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Background: Accumulating evidence implicates the tumour stroma as an important determinant of cancer progression but the
protein constituents relevant for this effect are unknown. Here we utilised a bioinformatics approach to identify an extracellular
matrix (ECM) gene signature overexpressed in multiple cancer types and strongly predictive of adverse outcome.

Methods: Gene expression levels in cancers were determined using Oncomine. Geneset enrichment analysis was performed
using the Broad Institute desktop application. Survival analysis was performed using KM plotter. Survival data were generated
from publically available genesets.

Results: We analysed ECM genes significantly upregulated across a large cohort of patients with ovarian, lung, gastric and colon
cancers and defined a signature of nine commonly upregulated genes. Each of these nine genes was considerably overexpressed
in all the cancers studied, and cumulatively, their expression was associated with poor prognosis across all data sets. Further, the
gene signature expression was associated with enrichment of genes governing processes linked to poor prognosis, such as EMT,
angiogenesis, hypoxia, and inflammation.

Conclusions: Here we identify a nine-gene ECM signature, which strongly predicts outcome across multiple cancer types and can
be used for prognostication after validation in prospective cancer cohorts.

The extracellular matrix (ECM) is a multi-molecular substance that
serves functions ranging from cellular adhesion and motility to cell
signalling. The extracellular matrix proteins are constructed from a
relatively small repertoire of phylogenetically conserved amino-
acid domains and genome-wide in silico analysis has led to the
categorisation and indexing of the known protein constituents of
the ECM. This ECM protein inventory, termed the core matrisome
(CM) (Hynes and Naba, 2012), provides a platform for the analysis
of physiological and disease-specific patterns of ECM protein
expression.

Many solid tumours are characterised by the production of a
dense, collagen-rich matrix, the deposition of which is associated
with adverse outcome (Erler et al, 2006; Levental et al, 2009; Lu
et al, 2012; Naba et al, 2014; Acerbi et al, 2015). The alteration in
ECM protein constituents resulting from the development of a

cancer causes reciprocal changes in the cancer cell and activates
pathways responsible for cell migration, inhibition of apoptosis and
proliferation (Pickup et al, 2014). The cancer ECM also promotes
the formation of an unstable and chaotic vascular bed, poor oxygen
delivery and hypoxia (Gilkes et al, 2014); factors that favour disease
progression and metastasis.

Although excessive ECM deposition is a recognised hallmark of
cancer, the specific proteins comprising the cancer ECM and their
potential contribution to cancer biology and prognosis are less well
studied. Here we address these issues using bioinformatics to
compare the expression of CM genes in tumours and their normal
tissue counterparts. We identify a nine-gene CM signature
common to a range of cancers, the expression of which predicts
poor prognosis in several solid cancer types. These data provide an
impetus to further study proteins of the ECM in order to gain a
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greater understanding of cancer biology and develop clinical tools
for prognostication.

MATERIALS AND METHODS

Ethics. All bioinformatics data were anonymised and required no
ethical approval. Commercially available tissue microarrays were
produced by US Biomax Inc. under the highest ethical standards
with the donor being informed completely and with their consent.
No ethical approval was required for this study.

Identification of the CM gene signature. All gene encoding
proteins of the CM (http://matrisomeproject.mit.edu/) were
included. Gene expression levels were determined in studies
comparing lung, breast, ovarian, gastric, oesophageal or colorectal
adenocarcinoma with normal tissue in Oncomine (www.oncomi-
ne.org/resource/login.html). Here gene expression data are nor-
malised across studies enabling summative gene expression
comparisons. Median gene rank (cancer vs normal analysis) was
meta-analysed across studies of the same cancer type using
Oncomine statistical algorithms. P values of the difference in gene
rank were corrected for multiple hypothesis testing using the false
discovery rate (FDR) method as described by Storey and Tibshirani
(2003). Venn diagrams were generated and analysed using
InteractiVenn (Heberle et al, 2015).

