy and apoptosis.
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Autophagy is an evolutionarily conserved fundamental
process that maintains cellular homeostasis1–3. Three
autophagy pathways exist in mammalian cells: macro-

autophagy, microautophagy, and chaperone-mediated autophagy.
These are all important for lysosome-dependent degradation of
cargoes such as damaged organelles and protein aggregates4. The
macroautophagy pathway (referred to as autophagy in this study)
involves autophagosome formation, mediated by multiple
autophagy (ATG) proteins1,5, followed by docking and fusion
with a lysosome to become an autolysosome6, and phagocytosed
cargoes are subsequently degraded by lysosomal enzymes7.
Genetic studies in yeast have revealed essential genes for autop-
hagy initiation and autophagosome formation, which are con-
served in mammals and very well defined1,3. Recent studies have
also uncovered various factors with important roles in
autophagosome–lysosome fusion8, including ATG149, Rab710,
ectopic P-granules autophagy protein 5 homolog (EPG5)11, the
homotypic fusion and protein sorting (HOPS)-tethering com-
plex12, synaptosome-associated protein 29 (SNAP29), vesicle-
associated membrane protein 8 (VAMP8), Syntaxin 17 (STX17)13,
and GABA type A receptor-associated proteins (GABARAPs)14.
However, the molecular mechanisms regulating autophagosome-
lysosome fusion are poorly understood.

Autophagy and the ubiquitin system are well-orchestrated to
target cargo for degradation15,16. However, the interplay between
these two pathways is not clear. Although poly-ubiquitinated
proteins and damaged mitochondria and ubiquitin-coated bac-
teria in mammalian cells are well-defined cargoes for
autolysosome-dependent degradation15,16, the key ubiquitin
enzymes, including E2-conjugating enzymes, E3 ligases, and
deubiquitinases (DUBs), which regulate autophagy are not
known. Furthermore, it is unclear whether nutrient starvation-
induced autophagy (non-selective autophagy) is regulated by
proteasomal-independent ubiquitin signaling.

To identify novel positive regulators of autophagy, we per-
formed an RNA interference (RNAi) screen targeting 680 ubi-
quitin regulators and 30 well-known autophagy regulators as
positive controls. We uncovered the “Baculovirus IAP Repeat
(BIR) repeat-containing ubiquitin-conjugating enzyme”
(BRUCE)/Apollon/Birc6 as the highest hit, along with known
essential autophagy regulators. BRUCE is a member of the
inhibitor of apoptosis (IAP) family and, as such, inhibits apop-
tosis by ubiquitinating apoptosis regulators such as Caspase 9 and
Smac/Direct IAP-Binding Protein With Low PI (DIABLO),
thereby targeting them for proteasomal degradation17–20. Here
we establish BRUCE as a universal regulator of autophagy. We
find that BRUCE regulates autophagosome–lysosome fusion
independent from its ubiquitination activity. Our data reveal that
BRUCE is a multifunctional regulator of apoptosis and
autophagy.

Results
An RNAi screen identifies macroautophagy regulators.
To identify novel autophagy regulators, we performed an RNAi
screen to identify new regulators of starvation-induced autophagy
(Fig. 1a). We assessed autophagy within single cells by mon-
itoring the fluorescence of an autophagy reporter, the mCherry-
EGFP-tagged microtubule associated protein 1 light chain 3β
(LC3B)21 (Supplementary Fig. 1a). Unlike mCherry, EGFP is
sensitive to low pH and thus the EGFP signal in mCherry-EGFP-
LC3B-positive autophagosomes is quenched upon fusion with
lysosomes21,22. Therefore, cells with intact autophagy have a low
green fluorescent protein (GFP) signal, whereas those with
defective autophagy have a high GFP signal (Fig. 1a).

We established monoclonal mouse embryonic fibroblast (MEF)
reporter lines stably expressing mCherry-EGFP-LC3B (Supple-
mentary Fig. 1b–e)21,23. We used clone #1 for our screen, as it
showed the clearest reduction in flow cytometry-based GFP signal
upon starvation (Supplementary Fig. 1c and d). Furthermore, the
preferential loss of GFP signal induced by starvation of clone #1
was abrogated by lysosomal neutralization with the vacuolar type
H+-ATPase (V-ATPase) inhibitor, Bafilomycin A1 (Supplemen-
tary Fig. 1e), confirming reporter function.

To systematically identify ubiquitin modifiers that regulate
autophagy, we designed a miRNA-based short hairpin RNA
(shRNA) (shRNAmir) retroviral library targeting all major E1
enzymes for ubiquitin and ubiquitin-like modifiers E2 enzymes
and E3 ligases, and their complex components DUBs, other
ubiquitin-related proteins, as well as 30 established autophagy
regulators for positive controls (in total 710 genes/
4,184 shRNAmirs; Supplementary Data 1). We introduced
one shRNA/reporter cell by transduction, starved the cells, and
sorted them by fluorescence-activated cell sorting (FACS) into
populations of high GFP signal (defective in autophagy) or low
GFP signal (functional autophagy) (Fig. 1a, b and Supplemen-
tary Fig. 2a, b and c). Knockdown of ATG5, which is required
for autolysosome formation, led to an increased GFP signal in
clone #1 cells, as expected (Fig. 1b). We analyzed the
shRNAmirs enriched in the high-GFP gate by next-generation
sequencing (NGS) and identified nine genes as positive
autophagy regulators. Importantly, we uncovered major
regulators of autophagy, including five Atg genes, which
validates our screen (Table 1).

We verified that Tsg10124, Sqstm1/p62, and Nedd825, which
were previously implicated in autophagy regulation, as well as a
novel hit, Bruce, regulate autophagic flux. We generated stable
shRNA reporter-MEFs lines using two distinct shRNAs per gene.
Indeed, reduced expression of these genes led to defects in
autophagy (Fig. 1c–e and Supplementary Fig. 2d–f). Similarly,
Bruce−/− MEFs displayed defective autophagy compared to wild-
type (WT) MEFs (Fig. 2a). Upon starvation, WT MEFs
expressing mCherry-EGFP-LC3B accumulated foci that were
positive for mCherry but negative for GFP, consistent with the
formation of autolysosomes and intact autophagic flux. In
contrast, most of the autophagosomes induced by starvation in
Bruce−/− MEFs expressing the mCherry-EGFP-LC3B reporter
remained mCherry-GFP double positive (Fig. 2b, c), suggesting
that autophagic flux is inhibited by BRUCE deficiency. The effect
of BRUCE deficiency on autophagic flux was not limited to
starvation-induced autophagy, but also observed in mitophagy
induced by Antimycin A and Oligomycin (Supplementary
Fig. 3a). Collectively, our findings establish that BRUCE positively
regulates autophagic flux.

