1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
J Bioinform Comput Biol. Author manuscript; available in PMC 2018 December 01.

-, HHS Public Access
«

Published in final edited form as:
J Bioinform Comput Biol. 2017 December ; 15(6): 1740008. doi:10.1142/S021972001740008X.

Utilizing networks for differential analysis of chromatin
interactions

Lu Liu™¥ and Jianhua Ruan™8
*College of Information Technology and Engineering, Marshall University, One John Marshall
Drive, Huntington, WV 25755, USA

TDepartment of Computer Science, The University of Texas at San Antonio, One UTSA Circle,
San Antonio, Texas 78249, USA

Abstract

Chromatin conformation capture with high-throughput sequencing (Hi-C) is a powerful technique
to detect genome-wide chromatin interactions. In this paper, we introduce two novel approaches to
detect differentially interacting genomic regions between two Hi-C experiments using a network
model. To make input data from multiple experiments comparable, we propose a normalization
strategy guided by network topological properties. We then devise two measurements, using local
and global connectivity information from the chromatin interaction networks, respectively, to
assess the interaction differences between two experiments. When multiple replicates are present
in experiments, our approaches provide the flexibility for users to either pool all replicates together
to therefore increase the network coverage, or to use the replicates in parallel to increase the signal
to noise ratio. We show that while the local method works better in detecting changes from
simulated networks, the global method performs better on real Hi-C data. The local and global
methods, regardless of pooling, are always superior to two existing methods. Furthermore, our
methods work well on both unweighted and weighted networks and our normalization strategy
significantly improves the performance compared with raw networks without normalization.
Therefore, we believe our methods will be useful for identifying differentially interacting genomic
regions.
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1. Introduction

Chromatin organization plays an important role in many molecular level cell activities, such
as gene expression regulation, DNA replication and repair.1:2 Many experimental approaches
have been devised to detect chromatin interactions between genomic loci that are close in
three-dimensional space but may be far separated in a linear genome.3~7 One of the
approaches, chromatin conformation capture with high-throughput sequencing (Hi-C),8
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captures genome-wide chromatin interactions. Existing research shows that there are many
changes in chromatin interactions between experiments of different conditions.8:® Changes
in chromatin interactions impact chromatin organization and function. Therefore, finding Hi-
C data differences between experiments is important to new biological discoveries and the
differences may help to reveal the underlying mechanisms related to biological conditions
being studied.

A few computational tools have been developed to compare chromatin interactions and they
have a common limitation. They either pool replicates or treat replicates separately, but do
not allow users to decide according to their replicate quality, availability and research goals.
Existing approaches fall into two categories; one tries to identify differential interactions,
and the other reports genomic regions with significantly different interaction patterns.
DiffHiC is a Bioconductor package to detect differential interactions.10 It uses a generalized
linear model and quasi-likelihood methods to estimate biological variability of separated
replicates. Owing to limited number of replicates and large number of interactions in real
data, it often fails to detect any statistically significant patterns after correction for the
multiple comparisons problem. HiBrowse is a user-friendly web-tool to detect differential
interactions of separated replicates.1? The web-tool is consisting of a range of hypothesis-
based and descriptive statistics. Similar to diffHiC, it also suffers from low statistical power
due to multiple comparisons. Also, because of its web-only feature, HiBrowse cannot be
applied to analyze large-scale data sets. MDM proposes two models for pooled ChlIA-PET
count data to identify differential chromatin interactions mediated by a protein of interest.
712 Both models incorporate the data dependency and the extent to which a fragment pair is
related to a pair of DNA loci of interest. But it cannot process Hi-C chromatin interaction
data because it is intended for chromaitn interactions mediated by a protein of interest.

To the best of our knowledge, HOMER is the only available program that is designed to
identify genomic regions whose interaction patterns are significantly different under
different conditions.13 It pools replicates at first and correlates genomic regions’ interactions
of one experiment with the ones of the other experiment. Therefore, it does not consider
biological variability. Moreover, it ignores the inter-chromosomal interactions. In our
opinion, a novel method is needed to allow users to decide when to pool replicates and when
to treat them separately.

