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Abstract

Chromatin conformation capture with high-throughput sequencing (Hi-C) is a powerful technique 

to detect genome-wide chromatin interactions. In this paper, we introduce two novel approaches to 

detect differentially interacting genomic regions between two Hi-C experiments using a network 

model. To make input data from multiple experiments comparable, we propose a normalization 

strategy guided by network topological properties. We then devise two measurements, using local 

and global connectivity information from the chromatin interaction networks, respectively, to 

assess the interaction differences between two experiments. When multiple replicates are present 

in experiments, our approaches provide the flexibility for users to either pool all replicates together 

to therefore increase the network coverage, or to use the replicates in parallel to increase the signal 

to noise ratio. We show that while the local method works better in detecting changes from 

simulated networks, the global method performs better on real Hi-C data. The local and global 

methods, regardless of pooling, are always superior to two existing methods. Furthermore, our 

methods work well on both unweighted and weighted networks and our normalization strategy 

significantly improves the performance compared with raw networks without normalization. 

Therefore, we believe our methods will be useful for identifying differentially interacting genomic 

regions.
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1. Introduction

Chromatin organization plays an important role in many molecular level cell activities, such 

as gene expression regulation, DNA replication and repair.1,2 Many experimental approaches 

have been devised to detect chromatin interactions between genomic loci that are close in 

three-dimensional space but may be far separated in a linear genome.3–7 One of the 

approaches, chromatin conformation capture with high-throughput sequencing (Hi-C),6 
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captures genome-wide chromatin interactions. Existing research shows that there are many 

changes in chromatin interactions between experiments of different conditions.8,9 Changes 

in chromatin interactions impact chromatin organization and function. Therefore, finding Hi-

C data differences between experiments is important to new biological discoveries and the 

differences may help to reveal the underlying mechanisms related to biological conditions 

being studied.

A few computational tools have been developed to compare chromatin interactions and they 

have a common limitation. They either pool replicates or treat replicates separately, but do 

not allow users to decide according to their replicate quality, availability and research goals. 

Existing approaches fall into two categories; one tries to identify differential interactions, 

and the other reports genomic regions with significantly different interaction patterns. 

DiffHiC is a Bioconductor package to detect differential interactions.10 It uses a generalized 

linear model and quasi-likelihood methods to estimate biological variability of separated 

replicates. Owing to limited number of replicates and large number of interactions in real 

data, it often fails to detect any statistically significant patterns after correction for the 

multiple comparisons problem. HiBrowse is a user-friendly web-tool to detect differential 

interactions of separated replicates.11 The web-tool is consisting of a range of hypothesis-

based and descriptive statistics. Similar to diffHiC, it also suffers from low statistical power 

due to multiple comparisons. Also, because of its web-only feature, HiBrowse cannot be 

applied to analyze large-scale data sets. MDM proposes two models for pooled ChIA-PET 

count data to identify differential chromatin interactions mediated by a protein of interest.
7,12 Both models incorporate the data dependency and the extent to which a fragment pair is 

related to a pair of DNA loci of interest. But it cannot process Hi-C chromatin interaction 

data because it is intended for chromaitn interactions mediated by a protein of interest.

To the best of our knowledge, HOMER is the only available program that is designed to 

identify genomic regions whose interaction patterns are significantly different under 

different conditions.13 It pools replicates at first and correlates genomic regions’ interactions 

of one experiment with the ones of the other experiment. Therefore, it does not consider 

biological variability. Moreover, it ignores the inter-chromosomal interactions. In our 

opinion, a novel method is needed to allow users to decide when to pool replicates and when 

to treat them separately.

Chromatin interaction data can be represented as networks, which are widely used in 

differential analysis of biological data. A paper conducts a differential analysis of networks 

constructed from microarray data under two experimental settings.14 Another paper 

proposes a network-based method to assess the degree of topological difference between two 

DNA methylation experiments.15 But there is no research applying networks to compare 

chromatin interaction data.