BRUCE regulates autophagic flux. Next, we evaluated the levels
of autophagosome markers, including the ATG8 family members
LC3B, GABARAP, GABARAPL1, as well as the autophagy sub-
strate p62. The ATG8 family members are known to be lipidated
upon autophagosome formation and degraded at a later step
inside autolysosomes, similar to p62. As expected, starvation
reduced the protein levels of these markers in WT MEFs (Fig. 2d
and Supplementary Fig. 3b–e), whereas Bafilomycin A1 treatment
inhibited the degradation of LC3B, especially the lipidated form
LC3B-II (Fig. 2d and Supplementary Fig. 3b–e). Bruce−/− MEFs
displayed elevated protein levels of LC3B-I, LC3B-II, GABARAP,
and GABARAPL1 relative to WT MEFs, in both the control and
starved conditions (Fig. 2d). Other cell lines depleted for BRUCE,
including two shBruce MEF lines, two CRISPR-gBruce MEF lines,
and two CRISPR-gBruce HAP1 cells (a near-haploid human
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Fig. 1 shRNA-based screen identifies BRUCE as an autophagy regulator. a Schematic representation of the FACS-based screen using a library of short
hairpin RNAs with the miR-E structure (shRNAmir). shRNAs (4,184) targeting 710 ubiquitin- and autophagy-associated genes were cloned into a retroviral
gene expression vector (pSBEN). A single copy of shRNA was delivered into the mCherry-EGFP-LC3B-expressing MEF line (clone 1) by transduction. A cell
population selected with neomycin was starved and sorted based on the GFP fluorescent signal. Subsequently, genomic DNA was isolated from sorted cells
and analyzed by next-generation sequencing. miR-E, microRNA-element 3’ backbone; NeoR, Neo reporter gene cassette; PGK, phosphoglycerate kinase;
SFFV, spleen focus-forming virus; TagBFP, monomeric blue fluorescent protein. b Gating strategy of “GFP low/high” cell population of shRenilla and shAtg5
MEFs, compared with ubiquitin shRNAmir library transduced cells (replicate #1). After 6 h starvation, cells were enriched in “GFP low” gate (blue) and
depleted in “GFP high” gate (green). Percentage of cells in corresponding gates is indicated. c Relative mCherry and GFP signals compared with basal
condition (fully supplemented medium (FM)) analyzed by flow cytometry. Control (shRenilla (Renilla.713)), two BRUCE knockdown (KD) (shBruce#1
(Birc6.766.), and #2 (Birc6.14744)) and ATG5 KD (shAtg5 (Atg5.1063)) MEF lines were analyzed. Data are presented as mean±SD from three biological
replicates (****p< 0.0001). Representative data are shown from four independent experiments. d, e Knockdown efficiency of BRUCE and ATG5 in
shBruce#1 and #2, and shAtg5 MEFs, respectively, analyzed by immunoblotting using anti-BRUCE and anti-ATG5 antibodies. Anti-Vinculin antibody was
used for loading control
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cells), displayed similar results for LC3B (Supplementary
Fig. 3d–f). In addition, we evaluated BRUCE-deficient hap-
loid mouse embryonic stem cell (mESC) clones and sister clones
with restored BRUCE expression (Fig. 2e). Bruce−/− mESCs
showed elevated LC3B and GABARAP in control and starved
conditions compared with both the rescued sister clones and
parental WT mESCs (Fig. 2f and Supplementary Fig. 3g). In
addition, the level of the autophagy substrate p62 was increased in
the basal condition in shBruce MEFs and in positive control
shAtg5 MEFs with disrupted autolysosome formation, relative to
control MEFs (Supplementary Fig. 3b and h). In contrast, the
transcript levels of LC3B, GABARAP, and GABARAPL1, as well
as p62, were not largely affected by BRUCE depletion in both
basal and starved conditions, as revealed by RNA sequencing
(RNA-Seq) (Supplementary Fig. 3i). Interestingly, the total ubi-
quitin signal was clearly increased in shBruce MEFs compared
with control MEFs in both basal and starved conditions (Sup-
plementary Fig 3b). Together, these data suggest that BRUCE is
involved in a general autophagic process.

BRUCE selectively interacts with GABARAP and GABAR-
APL1. Next, we examined whether BRUCE might regulate
autophagic flux as an autophagy receptor, which links autop-
hagosome membranes and autophagy targets by interacting with
ATG8 family members and ubiquitin, respectively. We per-
formed pull-down assays using glutathione S-transferase (GST)-
tagged recombinant ATG8 family members or ubiquitins of
different lengths immobilized with agarose beads, and total cell
extracts of HEK293T cells transiently expressing full-length or
various mutants of Myc-tagged BRUCE (Fig. 3a, b and Supple-
mentary Fig. 4a–h). We found that full-length BRUCE interacted
with GABARAP and GABARAPL1, but not with other ATG8
family members, LC3A, LC3B, LC3C, or GABARAPL2, or with
ubiquitins (Fig. 3a). A catalytically inactive point mutant of
BRUCE (C4638A) interacted with GABARAP and GABAR-
APL1, similar to WT BRUCE (Supplementary Fig. 4a). All the
BRUCE deletion fragments interacted with GABARAP and
GABARAPL1, except for aa 1–1360, aa 259–332 (the BIR
domain), and aa 4569–4707 (the C-terminal Ubiquitin-con-
jugating (UBC) domain) (Supplementary Fig. 4b–h). p62 bound
all the ATG8 family members, as expected (Supplementary
Fig. 4i and j). Most ATG8-binding partners, such as p62, interact
with ATG8 via an LC3-interacting region (LIR)26–28. GABARAP
mutants with a mutated LIR-binding surface did not interact
with p62, as expected (Supplementary Fig. 4k); however, they
retained the interaction with BRUCE (Fig. 3c and Supplementary

Fig. 4l). These data suggest that BRUCE does not use a canonical
LIR-motif to interact with GABARAP. Collectively, our data
propose that BRUCE specifically interacts with the ATG8 family
members GABARAP and GABARAPL1 via multiple binding
regions that are outside of the BIR and the UBC domains
(Supplementary Fig. 4m), and are not canonical LIR-containing
regions.

