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Abstract

Most common breast cancer susceptibility variants have been identified through genome-wide 

association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease1. We 

conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 

BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified 

independent associations at P < 5 × 10−8 with ten variants at nine new loci. At P < 0.05, we 

replicated associations with 10 of 11 variants previously reported in ER-negative disease or 

BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease 

for 105 susceptibility variants identified by other studies. These 125 variants explain 

approximately 14% of the familial risk of this breast cancer subtype. There was high genetic 

correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 
mutation carriers. These findings may lead to improved risk prediction and inform further fine-

mapping and functional work to better understand the biological basis of ER-negative breast 

cancer.

GWAS have identified 107 SNPs that are independently associated with breast cancer 

risk2–32. Association studies focused on ER-negative disease, or BRCA1 mutation carriers, 

who are more likely to develop ER-negative disease (70–80% of cases)33, have identified 11 

of these SNPs3,9,12,19,29,30. We aimed to discover additional susceptibility variants for ER-

negative breast cancer by performing a GWAS in women of European origin.

New genotyping data were generated for 9,655 ER-negative cases and 45,494 controls from 

68 Breast Cancer Association Consortium (BCAC) studies and 15,566 BRCA1 mutation 

carriers (7,784 with breast cancer) from 58 Consortium of Investigators of Modifiers of 

BRCA1/2 (CIMBA) studies (Supplementary Tables 1 and 2) using the Illumina OncoArray 

BeadChip, a 570,000-SNP custom array with genome-wide coverage34. Imputation was used 

to derive estimated genotypes for ~21 million SNPs, using the 1000 Genomes Project (Phase 

3) as the reference; ~11.5 million of these SNPs with imputation r2 >0.3 and minor allele 

frequency (MAF) >0.005 were included in further analyses. For BCAC data, we estimated 

per-allele odds ratios (ORs) using logistic regression, adjusting for country and principal 

components. For CIMBA data, we estimated per-allele hazard ratios (HRs) using a 

retrospective cohort analysis framework, modeling time to breast cancer and stratifying by 

country, Ashkenazi Jewish origin and birth cohort35,36 (Online Methods). These analyses 

were also applied to an independent set of previously generated data from other genome-

wide genotyping of additional European participants in 44 BCAC studies (11,813 ER-

negative cases and 55,100 controls)9,12,16,20,37,38 and 54 CIMBA studies (3,342 BRCA1 
mutation carriers, 1,630 with breast cancer) (Supplementary Tables 1 and 2). Fixed-effects 

meta-analysis was used to combine results across genotyping initiatives within consortia 

and, assuming that the odds ratio and hazard ratio estimates approximate the same 

underlying relative risk, across consortia39.

Results from the combined meta-analysis are summarized in Supplementary Figures 1 and 2. 

There was minimal inflation of test statistics (λ1,000 = 1.004; Supplementary Fig. 3). We 

identified ten variants at nine new loci that were independently associated with risk of ER-

negative breast cancer at P < 5 × 10−8 (Table 1, Supplementary Figs. 4–11 and 
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Supplementary Table 3). Two independent signals were observed within 12 kb of each other 

at 11q22.3, for rs74911261 (MAF = 0.02) and rs11374964 (MAF = 0.42); odds ratio 

estimates and statistical significance were largely unchanged when each variant was adjusted 

for the other (Supplementary Table 4). The association with rs66823261 at 8p23.3 was not 

observed for BRCA1 mutation carriers (P = 0.32, P value for heterogeneity (Phet) = 0.030).

For each of these ten new signals, we identified candidate causal SNPs analytically40,41 

(Online Methods) and combined multiple sources of in silico functional annotation from 

public databases42–52 to identify likely functional variants and target genes. Results are 

summarized in Figure 1, Supplementary Table 5 (including UCSC Genome Browser links; 

also see the Supplementary Note) and Supplementary Figures 4–11 (data sources in 

Supplementary Table 6). Many candidate causal SNPs lie in predicted regulatory regions and 

are associated with expression of nearby genes in blood or other tissues. At 2p23, the 

predicted target genes include ADCY3 and NCOA1 (Supplementary Fig. 4). At 6q23.1 

(Supplementary Fig. 5), the most plausible target gene is L3MBTL3 (ref. 53). A predicted 

target at 8q24.13 is FBXO32, which is expressed in ER-negative human mammary epithelial 

cells (HMECs) but not ER-positive MCF7 breast cancer cells (Supplementary Fig. 7) and 

has a known role in cancer cachexia54. At 11q22.3 (Fig. 1), a predicted target gene of 

common risk-associated variants is NPAT55. The rarer SNPs underlying the other 11q22.3 

signal are predicted to target ATM, a known breast cancer susceptibility gene56. Three rare 

coding variants (MAF ≤ 0.03) in ATM, NPAT and KDELC2 are also among the candidate 

causal SNPs at this locus. At 16p13, predicted target genes include ADCY9 and CREBBP 
(Supplementary Fig. 8). At 19q12 (Supplementary Fig. 11), a potential target gene (CCNE1) 

encodes cyclin E1, which is involved in cell cycle control and phosphorylation of NPAT57.