In this study, we propose two novel approaches to identify differentially interacting genomic 

regions between experiments by constructing networks from chromatin interaction data 

while accommodating the option for users to pool replicates or treat them separately. Our 

paper has four major contributions. First, our methods provide the flexibility of pooling 

replicates or treating them separately. Second, we are the first using networks to carry out 
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differential analysis of chromatin interaction data. Third, we propose a novel normalization 

strategy guided by network topological properties to make data comparable from different 

experiments. Fourth, we devise two measurements to assess interaction differences with 

local and global information from interaction networks. We show that while the local 

method works better in detecting changes from simulated networks, the global method 

performs better on real Hi-C data. The local and global methods, regardless of pooling, are 

always superior to two existing methods. Furthermore, our methods work well on both 

unweighted and weighted networks and our normalization strategy significantly improves 

the performance compared with raw networks without normalization.

The rest of this paper is organized as follows. Section 2 describes our methods in detail, 

which includes network construction, network normalization and two measurements of 

differential genomic regions. Section 3 evaluates our methods with simulated networks, real 

data sets and different configurations. We conclude in Sec. 4.

2. Methods

We propose two network-based methods to identify differentially interacting genomic 

regions. They can process pooled data and treat replicates separately. When replicates are 

treated separately, our methods consider biological variability. The workflow of our methods 

is shown in Fig. 1. Rather than starting from raw reads, our methods take processed 

chromatin interactions as input since a lot of studies have been done.16–22 Our methods are 

comprised of three parts, network construction, network normalization and differential 

measurements. The output of our methods are two ranked genomic region lists according to 

two differential measurements.

2.1. Network construction

Each chromosome is divided into equal sized bins, whose size is customized by users. Later, 

we will show that the performance of different bin sizes is robust. Bins from all 

chromosomes are arranged in tandem and numbered in an ascending order. To construct a 

Hi-C network, we create a node for each bin and connect two nodes by an edge if there are 

chromatin interactions between the corresponding bins in the input. The edge is weighted by 

the number of chromatin interactions between these two bins. When replicates are treated 

separately, the above procedure is applied to each replicate, respectively.

2.2. Network normalization

Chromatin interaction data of different experiments may have different sizes because of 

different sequencing depths or amounts of DNA used in experiments, which makes the 

networks quite different in number of edges. To make the networks comparable, we need to 

normalize them. A commonly used approach to normalize data is utilizing a cutoff to 

remove low frequency data. Since real networks are quite different from randomly generated 

ones on network topological properties, we assume when a right cutoff is selected, network 

topological properties will reach their optima compared to randomly generated networks. 

During the revision stage of this paper, Yan et al.23 published a network modularity-based 

algorithm, MrTADFinder, to identify topologically associating domains from HiC data, 
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which confirms our idea that network topological properties can be utilized to guide the 

construction of HiC networks. Besides, biological functional networks are generally sparse.
24,25 Therefore, our normalization strategy is to create sparse networks with optimal network 

topological properties when compared with randomly generated networks. We try different 

cutoffs and select the cutoff according to Clustering Coefficient (CC),26 which is a measure 

of the degree to which nodes in a network tend to cluster together. In undirected networks, 

the CCn of a node n is defined by Eq. (1), where Kn is the number of neighbors of n and En 

is the number of connected pairs between all neighbors of n. The network clustering 

coefficient (NCC) is the average of the CCs for all nodes in the network as defined by Eq. 

(2):

(1)

(2)

A series of cutoffs are used to generate unweighted networks with a targeted edge density 

(e.g. 1%). The NCC is calculated for each unweighted network, respectively. Network 

randomization is carried out 100 times on each unweighted network by changing nodes’ 

edges but maintaining their degrees unchanged, and NCCs are also calculated for these 100 

randomized networks. Zscores are estimated by comparing the real network’s NCC over the 

average and standard deviation of the randomized networks’ NCCs, as defined in Eq. (3). 