As BRUCE interacted preferentially with GABARAP and
GABARAPL1, we asked whether starvation-dependent lysosome
targeting of GABARAP and GABARAPL1 is affected by BRUCE
depletion using mCherry-EGFP-tagged reporters. Similar to
mCherry-EGFP-LC3B, mCherry-EGFP-GABARAP and
-GABARAPL1 pH sensors monitor autolysosome formation
upon starvation in WT and control (shRenilla) MEFs; starvation
leads to a significant decrease of GFP signal compared with the
basal condition (Fig. 3d, e). Knockdown of BRUCE and of
ATG5 significantly suppressed the loss of GFP signal in MEFs
expressing mCherry-EGFP-GABARAP and mCherry-EGFP-
GABARAPL1 (Fig. 3d, e). These findings are consistent with
previous observations in MEFs expressing mCherry-EGFP-LC3B
(Fig. 1c). Interestingly, the protein level of BRUCE itself was not
affected by starvation (Fig. 2d), or by ATG5 deficiency
(Supplementary Fig. 4n and o), suggesting that BRUCE is not a
typical autophagy substrate like p62, which was stabilized in
ATG5 deficient MEFs (Supplementary Fig. 3h and 4n). Together,
our findings show that BRUCE interacts with GABARAP and
GABARAPL1, which are suggested to regulate a later step of the
autophagy pathway. Therefore, BRUCE might have a role in the
maturation step of the autophagy pathway.

BRUCE does not regulate lysosomal functions. Our results
suggest that BRUCE acts at a late stage in the autophagy pathway;
therefore, we analyzed whether BRUCE colocalizes with lyso-
somes. In WT MEFs, endogenous BRUCE localized closely to
lysosome-associated membrane protein 2 (LAMP2) in control
and starved conditions with or without Bafilomycin A1 treatment
(Fig. 4a and Supplementary Fig. 5a). The colocalization signal of
BRUCE and LAMP2 was enhanced in starvation condition with
Bafilomycin A1 treatment, suggesting that BRUCE prefers auto-
lysosomes over lysosomes. However, colocalization of BRUCE
and LAMP2 was partially and not entirely dependent on ATG5,
suggesting that BRUCE localizes to both lysosomes and auto-
lysosomes (Fig. 4a). We next analyzed lysosomal pH, structure,
and biogenesis in BRUCE-deficient cells upon starvation by
monitoring Lysotracker Red, which labels acidic organelles. We
did not observe significant differences between control and Bruce
−/− or gBruce MEFs under the control or the starved conditions
by FACS (Fig. 4b and Supplementary Fig. 5b). Similar results
were observed for shAtg5 MEFs, as expected (Supplementary
Fig. 5c). The mRNA levels of transcription factor EB (TFEB)
target genes, which are critical for lysosomal biogenesis29, were
also not differentially expressed in shBruce MEFs compared with
control MEFs (Supplementary Fig. 5d). These findings suggest
that BRUCE localizes to lysosomes but is not involved in reg-
ulating lysosome biogenesis nor lysosome functions.

BRUCE promotes autophagosome–lysosome fusion. As
BRUCE depletion affected autophagic flux (Fig. 1c and 2a) and
colocalized with LAMP2 (Fig. 4a), we next investigated whether
BRUCE regulates fusion of the autophagosome and lysosome. We
analyzed colocalization of LC3B and LAMP2, which associate
with the autophagosome and lysosome, respectively. Confocal
microscopy of WT MEFs revealed many LC3B-positive vesicles
within LAMP2-positive lysosomal structures, especially after
starvation, which became most apparent when cells were

Table 1 shRNA-based screen identifies nine positive
autophagy regulators using restrictive analysis criteria

Gene # Scoring shRNAs Avg Geomean

Atg7 5 21.60
Atg16l1 4 7.59
Birc6 4 3.18
Rb1cc1 3 14.33
Tsg101 3 7.15
Atg12 3 4.91
Sqstm1 3 3.77
Nedd8 3 3.05
Atg9a 3 3.03

Hit list showing genes with highest scoring shRNAs, sorted based on the number of scoring
shRNAs (# scoring shRNAs) and the average geometric mean (Avg Geomean) of the fold
enrichment of shRNAs in the “GFP high” gate, compared with the “GFP low” gate. Established
autophagy regulators are shown in bold
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Fig. 2 BRUCE is required for starvation-induced degradation of ATG8 family proteins. a Normalized mCherry and GFP signals after starvation compared to
basal condition (FM) analyzed by flow cytometry in Bruce+/+ and Bruce−/− MEFs stably expressing mCherry-EGFP-LC3B. Data are presented as mean±SD
from three biological replicates (****p< 0.0001). Representative data are shown from four independent experiments. b Confocal microscopy images of
Bruce+/+ and Bruce−/− MEFs stably expressing mCherry-EGFP-LC3B in different conditions. FM, fully supplemented medium; Starv, starvation medium for
4 h. Scale bars, 20 µm. c Quantification of mCherry-GFP double positive spots in Bruce+/+ and Bruce−/− MEFs in regular and starvation conditions (as in b).
Data are presented as dot plots with mean±SD. n= 20 cells. p-values are indicated and analyzed by t-test. d Protein levels of autophagy markers in
Bruce+/+ and Bruce−/− MEFs under basal (FM) and 2 h-starved (Starv) conditions with or without Bafilomycin A1. e A schematic of the inserted gene trap
cassette in Bruce−/− haploid mouse embryonic stem cells (mESCs). f Protein levels of autophagy markers in Bruce+/+ and Bruce−/− clone #1 haploid mESCs
under basal (FM) and 2 h-starved (Starv) conditions with or without Bafilomycin A1. BRUCE expression was recovered by Cre recombinase in Bruce−/−
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additionally treated with Bafilomycin A1 (Fig. 5a, b). Compared
with WT MEFs, Bruce−/− MEFs displayed a substantially reduced
number of LC3B-containing LAMP2-positive lysosomal struc-
tures (Fig. 5a, b). As a control, we examined LC3B and
LAMP2 signals in ATG5-deficient MEFs and did not observe
LC3B-containing LAMP2 structures, as expected (Supplementary
Fig. 6a). As BRUCE interacts with GABARAP (Fig. 3a), we
examined whether the fusion of GABARAP-positive autophago-
somes and lysosomes also requires BRUCE. As observed for the
localization of endogenous LC3B and LAMP2 in MEFs, mCherry-
GABARAP was observed within LAMP1-mGFP-positive struc-
tures in control HAP1 cells, whereas they largely remain outside
of the LAMP1-positive structures in CRISPR-gBRUCE
HAP1 cells (Supplementary Fig. 6b). These observations were
supported by electron microscopy, showing that Bruce−/− MEFs
accumulated autophagosomes upon starvation compared with
WT MEFs (Fig. 5c). These data strongly suggest that BRUCE
regulates the fusion of autophagosomes and lysosomes.