Chromatin interaction data can be represented as networks, which are widely used in
differential analysis of biological data. A paper conducts a differential analysis of networks
constructed from microarray data under two experimental settings.2# Another paper
proposes a network-based method to assess the degree of topological difference between two
DNA methylation experiments.1> But there is no research applying networks to compare
chromatin interaction data.

In this study, we propose two novel approaches to identify differentially interacting genomic
regions between experiments by constructing networks from chromatin interaction data
while accommodating the option for users to pool replicates or treat them separately. Our
paper has four major contributions. First, our methods provide the flexibility of pooling
replicates or treating them separately. Second, we are the first using networks to carry out
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differential analysis of chromatin interaction data. Third, we propose a novel normalization
strategy guided by network topological properties to make data comparable from different
experiments. Fourth, we devise two measurements to assess interaction differences with
local and global information from interaction networks. We show that while the local
method works better in detecting changes from simulated networks, the global method
performs better on real Hi-C data. The local and global methods, regardless of pooling, are
always superior to two existing methods. Furthermore, our methods work well on both
unweighted and weighted networks and our normalization strategy significantly improves
the performance compared with raw networks without normalization.

The rest of this paper is organized as follows. Section 2 describes our methods in detail,
which includes network construction, network normalization and two measurements of
differential genomic regions. Section 3 evaluates our methods with simulated networks, real
data sets and different configurations. We conclude in Sec. 4.

2. Methods

We propose two network-based methods to identify differentially interacting genomic
regions. They can process pooled data and treat replicates separately. When replicates are
treated separately, our methods consider biological variability. The workflow of our methods
is shown in Fig. 1. Rather than starting from raw reads, our methods take processed
chromatin interactions as input since a lot of studies have been done.16-22 Our methods are
comprised of three parts, network construction, network normalization and differential
measurements. The output of our methods are two ranked genomic region lists according to
two differential measurements.

2.1. Network construction

Each chromosome is divided into equal sized bins, whose size is customized by users. Later,
we will show that the performance of different bin sizes is robust. Bins from all
chromosomes are arranged in tandem and numbered in an ascending order. To construct a
Hi-C network, we create a node for each bin and connect two nodes by an edge if there are
chromatin interactions between the corresponding bins in the input. The edge is weighted by
the number of chromatin interactions between these two bins. When replicates are treated
separately, the above procedure is applied to each replicate, respectively.

2.2. Network normalization

Chromatin interaction data of different experiments may have different sizes because of
different sequencing depths or amounts of DNA used in experiments, which makes the
networks quite different in number of edges. To make the networks comparable, we need to
normalize them. A commonly used approach to normalize data is utilizing a cutoff to
remove low frequency data. Since real networks are quite different from randomly generated
ones on network topological properties, we assume when a right cutoff is selected, network
topological properties will reach their optima compared to randomly generated networks.
During the revision stage of this paper, Yan et a/23 published a network modularity-based
algorithm, MrTADFinder, to identify topologically associating domains from HiC data,
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which confirms our idea that network topological properties can be utilized to guide the
construction of HiC networks. Besides, biological functional networks are generally sparse.
24,25 Therefore, our normalization strategy is to create sparse networks with optimal network
topological properties when compared with randomly generated networks. We try different
cutoffs and select the cutoff according to Clustering Coefficient (CC),26 which is a measure
of the degree to which nodes in a network tend to cluster together. In undirected networks,
the CC, of a node nis defined by Eq. (1), where K}, is the number of neighbors of nand £,
is the number of connected pairs between all neighbors of 7. The network clustering
coefficient (NCC) is the average of the CCs for all nodes in the network as defined by Eq.