Immunohistochemisty. Immunohistochemistry for ECM pro-
teins was performed on colon cancer and matched normal tissue
microarrays from 20 patients (US Biomax Inc). Frozen tissues were
immediately fixed in ice-cold acetone and blocked in normal serum
of the species in which the secondary antibody was raised. Primary
antibodies for col11a1 (ab64883), col1a1 (ab34710), col10a1
(ab58632) and spp1 (ab69498) were all obtained from ABCAM.
Fluorochrome-conjugated secondary antibodies were obtained
from Invitrogen. Tile-scanned images were taken at � 10
magnification using the Nikon Eclipse 90i epifluorescence micro-
scope and were analysed using ImageJ.

Determination of the effect of the nine-gene CM signature on
cancer outcome. Survival analysis was performed using KM
plotter for ovarian (Gyorffy et al, 2012), gastric (Szász et al,
2016) and lung (Gy+orffy et al, 2013) cancers or GraphPad Prism
for colorectal, renal, bladder or prostate cancer data derived from
cBioportal (Cerami et al, 2012; Gao et al, 2013) or data set
GSE17538. KM plotter is a manually curated, biannually updated
database enabling survival analysis across multiple GEO data sets
simultaneously. The GEO data sets used here are shown in Table 1.
We used JetSet probes throughout (Li et al, 2011) and patients were
divided into two groups on the basis of median expression of the
nine-gene signature. For the analysis of colorectal cancer data sets,

a z-score threshold of þ 1 for gene expression was used to define
patients. Kaplan–Meier survival curves were constructed and
compared using the log-rank method to generate hazard ratios and
P values. Survival curves were generated using GraphPad Prism
Version 7. Multivariate analysis was performed in lung, gastric and
colorectal cancer data sets using SPSS (2017).

Geneset enrichment analysis. Geneset enrichment analysis
(GSEA) analysis (Subramanian et al, 2005) was performed using
the Broad Institute desktop application (http://software.broadin-
stitute.org/gsea/downloads.jsp) on RNA-Seq expression data from
TCGA colorectal, gastric, ovarian and lung cancer data sets.
Phenotypes were defined on the basis of expression of the nine-
gene CM signature with samples divided into high or low
expression again using a z-score of þ 1 to define groups. Genesets
were identified in the molecular signatures database (http://
software.broadinstitute.org/gsea/msigdb/index.jsp), with the excep-
tion of the angiogenesis geneset, which was identified in a recent
publication describing a meta-analytical approach that identified a
transcriptional programme for angiogenesis in human cancers
(Masiero et al, 2013) and the EMT geneset (Gröger et al, 2012).

RESULTS

Identification of a CM gene signature expressed by adenocarci-
nomas. In order to identify ECM proteins important for cancer
progression, we compared the expression of genes comprising the
CM in adenocarcinomas (ACs) and normal tissues. We focused
specifically on ACs because in organs where both squamous cell
carcinomas (SCCs) and ACs develop, these tumour types may
originate from different cell lineages (Yan et al, 2010; Yuan et al,
2010), are characterised by different genetic landscapes (Contag
et al, 2004; Gao et al, 2014) and demonstrate differences in their
sensitivity to various treatment modalities (Katanyoo et al, 2012;
Chen et al, 2014). These differences may relate in part to
differences in the composition of the tumour ECM or regulation
of ECM expression, and we did not want this to act as a
confounder in the identification of a CM gene signature.

We identified a large number of CM genes expressed at
significantly higher levels in ACs compared with their normal
tissue counterparts (Figure 1A). Cancers of the oesophagus and
lung in particular were highly different from their parent organs,
with 110 and 97 of 274 CM genes significantly upregulated in these
cancers, respectively. In comparison, ovarian cancers demonstrated
less of a difference with only 43 of 274 CM genes significantly
upregulated in the tumour (Supplementary Table 1).