Importantly, the endocytosis-dependent lysosomal pathway
was not affected in Bruce−/− MEFs, as determined by treatment
with DQ-Ovalbumin, a self-quenched conjugate of ovalbumin
that exhibits bright green fluorescence upon proteolytic degrada-
tion (Fig. 5d), and by degradation of epidermal growth factor
receptor (EGFR) (Supplementary Fig. 6c). These data indicate
that BRUCE specifically affects the formation of autolysosomes,
but not the endosomal pathway. Interestingly, the basal
expression level of EGFR in Bruce−/− MEFs was clearly lower
compared to WT MEFs (Supplementary Fig. 6c and d). The
protein level of EGFR was not affected by Bafilomycin A1
treatment in WT and Bruce−/− MEFs cells (Supplementary
Fig. 6d), suggesting that the low level of EGFR in Bruce−/− MEFs
is independent of the lysosome.

BRUCE regulates cellular localization of STX17. To further
understand how BRUCE regulates autophagosome-lysosome
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fusion, we investigated whether BRUCE interacts with known
regulators of autophagosome-lysosome fusion (Fig. 6a and Sup-
plementary Fig. 7a–i). We evaluated components of the core
fusion machinery, including Rab7, two HOPS complex compo-
nents VPS33A and VPS16, STX17, SNAP29, VAMP8, ATG14,
Pleckstrin homology domain-containing family M member 1
(PLEKHM1), as well as lysosomal membrane proteins LAMP1
and LAMP2. We found that transiently expressed GFP-STX17
and GFP-SNAP29 co-immunoprecipitated with Myc-BRUCE
from HEK293T cells (Fig. 6a and Supplementary Fig. 7a), sug-
gesting that BRUCE interacts with the autophagosomal soluble
NSF attachment protein receptor (SNARE) complex consisting of
STX17 and SNAP29, but not with VAMP8, the proposed lyso-
somal SNARE.

STX17 is a critical regulator of autophagosome-lysosome
fusion and is specifically localized at mature autophagosomes.
BRUCE interacts with STX17, so we investigated whether BRUCE
regulates the cellular localization of STX17 (Fig. 6b and
Supplementary Movie 1 and 2). In Bruce+/+ MEFs stably
expressing GFP-STX17, GFP-STX17-positive vesicles were
formed upon amino acid starvation as expected (Fig. 6b). In
contrast, some STX17-positive vesicles accumulated in Bruce−/−

MEFs even under the basal condition, which were further induced
upon starvation (Fig. 6b and Supplementary Movie 1). We found
that GFP-STX17 colocalization with LC3B-positive vesicles was

enhanced in Bruce−/− MEFs compared with Bruce+/+ MEFs
(Fig. 6c), suggesting that the dynamic dissociation of STX17 from
the autophagosome is disrupted in BRUCE-deficient cells. These
data suggest that BRUCE regulates STX17-mediated fusion of
autophagosomes and lysosomes.

A non-catalytic BRUCE fragment restores autophagic flux. To
further elucidate how BRUCE regulates autophagy, we deter-
mined if starvation-induced autophagy in Bruce−/− MEFs is
rescued by the non-catalytic BIR-containing fragment (aa
1–1648), which is the minimum N-terminal fragment inter-
acting with GABARAP and GABARAPL1 (Fig. 3b and Sup-
plementary Fig. 4m). The protein levels of LC3B, GABARAP,
GABARAPL1, and p62 in Bruce−/− MEFs were partially res-
cued by expression of the BRUCE (aa 1–1648) fragment
(Fig. 7a). Importantly, the expression of the BRUCE (aa
1–1648) fragment in Bruce−/− MEFs also partially rescued the
formation of LC3B-containing LAMP2-positive structures
(Fig. 7b, c). Similar to full-length BRUCE, BRUCE (aa 1–1648)
also colocalized with LAMP2 in reconstituted cells under basal
and starved conditions (Fig. 7d). Further, GFP-STX17 co-
immunoprecipitated with the Myc-tagged BRUCE (aa 1–1648)
fragment (Fig. 7e), suggesting that this region is sufficient for
the interaction with STX17. Collectively, these results suggest
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that BRUCE regulates mammalian autophagy as a linker pro-
tein between the autophagosome and lysosome (Fig. 8), and
reveal a unique non-catalytic function of BRUCE distinct from
its role in apoptosis.

Discussion
In this study, we identified the IAP family member BRUCE19,20

as a new autophagy regulator. BRUCE inhibits apoptosis by
ubiquitinating and promoting degradation of apoptosis
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regulators19,30. Here we found that autophagic flux is inhibited by
BRUCE depletion, whereas the initiation of autophagosome for-
mation is largely unaffected. BRUCE interacts preferentially with
GABARAP and GABARAPL1 among six ATG8 family members,
via multiple binding regions within BRUCE. Our results indicate
that BRUCE regulates GABARAP- (or GABARAPL1-) positive
autophagosome fusion with the lysosome. As ATG8 family
members are structurally similar and share many interacting
partners31,32, whether GABARAP proteins have distinct func-
tions in autophagy from the other ATG8 members is not yet well
understood. Our data suggest that BRUCE interacts with
GABARAP and GABARAPL1 via non-canonical protein surfaces,
based on pulldown assays using GABARAP mutants; however,
further studies are required to understand this at the structural
level. BRUCE protein levels do not decrease upon starvation,
indicating that BRUCE is not a typical autophagy substrate such
as p62, Next to BRCA1 gene 1 protein (NBR1), Optineurin or
Calcium-binding and coiled-coil domain-containing protein 2
(CALCOCO2)/NDP5233. The role of BRUCE seems similar to
that of PLEKHM1, which links ATG8 and the HOPS complex,
regulating autolysosome formation34. However, unlike BRUCE,
PLEKHM1 interacts with all ATG8 members and regulates the
endocytosis-dependent EGFR degradation pathway. Importantly,
we found that BRUCE interacts with STX17 and SNAP29, which
are critical regulators of autophagosome–lysosome fusion. Fur-
thermore, BRUCE deficiency in cells does not inhibit the for-
mation of STX17-positive autophagosomes; indeed, STX17-
positive vesicles are accumulated in BRUCE-deficient cells even
in the absence of starvation. These data indicate that mature
autophagosomes form in BRUCE-deficient cells, and that turn-
over of STX17-positive autophagosomes is inhibited, consistent
with a deficiency of autophagosome–lysosome fusion.