(2):

2x By,

CChp=—r—r—r,
Kn*(Kp—1)" (1)

Zfilcci

NCC= i @

A series of cutoffs are used to generate unweighted networks with a targeted edge density
(e.g. 1%). The NCC is calculated for each unweighted network, respectively. Network
randomization is carried out 100 times on each unweighted network by changing nodes’
edges but maintaining their degrees unchanged, and NCCs are also calculated for these 100
randomized networks. Zscores are estimated by comparing the real network’s NCC over the
average and standard deviation of the randomized networks’ NCCs, as defined in Eq. (3).
The zscores are plotted as a function of the cutoffs, and when the zscores reach the peak, the
corresponding cutoff is selected as the optimal cutoff for constructing the sparse chromatin
interaction networks. When applying the cutoff and turning raw networks into matrices with
0 and 1, we get unweighted networks; when applying the cutoff and keeping the high
frequency edges’ weights, we get weighted networks. In Sec. 3.3.2, we will show that the
results on these two types of normalized networks are similar:

NCCieal — mean ( NCCrandom )
Std(NCCrandom> . (3)

Z score=

2.3. Differential measurements

To identify differentially interacting nodes between two (or two groups of) networks, we
propose two measurements to identify nodes whose connections changed significantly. For a
node, both its degree and neighbors are important to its connections. Meanwhile, its
neighbors’ connections are also important to its connectivity, for example, connecting to a
hub node and connecting to a non-hub node are different. Therefore, we propose two
measurements, Hi-C Differences with local information (HD%) and Hi-C Differences with
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global information (HD®). HDZ only uses local information from chromatin interaction
networks, while HDC uses both local and global information.

2.3.1. HDL—HDZ combines a node’s degree and neighbors to find the node’s connection
differences between experiments. Assume there are /7 networks from experiment A, and
there are & networks from experiment B. For experiment A, networks are represented in

matrices as P,L-lj, Pﬁ PL-};; for experiment B, networks are represented in matrices as Qz-lj,

Q?j, Qf“] q;; represents the number of edges between node /7and node jin the sth network
of experiment A and p;; represents the number of edges between node 7and node /in the sth
network of experiment B. Assume there are 77nodes in a Hi-C interaction network. The
measurement is shown in Egs. (4) and (5). Equation (4) is used to find a node’s difference
between two networks by calculating the Euclidean distance based on the node’s connection
vectors. Euclidean distance captures any difference in node degree and neighbors. Equation
(5) is used to calculate the average of differences between experiments. When interaction
patterns of the node are significantly different, HDZ generates a high score; when the node’s
interaction patterns are similar, HDZ produces a low score:

TS__
D;°=

(4)

ZT:h,s:kDrs
r=1,s=1" "

‘ hek  (5)

HDE=

2.3.2. HDG—HDE utilizes global information by applying Random Walk with Restart
(RWR) to each network, respectively.2” RWR is a well-known machine learning algorithm
used to measure the relevance scores between nodes by imagining that starting from each
node there is a random walker, which at each step, either moves to a randomly chosen
neighbor, or jJumps back to the starting node. We formulate the procedure in Eq. (6). /is an
identity matrix and denotes the matrix of initial relevance scores; p (fixed at 0.5 in this
study) represents the probability for a random walker to jump back to the starting node and
restart the walk; M is the Hi-C network transition probability matrix; S, is a probability
matrix, where S, (/, /) represents the probability for a random walker started at node 7to
reach node jafter n7steps. When the random walk procedure reaches an equilibrium, as the
walkers randomly choose their routes so they would cover all paths between nodes, the
RWR probability matrix represents relevance between nodes which implicitly includes
global topology information. Equations (4) and (5) are used on RWR probability matrices of
different experiments:

Sp=(1—p)*« M % S,_1+p=*I. (6)
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3. Results and Discussion

We first use simulated networks to validate the two differential measurements. Then, to
compare with other approaches, we apply our methods on real Hi-C data sets,28 and
investigate the functional relevance measured by the correlations between each method’s
result and genomic features that are known to be important for regulating chromatin
conformation, including CCCTC-binding factor (CTCF) binding sites and several histone
modification markers. We also show that our methods work well on both unweighted and
weighted networks and our normalization strategy significantly improves the performance
compared to raw networks without normalization. Furthermore, the performance of different
bin sizes is robust.