The zscores are plotted as a function of the cutoffs, and when the zscores reach the peak, the 

corresponding cutoff is selected as the optimal cutoff for constructing the sparse chromatin 

interaction networks. When applying the cutoff and turning raw networks into matrices with 

0 and 1, we get unweighted networks; when applying the cutoff and keeping the high 

frequency edges’ weights, we get weighted networks. In Sec. 3.3.2, we will show that the 

results on these two types of normalized networks are similar:

(3)

2.3. Differential measurements

To identify differentially interacting nodes between two (or two groups of) networks, we 

propose two measurements to identify nodes whose connections changed significantly. For a 

node, both its degree and neighbors are important to its connections. Meanwhile, its 

neighbors’ connections are also important to its connectivity, for example, connecting to a 

hub node and connecting to a non-hub node are different. Therefore, we propose two 

measurements, Hi-C Differences with local information (HDL) and Hi-C Differences with 
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global information (HDG). HDL only uses local information from chromatin interaction 

networks, while HDG uses both local and global information.

2.3.1. HDL—HDL combines a node’s degree and neighbors to find the node’s connection 

differences between experiments. Assume there are h networks from experiment A, and 

there are k networks from experiment B. For experiment A, networks are represented in 

matrices as , , … ; for experiment B, networks are represented in matrices as , 

, …, .  represents the number of edges between node i and node j in the rth network 

of experiment A and  represents the number of edges between node i and node j in the sth 

network of experiment B. Assume there are n nodes in a Hi-C interaction network. The 

measurement is shown in Eqs. (4) and (5). Equation (4) is used to find a node’s difference 

between two networks by calculating the Euclidean distance based on the node’s connection 

vectors. Euclidean distance captures any difference in node degree and neighbors. Equation 

(5) is used to calculate the average of differences between experiments. When interaction 

patterns of the node are significantly different, HDL generates a high score; when the node’s 

interaction patterns are similar, HDL produces a low score:

(4)

(5)

2.3.2. HDG—HDG utilizes global information by applying Random Walk with Restart 

(RWR) to each network, respectively.27 RWR is a well-known machine learning algorithm 

used to measure the relevance scores between nodes by imagining that starting from each 

node there is a random walker, which at each step, either moves to a randomly chosen 

neighbor, or jumps back to the starting node. We formulate the procedure in Eq. (6). I is an 

identity matrix and denotes the matrix of initial relevance scores; p (fixed at 0.5 in this 

study) represents the probability for a random walker to jump back to the starting node and 

restart the walk; M is the Hi-C network transition probability matrix; Sn is a probability 

matrix, where Sn (i, j) represents the probability for a random walker started at node i to 

reach node j after n steps. When the random walk procedure reaches an equilibrium, as the 

walkers randomly choose their routes so they would cover all paths between nodes, the 

RWR probability matrix represents relevance between nodes which implicitly includes 

global topology information. Equations (4) and (5) are used on RWR probability matrices of 

different experiments:

(6)
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3. Results and Discussion

We first use simulated networks to validate the two differential measurements. Then, to 

compare with other approaches, we apply our methods on real Hi-C data sets,28 and 

investigate the functional relevance measured by the correlations between each method’s 

result and genomic features that are known to be important for regulating chromatin 

conformation, including CCCTC-binding factor (CTCF) binding sites and several histone 

modification markers. We also show that our methods work well on both unweighted and 

weighted networks and our normalization strategy significantly improves the performance 

compared to raw networks without normalization. Furthermore, the performance of different 

bin sizes is robust.

3.1. Performance on simulated networks

To validate differential measurements, we test them on simulated networks. First, an 

unweighted network of 1000 nodes is generated with a parameter, c, which represents the 

number of clusters in the network and is initialized to 1. For the simulated network, intra-

cluster nodes have a higher uniform probability to connect than inter-cluster nodes and 

probabilities are chosen such that intra-cluster connectivity per node is roughly 40 and inter-

cluster connectivity is roughly 10. Then the network is copied and 100 nodes are selected 

randomly. We completely rewire these 100 nodes’ edges in a random way. Therefore, these 

two networks are significantly different in the 100 randomly selected nodes, which serve as 

the ground truth. Thereafter, we use the two networks as network templates. For each 

network template, three replicates are generated, respectively, by rewiring template edges 

with a parameter, p, which specifies the percentage of edges in the template network to be 

rewired. When rewiring the edges, these nodes’ neighbors are modified, but these nodes’ 

degrees maintain unchanged. HDL and HDG are then applied to these six network replicates 

to identify top-100 differentially interacting nodes. The numbers of true positives among the 

100 predicted nodes are counted. The above procedure is repeated 10 times and the mean 

and standard deviation of true positives are calculated. The whole experiment is repeated by 

setting the parameter, c, to 2, 4, and 8, respectively.