It has been shown that mammalian target of rapamycin
(mTOR) has a critical role in reformation of lysosomes7,35,
whereas the Ras-related proteins (RAB) and the SNARE7 func-
tion in trafficking and vesicle fusion. The mRNA levels of mTOR,
RABs, and SNAREs, as well as lysosomal biogenesis-related genes
including the TFEB targets29,36 were not affected by BRUCE
knockdown.

Autophagy has been shown to be critical for tumor progression
in different contexts37,38. Previous studies have implicated
BRUCE in cancer39–43, although its roles are poorly understood
compared with other IAP family members. We propose that
BRUCE may influence tumor progression not only via its anti-
apoptotic function but also via its regulation of autophagy. Fur-
ther studies are required to understand the role of BRUCE in the
regulation of mammalian autophagy in vivo and its potential role
in cancer.

Methods
Plasmids. pcDNA3-Myc-BRUCE FL (aa 1–4829) and mutants (aa 1–1648, aa
1–1360, and C4638A) were a kind gift from Mikihiko Naito19. Additional frag-
ments in pcDNA3 used in this study were subcloned by Gibson Assembly using
EcoRI/XhoI restriction sites. pBabe-puro-BRUCE aa 1–1648 was generated using a
standard subcloning method. GST-tagged human MAP1LC3A, human

MAP1LC3B, human MAP1LC3C, human GABARAP, mouse GABARAPL1, and
human GABARAPL2 in pETM30 vector were kindly provided by Felix Randow44.
GST-GABARAP LIR docking site mutants were generated using a standard site-
directed mutagenesis method. pmCherryC1-GABARAP, pmCherryC1-GABAR-
APL1, pBabe-puro-mCherry-EGFP-GABARAP, and pBABE-puro-mCherry-
EGFP-GABARAPL1 were generated using a standard subcloning method. pCMV-
Gag-Pol was used as a helper plasmid for retrovirus production, and shRNAs were
cloned into pRSF91-SFFV-TagBFP-mirE-PGK-Neo-WPRE as previously descri-
bed45. pGex4T1-human ubiquitin 1 ×, 2 ×, 3 ×, and 4 × were described elsewhere46.
pBabe-puro mCherry-EGFP-LC3B was a gift from Jayanta Debnath (Addgene
plasmid #22418)21, LAMP1-mGFP was a gift from Esteban Dell’Angelica (Addgene
plasmid #34831)47, pMRXIP GFP-STX17 WT (Addgene plasmid #45909)13,
pMRXIP GFP-SNAP29 (Addgene plasmid #45923)13, pMRXIP GFP-VAMP8
(Addgene plasmid #45919)13, pMXs-IP GFP-Atg14 (Addgene plasmid #38264)48,
pMXsIP GFP-VPS33A (Addgene plasmid #67022)12, pMRXIP VPS16-GFP
(Addgene plasmid #67023)12 were gifts from Noboru Mizushima, h-Plekhm1-
EGFP was a gift from Paul Odgren (Addgene plasmid #73836), GFP-Rab7 WT was
a gift from Richard Pagano (Addgene plasmid #12605)49, and HA-LAMP2 was a
gift from Ana Maria Cuervo50.

Antibodies. Anti-BRUCE (BD, 611193; 1:500), anti-Ubiquitin (P4D1, Santa Cruz,
sc-8017; 1:1,000), anti-Myc (9E10, Covance, MMS-150P; 1:1,000), anti-GFP (Santa
Cruz, sc-9996; 1:1,000), anti-mCherry (Clontech, 632543; 1:1,000), anti-Alpha-
Tubulin (Abcam, ab15246; 1:1,000), anti-Vinculin (Sigma-Aldrich, V9131;
1:1,000), anti-ATG5 (Cell signaling, 8540; 1:1,000), anti-LC3 (Nano Tools, 0260-
100/LC3-2G6; 1:100), anti-GABARAP (E1J4E, Cell Signaling, 13733; 1:1,000), anti-
GABARAPL1 (Abcam, ab86497; 1:500), anti-P62/SQSTM1 (MBL, PM045;
1:1,000), anti-LAMP1 (Abcam, ab24170; 1:1,000), anti-LAMP2 (Abcam, ab13524;
1:500), anti-ATG4B (Cell signaling, 5299; 1:1,000), anti-ULK1 (Santa Cruz, sc-
33182; 1:500), anti-Beclin-1 (Cell Signaling, 3738; 1:1,000) and anti-EGFR (D38B1,
Cell Signaling, 4267; 1:1,000) antibodies were purchased and used according to the
manufacturer’s recommendations.

Cell lines. Bruce+/+, Bruce −/− MEFs (a kind gift from Mikihiko Naito)19, Atg5+/+

and Atg5−/− MEFs34,51, human embryonic kidney (HEK) 293 T cells (ATCC), and
packaging cell lines, Platinum-E (Plat-E) (Ecotropic) and Platinum-A (Plat-A)
(Amphotropic)45,52,53 were maintained at 37 °C in 5% CO2, in Dulbecco’s modified
Eagle medium high glucose (Sigma) supplemented with 10% fetal calf serum
(Thermo Fisher Scientific), 100 Uml−1 penicillin-streptomycin (Sigma), and 2 mM
L-glutamine (Sigma-Aldrich). HAP1 cells were purchased from Haplogen/Horizon
Genomics and were maintained in Iscove’s modified Dulbecco’s medium (Life
technologies), supplemented with 10% fetal calf serum and 100 Uml–1

penicillin–streptomycin. Mouse haploid ES cells54 were a kind gift from Haplobank
and were maintained in Dulbecco’s modified Eagle medium high glucose supple-
mented with 13.6% fetal calf serum (Thermo Fisher Scientific), 100 Uml–1

penicillin–streptomycin (Sigma), 2 mM L-glutamine (Sigma-Aldrich), 1 mM
sodium pyruvate (Sigma), 1 ×MEM non-essential amino acid solution (Sigma),
0.00035% β-mercaptoethanol, and ESGRO (Millipore). All the cell lines used in this
study were mycoplasma negative.