We next identified genes that were significantly upregulated
across all cancer types studied and defined a signature of nine such
genes (Figure 1B–D). There was a significant correlation in the

Table 1. Details of data sets used for survival analysis

Cancer type
Tool for survival

analysis Data sets in analysis
Total patients in

overall survival analysis

Total patients in
progression-free survival

analysis
Ovarian
cystadenocarcinoma

KM plotter GSE14764, 15622, 18520, 19829, 23554, 26193, 26712,
27651, 30161, 3149, 51373, 63885, 65986, 9891, TCGA

655 614

Lung AC KM plotter GSE14814, 19188, 29013, 30219, 31210, 3141, 31908,
37745, 43580, 4573, 50081, 8894, TCGA, CAARRAY

673 443

Gastric AC KM plotter GSE14210, 15459, 22377, 29272, 51105, 62254 631 522

Colorectal AC GraphPad Prism TCGA 374 329

GraphPad Prism GSE17538 232 203

Abbreviation: ACs¼ adenocarcinomas.
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expression level of most of these genes in TCGA data sets of colon,
gastric, lung and ovarian ACs (Supplementary Figure 1A and B),
suggesting that the expression of these genes results from a
common regulatory element.

Finally, immunohistochemistry demonstrated a significant
increase in the expression of col11a1, col10a1 and spp1 proteins
in colon cancer compared with matched normal colon tissues
(Figure 1E). The expression of col1a1 was increased in cancer
tissues compared with normal colon but this did not reach
significance. Importantly, within colon cancers, each protein was
identified within the stroma indicating deposition within the ECM.
In normal colon, col11a1 was virtually undetectable and col10a1
was identified within the cytoplasm of colonic epithelial cells rather
than within the stromal tissue compartment.

The nine-gene CM signature predicts long-term outcome in
various cancer types. Given the widespread overexpression of the
nine-gene CM signature in ACs compared to normal tissues, we
hypothesised that the expression of these genes may be a
requirement for cancer. Combined comparison of normalised
gene expression data from multiple GSE data sets confirmed this
hypothesis, as patients with cancers demonstrating overexpression

of the nine-gene signature displayed reduced overall and progres-
sion-free survival for gastric, lung and ovarian cancers (Figure 2A).
In three large colorectal cancer data sets, overexpression of the
nine-gene signature was similarly associated with adverse outcome
(Figure 2A) and it was also associated with reduced progression-
free survival in a large TCGA breast cancer data set, as it was for
cancers not used to generate the nine-gene signature such as those
of the prostate and bladder (Supplementary Figure 2). Interest-
ingly, there was no correlation between expression for the CM gene
signature and survival in squamous cell carcinoma of the lung,
head and neck or oesophagus or for oesophageal AC
(Supplementary Figure 2). Multivariate analysis in gastric, lung
and colorectal data sets identified the nine-gene CM signature as a
factor significantly associated with disease-free survival indepen-
dent of disease stage or grade (Table 2).

GSEA analysis identifies biological traits associated with
expression of the CM signature. Epithelial–mesenchymal transi-
tion (EMT), angiogenesis, hypoxia, inflammation and glycolysis
are all features of cancer that have been associated with poor
prognosis. Several of these processes have also been linked to ECM
deposition (Lu et al, 2012). To gain an insight into the biological
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Figure 1. Development of a core matrisome gene signature from multiple cancer data sets. (A) CM gene expression based on gene rank for cancer
vs normal tissue in various tumour types. Red squares indicate high rank in the cancer relative to the normal tissue. Grey indicates that the gene was not
measured. Genes are listed in order of median rank across the analysis of included studies for that particular cancer type. (B) Venn diagram used to
identify common CM genes that are significantly overrepresented throughout all cancer types identified in A. (C) The gene signature derived from the
Venn diagram in B displaying the nine common, significantly upregulated genes identified across the analyses of all cancer types from A. (D) The nine-
gene CM signature showing median gene rank (red¼ high expression) in cancer compared with normal tissue for each included study and FDR-
corrected P values for the meta-analytical comparison. (E) Fluorescence immunohistochemistry for SPP1, Col10a1, Col1a1 and Col11a1 in colon cancers
and matched normal colon with quantification of the area (%) of the microarray core demonstrating positive staining (n¼ 20 per analysis). A full colour
version of this figure is available at the British Journal of Cancer journal online.
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mechanisms through which the CM gene signature may define
poor prognosis cancers, we performed GSEA analysis to determine
whether genes governing these processes are overrepresented in
cancers from patients overexpressing the nine-gene CM signature.
Strikingly, colorectal, gastric (both Figure 2B), lung and ovarian
cancers (both Supplementary Figure 3) expressing the CM gene
signature were significantly enriched in EMT, hypoxia, angiogen-
esis and inflammation genesets, but showed reduced expression of
the oxidative phosphorylation geneset. Importantly, several
molecular signatures defining other cancer-related processes,
including those for apoptosis or genomic instability, were not
enriched in cancers expressing the CM signature (Figure 2B and
Supplementary Figure 3).