3.1. Performance on simulated networks

To validate differential measurements, we test them on simulated networks. First, an
unweighted network of 1000 nodes is generated with a parameter, ¢, which represents the
number of clusters in the network and is initialized to 1. For the simulated network, intra-
cluster nodes have a higher uniform probability to connect than inter-cluster nodes and
probabilities are chosen such that intra-cluster connectivity per node is roughly 40 and inter-
cluster connectivity is roughly 10. Then the network is copied and 100 nodes are selected
randomly. We completely rewire these 100 nodes’ edges in a random way. Therefore, these
two networks are significantly different in the 100 randomly selected nodes, which serve as
the ground truth. Thereafter, we use the two networks as network templates. For each
network template, three replicates are generated, respectively, by rewiring template edges
with a parameter, p, which specifies the percentage of edges in the template network to be
rewired. When rewiring the edges, these nodes’ neighbors are modified, but these nodes’
degrees maintain unchanged. HDZ and HD© are then applied to these six network replicates
to identify top-100 differentially interacting nodes. The numbers of true positives among the
100 predicted nodes are counted. The above procedure is repeated 10 times and the mean
and standard deviation of true positives are calculated. The whole experiment is repeated by
setting the parameter, ¢, to 2, 4, and 8, respectively.

Overall, as shown in Table 1, HDZ performs very well on simulated networks. When p< 0.2,
HDL finds all true positives. As pincreases, HDZ still delivers a strong performance. Until p
> 0.6, the performance decreases tremendously. Therefore, HDZ can recover all significantly
changed nodes when variability between multiple replicates of the same experiment is small.
When more edges are randomly rewired, the replicates start losing similarity from each other
until all six networks essentially become unrelated. Note that even at p= 0.7, a true positive
rate of 50% is still significant, as the expectation from randomly guessing would only be
10%.

HDE also performs well on simulated networks as shown in Table 2. Like HDZ, it
demonstrates the same pattern as p increases despite it is slightly worse than HDZ. However,
for HDC increasing the number of clusters in the networks constantly improves the
performance especially when p = 0.5. This improvement can be explained by the fact that
HDE harnesses the clustering structure to mitigate the effect of biological variability of the
same experiment. The benefit of using network topology information turns out to be
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significant on real data, which is expected to be highly modular. The clusters of simulated
networks are just simple reflections of the modularity of real networks. Unlike the simulated
network where the interactions within each cluster is random, a real network has modular
structure at different hierarchies and therefore can benefit more from the global method.

3.2. Network normalization analysis

The real Hi-C data are obtained from two cell lines, human embryonic stem cells (hESC)
and lung myofibroblasts (IMR90).28 Each cell line has two replicates. The data are given as
interaction matrices, where the genomic sequence is split into bins of 100 kilobases (kb),
and the numbers of interactions (Hi-C reads) between the genomic loci in bin pairs are
recorded. As the four matrices have very different numbers of total reads, and the numbers
of reads have a wide distribution, the initial networks are highly dense and are suspected to
have many spurious connections.

To facilitate meaningful comparison between experiments, we propose an automated
procedure to convert each interaction matrix into a sparse network by finding an appropriate
cutoff on the number of interactions (see Sec. 2). For the four data sets, as shown in the left
of Fig. 2, the x-axis shows the average connectivity of the resulting network after applying
some cutoff and the y~axis is the zscore of CC. The data points in Fig. 2, from left to right,
correspond to keeping top 0.01%, 0.025%, 0.075%, 0.1%, 0.25%, 0.5%, 0.75%, and 1% of
all edges to generate sparse networks. These zscores display a similar pattern, which
increases first and then decreases and reaches its optimum at around 0.075% (roughly 25
connections per node). When replicates are pooled together, as shown in the right of Fig. 2,
these patterns are somewhat different, with the peak slightly shifting toward the right. To test
how dramatic the results can be affected by the network normalization step, we deliberately
selected a cutoff to have a relatively denser network for the pooled data set, with a density
cutoff set at 0.25% resulting in the average connectivity per node roughly at 75.

Table 3 shows some key statistics of the network properties after normalization. As can be
seen, while using different cutoffs for the separated and pooled data sets, all networks are
highly modular (CC > 0:55) despite being rather sparse. However, for the separated data sets
(first four columns), there are notable differences between the four networks, including CC,
and average shortest distance, and size of the largest component, both between the two
replicates of the same cell line and between cell lines. In comparison, in the pooled data set
(last two columns), the networks from the two cell lines are highly similar.