Overall, as shown in Table 1, HDL performs very well on simulated networks. When p ≤ 0.2, 

HDL finds all true positives. As p increases, HDL still delivers a strong performance. Until p 
≥ 0.6, the performance decreases tremendously. Therefore, HDL can recover all significantly 

changed nodes when variability between multiple replicates of the same experiment is small. 

When more edges are randomly rewired, the replicates start losing similarity from each other 

until all six networks essentially become unrelated. Note that even at p = 0.7, a true positive 

rate of 50% is still significant, as the expectation from randomly guessing would only be 

10%.

HDG also performs well on simulated networks as shown in Table 2. Like HDL, it 

demonstrates the same pattern as p increases despite it is slightly worse than HDL. However, 

for HDG increasing the number of clusters in the networks constantly improves the 

performance especially when p ≥ 0.5. This improvement can be explained by the fact that 

HDG harnesses the clustering structure to mitigate the effect of biological variability of the 

same experiment. The benefit of using network topology information turns out to be 
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significant on real data, which is expected to be highly modular. The clusters of simulated 

networks are just simple reflections of the modularity of real networks. Unlike the simulated 

network where the interactions within each cluster is random, a real network has modular 

structure at different hierarchies and therefore can benefit more from the global method.

3.2. Network normalization analysis

The real Hi-C data are obtained from two cell lines, human embryonic stem cells (hESC) 

and lung myofibroblasts (IMR90).28 Each cell line has two replicates. The data are given as 

interaction matrices, where the genomic sequence is split into bins of 100 kilobases (kb), 

and the numbers of interactions (Hi-C reads) between the genomic loci in bin pairs are 

recorded. As the four matrices have very different numbers of total reads, and the numbers 

of reads have a wide distribution, the initial networks are highly dense and are suspected to 

have many spurious connections.

To facilitate meaningful comparison between experiments, we propose an automated 

procedure to convert each interaction matrix into a sparse network by finding an appropriate 

cutoff on the number of interactions (see Sec. 2). For the four data sets, as shown in the left 

of Fig. 2, the x-axis shows the average connectivity of the resulting network after applying 

some cutoff and the y-axis is the zscore of CC. The data points in Fig. 2, from left to right, 

correspond to keeping top 0.01%, 0.025%, 0.075%, 0.1%, 0.25%, 0.5%, 0.75%, and 1% of 

all edges to generate sparse networks. These zscores display a similar pattern, which 

increases first and then decreases and reaches its optimum at around 0.075% (roughly 25 

connections per node). When replicates are pooled together, as shown in the right of Fig. 2, 

these patterns are somewhat different, with the peak slightly shifting toward the right. To test 

how dramatic the results can be affected by the network normalization step, we deliberately 

selected a cutoff to have a relatively denser network for the pooled data set, with a density 

cutoff set at 0.25% resulting in the average connectivity per node roughly at 75.

Table 3 shows some key statistics of the network properties after normalization. As can be 

seen, while using different cutoffs for the separated and pooled data sets, all networks are 

highly modular (CC > 0:55) despite being rather sparse. However, for the separated data sets 

(first four columns), there are notable differences between the four networks, including CC, 

and average shortest distance, and size of the largest component, both between the two 

replicates of the same cell line and between cell lines. In comparison, in the pooled data set 

(last two columns), the networks from the two cell lines are highly similar.

3.3. Performance on real Hi-C data sets

To compare with other methods, we test our methods on real Hi-C data sets. We also test our 

methods under different configurations, which include unweighted and weighted networks, 

normalized and raw networks and different bin sizes.