CRISPR/Cas9 BRUCE mutant cell lines. Design of small guide RNAs (sgRNA)
was performed using the online CRISPR Design Tool from Zhang Lab (http://
crispr.mit.edu/). sgRNAs (gBruce #1 TGCATGCGCTGCGACGCCGA, gBruce #2
GCATGCGCTGCGACGCCGAC, gBRUCE#1 GCATGCACTGCGACGCCGAC,
gBRUCE#2 TGCATGCACTGCGACGCCGA) were cloned into pSpCas9(BB)-2A-
GFP (PX458) (a gift from Feng Zhang (Addgene plasmid # 48138))55. MEFs or
HAP1 cells were transfected using GeneJuice transfection reagent (VWR Inter-
national) and FACS sorted for GFP+ cells 48 h post transfection. A pooled cell line
was used for subsequent experiments and compared to a mock transfected
(pSpCas9(BB)-2A-GFP empty vector) cell line.

Retroviral infection. A method for retrovirus production is described elsewhere56.
Briefly, retroviral plasmid and helper plasmid were transfected in packaging cell
lines, Plat-E (Ecotropic) or Plat-A (Amphotropic), using a standard calcium-
phosphate transfection protocol. 48 h post transfection, filtered condition media

Fig. 6 BRUCE interacts with an autophagosome-lysosome fusion regulator Syntaxin 17. a Co-immunoprecipitation of GFP-Syntaxin 17 (STX17) with Myc-
BRUCE. GFP-STX17 and Myc-BRUCE WT were transfected in HEK293T cells. Myc-BRUCE was immunoprecipitated using anti-Myc antibody from total
cell lysates. Myc-BRUCE and GFP-STX17 were detected by western blotting, using the indicated antibodies. *Nonspecific band. b Confocal microscopy
images of Bruce+/+ and Bruce−/− MEFs, stably expressing exogenous GFP-STX17. Cells were grown in fully supplemented medium (FM) or starved for 2
h (Starv) with or without Bafilomycin (Baf; 100 nM). Scale bars, 20 µm. c Colocalization analysis of endogenous LC3B and exogenously expressed GFP-
STX17. Bruce+/+ and Bruce−/− MEFs stably expressing GFP-STX17 were grown in FM or starved for 2 h with or without Bafilomycin (100 nM), fixed, and
stained for endogenous LC3B. Line plots across 8 µm distance (marked with arrows) exemplify degree of colocalization of GFP-STX17 and LC3B signals.
Scale bars, 20 µm
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containing retroviral particles supplemented with 4 µg ml–1 polybrene (Sigma,
H9268) were used to infect MEFs. To obtain stable cell lines, cells were selected
using 1.5 mg ml–1 G418 (Gibco, 108321-42-2), or 4 µg ml–1 puromycin (Lactan
GmbH, 240.3).

Flow cytometry-based screening using an shRNA library. A method to generate
shRNA library is described elsewhere45,52,53. Briefly, oligomers were amplified by
PCR attaching miR-E compatible overhangs, and cloned into pRSF91-SFFV-
TagBFP-mirE-PGK-Neo-WPRE using EcoRI/XhoI restriction sites. Subsequently,
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they were transformed into electrocompetent MegaX DH10B T1 (Invitrogen,
C6400-03) in a scale to reach 10,000 × representation of each shRNA. mCherry-
EGFP-LC3B MEF line (Clone 1) was test infected with different retrovirus dilutions
to determine transduction efficiency for single cell infection. To obtain 4.184
million transduced cells (1,000 cells per shRNA), at a determined transduction
efficiency of 8.5%, 50 million MEFs were seeded in duplicates. The following day,
the cells were infected by the calculated amount of virus and selected by G418 (1.5
mg ml–1) after 2 days of infection. On day 8 after infection, cells were starved in
Earle’s balanced salt solution (EBSS, Life Technologies) for 6 h. Based on the GFP
signal intensity, “GFP high” and “GFP low” population were sorted by FACS
sorting. Genomic DNA was extracted using a standard phenol extraction protocol,
followed by Proteinase K digestion. Subsequently, the guide strand of every shRNA
was amplified by PCR while attaching sample-specific barcodes, keeping 1,000 ×
representation of each shRNA (27 µg PCR template for 4,184 shRNAs). PCR
samples were purified and sequenced using Illumina Solexa NGS (Next Generation
Sequencing Facility, VBCF, Vienna, Austria). For the analysis of the NGS results,
the normalized reads in the “GFP high” population were divided by normalized
reads in the “GFP low” population, to obtain the fold change value for every
shRNA. Subsequently, the geometric mean of both replicates was calculated,
whereas scoring shRNAs are considered to have a geometric mean showing at least
three-fold enrichment. For the hit list analysis only genes with at least three scoring
shRNAs were considered. The average of the geometric mean of scoring shRNAs is
displayed.

Autophagic flux determination by FACS. MEFs stably expressing mCherry-
EGFP-LC3B were seeded in triplicates and cells were starved for 6 h in EBSS on the
following day. After 6 h of starvation, cells were trypsinized, centrifuged (220 g, 5
min), and resuspended in 300 µl phosphate-buffered saline (PBS). Samples were
analyzed for mCherry/GFP fluorescence signal using FACS Fortessa (BD). For
mitophagy induction, cells were treated for 24 h with 1 µM Antimycin A (Sigma-
Aldrich, A8674-25MG, 10 mM in dimethyl sulfoxide (DMSO)) and Oligomycin
(Sigma-Aldrich, O4876-5MG; 10 mM in DMSO). Vehicle control was taken by
using equal amounts of DMSO. For the analysis of basal fluorescence levels, the
mean of the relative fluorescence units was displayed. To display autophagy
induction, the fluorescence level in full medium or DMSO control condition was
set to 100% for every cell line and the remaining fluorescence signal after autop-
hagy induction was calculated accordingly.