DISCUSSION

Here we present a comprehensive analysis of the difference in
expression of CM genes in cancers and normal tissues in order to
identify key constituents of the cancer ECM. We have identified
commonality in the significant upregulation of nine CM genes
across multiple cancer types, suggesting a potential requirement for
these CM genes throughout solid tumours. Expression of the nine-
gene signature predicted outcome in a broad range of cancers
including those not initially used to generate the gene signature.
These proteins are therefore associated with cancer progression
and their combination may represent a useful biomarker for
prognostication. Interestingly, the CM signature failed to predict

overall or disease-free survival in squamous cell cancer data sets
indicating that the ECM genes in the CM signature are not of
relevance for the progression of SCC.

Col11a1 has previously been linked to cancer progression
(Fischer et al, 2001; Cheon et al, 2014; Jia et al, 2016; Li et al, 2017)
and is expressed by cancer stromal (Galván et al, 2014; Jia et al,
2016) and tumour cells progressed to EMT, where it promotes
migration and invasion (Sok et al, 2013; Wu et al, 2014).
Expression of secreted phosphoprotein 1 (SPP1, osteopontin) is
also reported in cancer (Shevde and Samant, 2014) and is driven by
cancer-related signalling pathways including Hedgehog, Wnt/b-
catenin and NFkB (Shevde and Samant, 2014). SPP1 is also
expressed by tumour-associated macrophages and fibroblasts,
where it is linked to angiogenesis (Kale et al, 2014) and the
metastatic cascade (Mi et al, 2011), respectively.

The protein products of several genes in our signature have not
been thoroughly studied in relation to cancer; however, several are
associated with functions of relevance to cancer progression. BGN,
for example, interacts with toll-like receptors on the surface of
macrophages to promote the synthesis of TNFa and CCL2 (Schaefer
et al, 2005; Moreth et al, 2010); both cytokines important for cancer
(Balkwill, 2006; Lim et al, 2016). BGN and MXRA5 expression are
promoted by the activity of TGFb1 (Heegaard et al, 2004; Poveda
et al, 2017), a key driver of the adverse stromal response in many
cancers (Pickup et al, 2013) and COMP binds TGFb1, enhancing its
biological activity (Haudenschild et al, 2011).

In support of these findings, our GSEA analyses link the nine-
gene signature to biological processes common to poor prognosis
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cancers, including EMT, angiogenesis, hypoxia, inflammation and
a shift away from oxidative phosphorylation as a means of energy
generation. Interestingly, we failed to demonstrate enrichment of
gene signatures linked to other cancer-relevant processes including
apoptotic regulation and genomic instability. The association with
specific cancer-relevant gene signatures may implicate the nine-
gene CM signature in their regulation. Nonetheless, it should be
noted that the data presented here is only correlative and from its
analysis we cannot provide a mechanistic link between the
expression of ECM genes and specific biological processes. Moving
forward, it will be important to confirm the prognostic relevance of
the gene signature in prospective cancer cohorts and look to
preclinical models to investigate potential mechanisms through
which they might regulate cancer progression.
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