3.3.1. Comparison with other approaches—As there is no ground truth for the 

chromatin interaction changes in real data, to evaluate the performance of our methods and 

compare with other approaches, we investigate the functional relevance by calculating the 

correlations between the predicted differential measurement scores and the changes of 
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genomic features that are known important for regulating chromatin structure. CTCF is a 

very important protein that regulates chromatin three-dimensional structure. CTCF binding 

sites are usually enriched at highly interacting regions and can be viewed as separators 

between functional domains in chromosomes.20 Meanwhile, histones which are proteins 

used to build chromosomes are important indicators for chromatin structure, and many 

histone modification markers are enriched at Hi-C enriched or depleted regions.28

First, we download CTCF binding sites data and available histone modification data for each 

cell line.29,30 After the genomic sequence is divided into 100 kb-sized bins, the CTCF 

binding sites falling into the bins are counted. These counts are normalized to the same 

range by scaling them according to the total counts of CTCF binding sites of two cell lines. 

The absolute differences of these normalized counts between the two cell lines are 

calculated. Finally, Spearman correlation coefficients are calculated between these absolute 

differences and each method’s measurement scores, respectively. The above procedure is 

also applied to histone modification data for correlations.

Since these genomic features are enriched at either highly interacting regions or rarely 

interacting regions, if two cell lines are significantly different in chromatin structure at 

certain genomic regions, then the patterns of these genomic features are also expected to be 

significantly different between the two cell lines. Therefore, the chromatin interaction 

difference scores and the genomic features’ difference scores (ignoring signs of changes in 

both) should be positively correlated.

As shown in Table 4, both HDL and HDG perform significantly better than diffHiC and 

HOMER, demonstrated by the much higher correlations with the genomic features. In fact, 

HDG has the highest positive correlations for all the features tested and keeping the 

replicates separated provides slightly better results than pooling them for most features 

except in H3K4me1 and H4K20me1. HDL results in reasonably well positive correlations 

for almost all features, except CTCF. The failing of HDL at CTCF is probably due to the fact 

that CTCF is usually an indicator of long-range interactions between distal and proximal 

regulatory regions, and therefore cannot be captured by the HDL scores, whose calculation 

are usually dominated by the much more frequent short-range interactions present in most 

HiC data. In comparison, by the random walk procedure, the HDG calculation is able to take 

into consideration both short-range and long-range interactions, resulting in much better 

agreement with CTCF binding sites. Pooling samples do not change the performance of 

HDL significantly. In comparison, neither diffHiC nor HOMER can capture all genomic 

features. DiffHiC has significant correlations (> 0:1) with 4 out of the 8 total features, while 

HOMER has only 1.

We further compare the results from different methods in a pairwise manner. As can be seen 

in Table 5, HDL (P) and HDL (S) are highly similar (Pearson correlation coefficient = 0.78), 

followed by HDG (P) and HDG (S) (Pearson correlation coefficient = 0.42). HDL (S) and 

HDG (S) also give a somewhat similar result (Pearson correlation coefficient = 0.31), but 

HDL (P) and HDG (P) have a very low correlation. On the other hand, diffHic is correlated 

with HDL to some extent. HOMER result is correlated with HDL (P) but not HDL (S), 

probably because HOMER itself uses pooled replicates. When the top-1000 bins predicted 
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from each method are compared as shown in Table 6, the conclusion is similar to that drawn 

from the correlation analysis in which diffHic and HOMER are significantly different from 

each other and from HD. Somewhat surprisingly, although the pooled and separated data 

sets have very different network density, HDG (P) and HDG (S) share almost half of the 

top-1000 bins, much higher than numbers of bins shared by other methods (including HDL-