Fluorescence microscopy. Cells were seeded on cover slips at low density. On the
following day, cells were starved in EBSS, and if indicated treated with 100 nM
Bafilomycin A1 (Enzo Life Sciences, BML-CM110-0100). Cells expressing fluor-
escently tagged proteins were fixed for 15 min at room temperature in 4% paraf-
ormaldehyde, washed, and subsequently transferred to mounting medium
(VECTASHIELD, Szabo-Scandic, VECH-1000 (no DAPI) or VECH-1200 (con-
taining DAPI)). For staining of endogenous proteins, cells were fixed in cold
methanol for 10 min at – 20 °C, re-hydrated in cold PBS on ice, followed by three
washes. Cover slips were blocked in 5% bovine serum albumin (BSA) in PBS for 1 h
at room temperature. Primary antibody was diluted in blocking solution according
to the manufacturer’s recommendations and incubated overnight on cover slips.
Samples were washed in PBS and incubated in secondary antibody, Alexa Fluor 568
goat anti-mouse IgG (H+L) (Invitrogen, A11031), or Alexa Fluor 488 goat anti-rat
IgG (H+L) (Invitrogen, A11006), diluted 1:1,000 in blocking solution for 1 h at
room temperature. Samples were washed and cover slips were transferred to
mounting medium. Samples were imaged by confocal microscopy or Airy scan on
LSM780 or LSM880 Axio Observer (Zeiss). The analysis of mCherry-EGFP-LC3B-
labeled vesicles was performed on Airyscan 3D image stacks using Definiens
Developer Software. Cell borders were defined on a down-sampled image. A
Bandpass filter was used on both channels for shaping out vesicles and a threshold
was applied. The resulting objects were reshaped and tested for parameters like

mean intensity and coefficient of variation to filter out false positive ones. Spot
volumes, intensities, and overlap of the two channels were measured. More than
40% overlap were regarded as double positive. For the analysis of LAMP2-positive
vesicles, the diameter, number, and distance to the nucleus was manually quanti-
fied using Fiji software. For the quantification of LC3B containing LAMP2 vesicles,
the number of strongly stained LC3B aggregates was counted manually using Fiji.

Lysosomal pH-based assays. To monitor changes in lysosomal pH, in the last 30
min of autophagy inducing treatment time, the growth medium was changed to 50
nM LysoTracker Red DND-99 (Invitrogen, L7528) containing medium. Cells were
washed, trypsinized, and analyzed by flow cytometry. For microscopic analysis of
LysoTracker Red stained cells, the growth medium was changed to 500 nM dye
containing medium 30 min before the end of treatment time. Cells on cover slips
were then washed for 10 min in chilled dye-free medium and fixed in 4% paraf-
ormaldehyde PBS, for 20 min on ice. Cover slips were washed once with chilled
PBS and transferred to mounting medium and analyzed using LSM780 Axio
Observer (Zeiss).

Lysosomal enzymatic activity assay. To monitor changes in lysosomal enzymatic
activity, cells were starved for 2 h in EBSS and subsequently incubated in EBSS
containing 10 µg ml–1 DQ-Ovalbumin (Thermo Fisher Scientific, D12053) for 0,
15, 30, and 60 min. Cells on cover slips were washed, fixed for 15 min in 4%
paraformaldehyde-PBS, and transferred to mounting medium containing DAPI
nuclear staining. Samples were analyzed using LSM780 Axio Observer (Zeiss).

Electron microscopic analysis. MEFs were grown on 12 mm Aclar plastic discs
and fixed for 1 h in 2.5% glutaraldehyde in 0.1 M sodium phosphate buffer, pH 7.4.
Samples were then rinsed with the same buffer, subsequently fixed in 1% osmium
tetroxide in ddH2O, dehydrated in a graded series of ethanol and embedded in
Agar 100 resin. Seventy-nanometer sections were cut parallel to the substrate and
post-stained with 2% uranyl acetate and Reynolds lead citrate. Sections were
examined with an FEI Morgagni 268D (FEI, Eindhoven, The Netherlands) oper-
ated at 80 kV. Images were acquired using an 11-megapixel Morada CCD camera
(Olympus-SIS). The number of autophagic bodies per autolysosome was manually
quantified.

Immunoblotting. The method is described elsewhere46. Briefly, cells were lysed
with chilled lysis buffer (50 mM HEPES, 150 mM NaCl, 1 mM EDTA, 1 mM
EGTA, 25 mM NaF, 10 mM ZnCl2, 10% glycerol, 1% Triton X-100, 20 mM NEM,
and Complete protease inhibitors) and total cell lysates were resolved by SDS-
PAGE, and transferred to nitrocellulose (GE Healthcare, Little Chalfont, UK) or to
polyvinylidene difluoride membrane (Millipore, ISEQ00010). Membranes were
blocked in 5 % BSA-TBS and blotted with indicated antibodies in blocking solution
at 4 °C overnight. The following secondary antibodies were used according to the
manufacturer’s recommendations: goat anti-mouse HRP (BioRad, 170–6516;
1:7,000), goat anti-rabbit HRP (Dako, P0448; 1:2,000), and goat anti-rat IgG HRP
(Southern Biotech, 3050-05; 1:10,000). Western blotting Luminol Reagent (Santa
Cruz) and high-performance chemiluminescence films (GE Healthcare) were used.
Where appropriate, Ponceau S staining was used to visualize transferred proteins
on the membranes.

For Odyssey-based immunoblotting quantification, membranes were blocked in
5% milk PBS and washed using PBS 0.2% Tween. Primary and secondary
antibodies were diluted according to the manufacturer’s recommendations in 5%
milk PBS 0.2% Tween. IRDye 800CW (925–32210; 1:10,000) and IRDye 680RD
(925–68071; 1:10,000) secondary antibodies were purchased from LICOR.
Membranes were imaged and quantified using LICOR imaging system. LC3B levels
were subsequently normalized to Vinculin loading control.