3.3. Performance on real Hi-C data sets

To compare with other methods, we test our methods on real Hi-C data sets. We also test our
methods under different configurations, which include unweighted and weighted networks,
normalized and raw networks and different bin sizes.

3.3.1. Comparison with other approaches—As there is no ground truth for the
chromatin interaction changes in real data, to evaluate the performance of our methods and
compare with other approaches, we investigate the functional relevance by calculating the
correlations between the predicted differential measurement scores and the changes of
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genomic features that are known important for regulating chromatin structure. CTCF is a
very important protein that regulates chromatin three-dimensional structure. CTCF binding
sites are usually enriched at highly interacting regions and can be viewed as separators
between functional domains in chromosomes.20 Meanwhile, histones which are proteins
used to build chromosomes are important indicators for chromatin structure, and many
histone modification markers are enriched at Hi-C enriched or depleted regions.28

First, we download CTCF binding sites data and available histone modification data for each
cell line.2%:30 After the genomic sequence is divided into 100 kb-sized bins, the CTCF
binding sites falling into the bins are counted. These counts are normalized to the same
range by scaling them according to the total counts of CTCF binding sites of two cell lines.
The absolute differences of these normalized counts between the two cell lines are
calculated. Finally, Spearman correlation coefficients are calculated between these absolute
differences and each method’s measurement scores, respectively. The above procedure is
also applied to histone modification data for correlations.

Since these genomic features are enriched at either highly interacting regions or rarely
interacting regions, if two cell lines are significantly different in chromatin structure at
certain genomic regions, then the patterns of these genomic features are also expected to be
significantly different between the two cell lines. Therefore, the chromatin interaction
difference scores and the genomic features’ difference scores (ignoring signs of changes in
both) should be positively correlated.

As shown in Table 4, both HDZ and HD € perform significantly better than diffHiC and
HOMER, demonstrated by the much higher correlations with the genomic features. In fact,
HDE has the highest positive correlations for all the features tested and keeping the
replicates separated provides slightly better results than pooling them for most features
except in H3K4me1l and H4K20me1l. HDZ results in reasonably well positive correlations
for almost all features, except CTCF. The failing of HDZ at CTCF is probably due to the fact
that CTCEF is usually an indicator of long-range interactions between distal and proximal
regulatory regions, and therefore cannot be captured by the HD scores, whose calculation
are usually dominated by the much more frequent short-range interactions present in most
HiC data. In comparison, by the random walk procedure, the HD€ calculation is able to take
into consideration both short-range and long-range interactions, resulting in much better
agreement with CTCF binding sites. Pooling samples do not change the performance of
HDZ significantly. In comparison, neither diffHiC nor HOMER can capture all genomic
features. DiffHiC has significant correlations (> 0:1) with 4 out of the 8 total features, while
HOMER has only 1.

We further compare the results from different methods in a pairwise manner. As can be seen
in Table 5, HDZ (P) and HDL () are highly similar (Pearson correlation coefficient = 0.78),
followed by HD® (P) and HDC (S) (Pearson correlation coefficient = 0.42). HDL (S) and
HDE () also give a somewhat similar result (Pearson correlation coefficient = 0.31), but
HDL (P) and HDC (P) have a very low correlation. On the other hand, diffHic is correlated
with HDZ to some extent. HOMER result is correlated with HDZ (A) but not HDZ (),
probably because HOMER itself uses pooled replicates. When the top-1000 bins predicted
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from each method are compared as shown in Table 6, the conclusion is similar to that drawn
from the correlation analysis in which diffHic and HOMER are significantly different from
each other and from HD. Somewhat surprisingly, although the pooled and separated data
sets have very different network density, HD (P) and HD (S) share almost half of the
top-1000 bins, much higher than numbers of bins shared by other methods (including HD%-
Pand HDL-S). This indicates that the random walk procedure is able to overcome the low
data coverage problem by essentially predicting additional interactions from known
interactions, as shown in other applications.3!