P and HDL-S). This indicates that the random walk procedure is able to overcome the low 

data coverage problem by essentially predicting additional interactions from known 

interactions, as shown in other applications.31

3.3.2. Comparison of unweighted and weighted networks—There are two types of 

normalized networks, unweighted and weighted ones. In the previous section, the functional 

relevance is calculated on the unweighted networks. Compared to unweighted networks, 

weighted ones keep the weight information for high frequency edges. To evaluate our 

methods’ performance on weighted networks, we scale the normalized weights of two 

experiments to the same range and calculate the functional relevance by measuring 

correlation coefficients between the differential interaction scores based on weighted 

networks and difference scores of genomic features. We compare the results with the ones of 

unweighted networks. As shown in Fig. 3, for each genomic feature, the performance on 

weighted networks is better than or close to the performance on unweighted networks. It can 

be explained by that keeping weights can maintain some subtle interaction difference 

information which may be ignored by unweighted networks. For weighted networks, the 

global method is also better than the local method except H3K4me1 and H4K20me1.

3.3.3. Comparison of normalized and raw networks—In this section, we compare 

the performance between normalized weighted networks and raw networks without 

normalization. First raw networks’ weights are scaled to the same range, then for each 

genomic feature, the correlation coefficient is calculated by using our methods under 

different configurations. As shown in Fig. 4, for each genomic feature, apparently, the results 

on normalized weighted networks are much better than raw networks. Therefore, our 

normalization strategy can help us improve the performance significantly. A possible reason 

is our normalization can recover the real differences information from the noisy data by 

resorting to network topology information.

3.3.4. Comparison of different bin sizes—In previous sections, our results are based 

on the bin size of 100 kb. In this section, we divide the genomic sequence into 200 kb bins 

and 50 kb bins, apply our methods and calculate functional relevance by measuring 

correlations with genomic features, respectively. We compare the results with the ones of bin 

size of 100 kb. As shown in Fig. 5, the left compares results between 100 and 200 kb, and 

the right compares results between 100 and 50 kb. In the left figure, the points are scattered 

close around the 45° line equally, which means the performance of 100 and 200 kb is very 

robust. In the right figure, there are more points below the 45° line. One possible explanation 

for this is few interactions in a relatively shorter genomic region has low capability to 

distinguish one from the other. But they are still close to the line. So, the performance 

between 50 and 100 kb is more or less consistent.
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4. Conclusions

In this study, we propose two approaches to find differentially interacting genomic regions 

between experiments by using a network model. Our paper has four major contributions. 

First, we allow users to decide whether to pool replicates or to treat them separately. Second, 

to the best of our knowledge, we are the first to apply a network model to detect 

differentially interacting regions with chromatin interaction data. Third, we propose a novel 

strategy guided by network topological properties to automatically normalize network data 

from different experiments. Finally, we devise two measurements to calculate HiC 

differential patterns from two perspectives, one using local information and the other using 

the combination of local and global information. We show that the local method is slightly 

better than the global method on simulated networks. On real HiC data, evaluated by 

functional relevance with known genomic features, the global method is significantly better 

than the local method, and both methods are superior to the two existing methods. 

Meanwhile, our methods work well on both unweighted and weighted networks and our 

normalization strategy significantly improves the performance compared with raw networks 

without normalization. Furthermore, the results of different bin sizes are robust. Therefore, 

we believe our methods will be useful for identifying differentially interacting genomic 

regions.
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Fig. 1. 
A typical workflow of analyzing chromatin interaction data.
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Fig. 2. 
CC zscores versus average connectivity.
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Fig. 3. 
Comparison of unweighted networks and weighted networks on functional relevance 

measured by the correlations between differential interaction scores and genomic feature 

scores. We run our methods under different configurations represented by three capital 

letters. The first letter indicates unweighted networks (U) or weighted networks (W). The 

second letter indicates local method (L) or global method (G). The third letter indicates 

pooling replicates (P) or treating replicates (S) separately.
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Fig. 4. 
Comparison of normalized networks and raw networks without normalization on functional 

relevance measured by the correlations between differential interaction scores and genomic 

feature scores. We run our methods under different configurations represented by three 

capital letters. The first letter indicates weighted normalized networks (N) or raw networks 

without normalization (R). The second letter indicates local method (L) or global method 

(G). The third letter indicates pooling replicates (P) or treating replicates (S) separately.
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Fig. 5. 
Comparison of different bin sizes on functional relevance defined in Table 4.
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