Fig. 7 BRUCE (aa 1–1648) partially rescues the autophagy defect in Bruce−/− MEFs. a Protein levels of LC3B, GABARAP, GABARAPL1, and p62 in Bruce−/−

MEFs stably expressing BRUCE 1–1648 compared with Bruce+/+ and Bruce−/− empty vector (mock) expressing MEFs. Total cell lysate of MEFs in fully
supplemented medium (FM), starved for 2 h (Starv) with or without Bafilomycin A1 (Baf; 100 nM) was analyzed by immunoblotting using antibodies as
indicated. Vinculin was monitored as a loading control. b Confocal microscopy images of LC3B and LAMP2 in Bruce+/+ (mock) and Bruce−/− (mock and
BRUCE 1–1648) MEFs. MEFs in basal or 4 h starved condition with or without Bafilomycin A1 (100 nM) were fixed and stained for endogenous LC3B and
LAMP2 using antibodies as indicated. Scale bars, 5 µm. c Quantification of LAMP2-positive vesicles containing LC3B-positive aggregates based on
microscopy images from (b) in 4 h starved condition treated with Bafilomycin A1. Data are presented as dot plots with mean±SD (****p< 0.0001). n= 8
cells. d Colocalization analysis of LAMP2 and BRUCE in Bruce+/+ and Bruce−/− mock compared to BRUCE 1–1648 expressing MEFs. MEFs in basal, 4 h-
starved condition with or without Bafilomycin A1 (100 nM) were fixed and stained for endogenous BRUCE and LAMP2 using antibodies as indicated.
Fluorescent intensity of LAMP2 and BRUCE signals across 8 µm regions marked with arrows is shown in line plots. e Interaction of GFP-STX17 and Myc-
BRUCE (aa 1–1648) determined by co-immunoprecipitation. GFP-STX17 and Myc-BRUCE (aa 1–1648) were transfected in HEK293T cells. Myc-BRUCE (aa
1–1648) was immunoprecipitated using anti-Myc antibody from total cell lysates (TCL). Immunoprecipitated samples were examined by immunoblotting
using the indicated antibodies. *Nonspecific band
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Uncropped blots from main figures can be found in supplementary
figures 8 – 12.

EGF receptor degradation assay. Cells were stimulated with 100 ng ml–1 EGF
(Thermo Scientific, E13345) in starvation medium after washing with PBS twice. At
the indicated time points, cells were washed with chilled PBS and lysed in lysis
buffer. Lysate was centrifuged for 15 min, 13,000 g at 4 °C and supernatant was
used for immunoblotting.

GST-protein purification and pulldown assay. A method for GST-protein pur-
ification and pulldown assay are described elsewhere46. Briefly, proteins were
expressed in Escherichia coli BL21 (DE3) overnight at 18 °C and purified by Glu-
tathione Sepharose 4B agarose beads (GE Healthcare). Total cell lysates were
subjected to GST pulldown at 4 °C overnight using agarose-beads immobilized
GST-control or GST-tagged proteins as indicated. After washing with chilled lysis
buffer for 3 times, the pulldown samples were subjected to SDS-PAGE followed by
immunoblotting. Input of the GST-tagged proteins or GST-control was analyzed
by Ponceau S staining.

Immunoprecipitation. Myc-BRUCE was immunoprecipitated from
HEK293T cells, 48 h after transfection with the indicated plasmids using GeneJuice
transfection reagent. Total cell lysates from 10 cm dishes were prepared as men-
tioned above, and incubated with 4 µg anti-Myc (9E10, Covance, MMS-150P) for 7
h at 4 °C, followed by incubation with 40 µl Protein G agarose beads (Sigma,
11243233001) for 1 h. Beads were washed four times, resuspended in loading buffer
and boiled at 96 °C for 5 min. Samples were analyzed by immunoblotting.

RNA sequencing. To prepare RNA-Seq samples, total RNA was isolated from
MEFs expressing shRenilla and shBruce#1, starved for 2 h or grown in regular
media using TRIzol (Life Technologies, 15596026). Contaminating DNA was
digested by TURBO DNA-free Kit (Ambion, AM1907) and Bioanalyzer 2100
(Agilent Technologies) was used to determine the quality and quantity of RNA
according to the manufacturers’ instructions. The library was prepared from these
samples by poly(A) enrichment (New England Biolabs, Ipswich, MA). The
resulting fragmented samples were sequenced on a HiSeqV4 SR50 with a read
length of 50 (by VBCF-NGS). The reads were mapped to the Mus musculus mm10
reference genome with STAR (version 2.4.0d)57. Reads aligning to rRNA sequences
were filtered out prior to mapping. The read counts for each gene were detected
using HTSeq (version 0.5.4p3)58. The counts were normalized using the TMM
normalization from edgeR package in R. Before statistical testing, the data was
voom transformed and then the differential expression between the sample groups
was calculated with limma package in R. The functional analyses were done using
the topGO and gage packages in R. For visualization, heat maps were created using
R and fragment alignments were processed using the Integrative Genomics Viewer
(IGV_2.3.40 software)59,60

Statistical analysis. All graphs were created using GraphPad Prism 7 software
(GraphPad Software, Inc). The ANOVA test was used for all data sets, excluding
indicated data sets in which two groups were compared by t-test. Significance and
confidence level was set at 0.05.

Data presentation. Representative western blots are shown from three indepen-
dent experiments in Figs. 1d, e, 2d, 3a, b, 6a and 7a, e, S3b, S3d-f, S4a-h, S4o, S6c,
S7a-f and S7i; from two independent experiments in Figs. 2f and 3c, S3g-h, S4i-l,
S4n, S6d and S7g–h. Representative confocal microscopy images are displayed from
three independent experiments in Figs. 2b, 5a, 6b, 7b and d, S1e, S5a and S6a; from
two independent experiments in Figs. 4a and 5d and S6b; from one experiment in
Fig. 6c. Representative electron microscopy images in Fig. 5c are taken from two
independent experiments. Representative replicate#1 from the shRNA screen is
shown in Fig. 1b and Fig. S2b. Corresponding correlation plots for both replicates
are displayed in Fig. S2c. Representative FACS plots from two independent
experiments from Fig. S1b–c are shown in Fig. S1d. Odyssey-based quantification
of Fig. S3c was taken from one experiment using identical samples as in Fig. 7a.
Specific data sets from RNA-Seq experiment are displayed in Fig. S3i and S5d.

All assays used in this study were pre-established, and planned accordingly or
variance was determined from pilot studies. Statistical method was not used to
determine the power analysis.

No samples were excluded from the analysis, and no specific statistical method
was used for randomization. Mean-variance relationship is estimated empirically.

For quantification of microscopy data, the investigator was not blinded.

Data availability. The RNAseq data that support the findings of this study have
been deposited to GEO Submission with the GSE102808 accession code in the
NCBI tracking system #18600616. Rest of the data that support the findings of this
study are available from the corresponding author upon reasonable request.
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