3.3.2. Comparison of unweighted and weighted networks—There are two types of
normalized networks, unweighted and weighted ones. In the previous section, the functional
relevance is calculated on the unweighted networks. Compared to unweighted networks,
weighted ones keep the weight information for high frequency edges. To evaluate our
methods’ performance on weighted networks, we scale the normalized weights of two
experiments to the same range and calculate the functional relevance by measuring
correlation coefficients between the differential interaction scores based on weighted
networks and difference scores of genomic features. We compare the results with the ones of
unweighted networks. As shown in Fig. 3, for each genomic feature, the performance on
weighted networks is better than or close to the performance on unweighted networks. It can
be explained by that keeping weights can maintain some subtle interaction difference
information which may be ignored by unweighted networks. For weighted networks, the
global method is also better than the local method except H3K4mel and H4K20mel.

3.3.3. Comparison of normalized and raw networks—In this section, we compare
the performance between normalized weighted networks and raw networks without
normalization. First raw networks’ weights are scaled to the same range, then for each
genomic feature, the correlation coefficient is calculated by using our methods under
different configurations. As shown in Fig. 4, for each genomic feature, apparently, the results
on normalized weighted networks are much better than raw networks. Therefore, our
normalization strategy can help us improve the performance significantly. A possible reason
is our normalization can recover the real differences information from the noisy data by
resorting to network topology information.

3.3.4. Comparison of different bin sizes—In previous sections, our results are based
on the bin size of 100 kb. In this section, we divide the genomic sequence into 200 kb bins
and 50 kb bins, apply our methods and calculate functional relevance by measuring
correlations with genomic features, respectively. We compare the results with the ones of bin
size of 100 kb. As shown in Fig. 5, the left compares results between 100 and 200 kb, and
the right compares results between 100 and 50 kb. In the left figure, the points are scattered
close around the 45° line equally, which means the performance of 100 and 200 kb is very
robust. In the right figure, there are more points below the 45° line. One possible explanation
for this is few interactions in a relatively shorter genomic region has low capability to
distinguish one from the other. But they are still close to the line. So, the performance
between 50 and 100 kb is more or less consistent.
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4. Conclusions

In this study, we propose two approaches to find differentially interacting genomic regions
between experiments by using a network model. Our paper has four major contributions.
First, we allow users to decide whether to pool replicates or to treat them separately. Second,
to the best of our knowledge, we are the first to apply a network model to detect
differentially interacting regions with chromatin interaction data. Third, we propose a novel
strategy guided by network topological properties to automatically normalize network data
from different experiments. Finally, we devise two measurements to calculate HiC
differential patterns from two perspectives, one using local information and the other using
the combination of local and global information. We show that the local method is slightly
better than the global method on simulated networks. On real HiC data, evaluated by
functional relevance with known genomic features, the global method is significantly better
than the local method, and both methods are superior to the two existing methods.
Meanwhile, our methods work well on both unweighted and weighted networks and our
normalization strategy significantly improves the performance compared with raw networks
without normalization. Furthermore, the results of different bin sizes are robust. Therefore,
we believe our methods will be useful for identifying differentially interacting genomic
regions.
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Fig. 1.
A typical workflow of analyzing chromatin interaction data.
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Fig. 3.
Comparison of unweighted networks and weighted networks on functional relevance

measured by the correlations between differential interaction scores and genomic feature
scores. We run our methods under different configurations represented by three capital
letters. The first letter indicates unweighted networks () or weighted networks (/). The
second letter indicates local method (L) or global method (G). The third letter indicates
pooling replicates (A) or treating replicates (S) separately.

J Bioinform Comput Biol. Author manuscript; available in PMC 2018 December 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Liu and Ruan

0.4 T T T T T T T T

0.35

0.3

0.25- 1l

015 -

01 -1

Functional Relevance

1 1 1 1 1 1 1 1
CTCF H3Kdme1 H3Kdme2 H3K4me3d H3K8ac H3KZTme3 H3K36me3 H4KZ0me1

Fig. 4.
Comparison of normalized networks and raw networks without normalization on functional

relevance measured by the correlations between differential interaction scores and genomic
feature scores. We run our methods under different configurations represented by three
capital letters. The first letter indicates weighted normalized networks (/) or raw networks
without normalization (/). The second letter indicates local method (L) or global method
(G). The third letter indicates pooling replicates (A) or treating replicates (S) separately.
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