Expression quantitative trait locus (eQTL) associations were assessed for each candidate 

causal variant and genes within 1 Mb using 79 ER-negative breast tumors from The Cancer 

Genome Atlas (TCGA) and 135 normal breast tissue samples from the Molecular Taxonomy 

of Breast Cancer International Consortium (METABRIC)58–60. The strongest associations 

identified were for rs6569648 at 6q23.1 with L3MBTL3 (P = 4.3 × 10−6) and for 

rs12965632 at 18q12.1 with CDH2 (P = 1.0 × 10−4), both in METABRIC (Supplementary 

Table 5). SNP rs6569648 was the top cis-eQTL (of all imputed variants within 1 Mb) for 

L3MBTL3, while the P value for the eQTL effect of rs12965632 on CDH2 was within two 

orders of magnitude of those for the top cis-eQTLs for this gene (Supplementary Figs. 12 

and 13).

For 10 of the 11 variants previously identified through GWAS of ER-negative disease or 

overall disease for BRCA1 mutation carriers3,9,12,18,19,30,31 or reported as more strongly 

associated with ER-negative breast cancer29, associations with ER-negative disease were 

replicated (P < 0.05) using OncoArray data from BCAC, which do not overlap with any of 

the discovery studies (Table 2). Effect sizes were generally similar to those originally 

reported. Using all available CIMBA data, 6 of these 11 variants were associated with breast 

cancer risk (P < 0.05) for BRCA1 mutation carriers (Table 2). No evidence of association 

was observed for rs2284378 at 20q11 (ref. 12) in either BCAC or CIMBA (P ≥ 0.46).

Milne et al. Page 3

Nat Genet. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



On the basis of odds ratios estimated using BCAC data for all cases with known ER status 

(16,988 ER negative and 65,275 ER positive), all ten new and ten previously reported and 

replicated susceptibility SNPs for ER-negative disease were more strongly associated with 

risk of the ER-negative subtype than the ER-positive subtype (Phet < 0.05, except for the 

new signal for rs322144 at 19p13.2; Supplementary Table 7). Two variants (rs4245739 at 

1q32.1 and rs67397200 at 19p13.11) were not associated with ER-positive disease. For four 

variants (rs11374964 (11q22.3), rs74911261 (11q22.3), rs6678914 (1q32.1) and rs4577244 

(2p23.2)), the risk-associated allele for ER-negative disease was associated with reduced risk 

of ER-positive disease (P < 0.05).

For these 20 susceptibility SNPs for ER-negative breast cancer, we also assessed association 

by triple-negative status (negative for ER, progesterone receptor and HER2; Table 3), tumor 

grade (Table 4) and age at diagnosis (Supplementary Table 8) using BCAC data only. Five 

SNPs, including the new susceptibility variants at 11q22.3 (rs11374964 and rs74911261), 

were more strongly associated with both risk of triple-negative disease and risk of higher-

grade disease (P < 0.05); however, after adjustment for triple-negative status, heterogeneity 

in effect by tumor grade was observed only for the variants at 11q22.3 (rs74911261) and 

1q32.1 (rs4245739) (P < 0.05). For rs4577244 at 2p23.3, heterogeneity was observed for 

tumor grade only, while rs2747652 at 6q25.2 was more strongly associated with risk of other 

(non-triple-negative) ER-negative breast cancer subtypes (P < 0.05). At younger ages at 

diagnosis, associations appeared to be stronger for two variants (rs10069690 (5p15.33) and 

rs67397200 (19p13.11)) and weaker for one (rs2747652 (6q25.2)) (P < 0.05).

Elsewhere, we report 65 new susceptibility loci for overall breast cancer1. Three of these are 

located within 500 kb of the new susceptibility loci for ER-negative disease reported here 

(variants rs200648189 (2p23.3), rs6569648 (6q23.1) and rs17350191 (8q24.13)). We 

assessed associations with risk of ER-negative disease, and with risk of overall breast cancer 

for BRCA1 mutation carriers, for SNPs at the remaining 62 loci, as well as for the 96 

previously reported breast cancer susceptibility variants that were not specific to ER-

negative disease. Of these 158 SNPs, 105 were associated (P < 0.05) with risk of ER-

negative breast cancer and 24 were associated with overall risk for BRCA1 mutation carriers 

(Supplementary Tables 9 and 10). Results for BRCA2 mutation carriers are presented in 

Supplementary Table 11.

Pathway analysis based on mapping each SNP to the nearest gene was performed using 

summary association statistics from the meta-analysis of BCAC and CIMBA data 

combined61–64 (Online Methods). This identified several pathways implicated in ER-

negative disease (enrichment score (ES) ≥ 0.41; Supplementary Fig. 14 and Supplementary 

Tables 12 and 13), including a subset of pathways that were not enriched in susceptibility to 

ER-positive disease (ES < 0; Supplementary Table 14). One of the latter subsets was the 

adenylate cyclase (AC)-activating pathway (ES = 0.62; Supplementary Fig. 15). Two of the 

predicted target genes for the ten new susceptibility variants for ER-negative breast cancer, 

based on the eQTL analysis (Supplementary Table 5), ADCY3 (PTCGA = 6.7 × 10−3) and 

ADCY9 (PMETABRIC = 1.3 × 10−4), are part of this pathway, and their association signals 

were critical to the elevated enrichment scores observed (Supplementary Fig. 14). ADCY9 is 

stimulated by β2 adrenergic receptor (β2AR) signaling65 in ER-negative breast cancer66 and 
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in turn drives AC–cAMP signaling, including, for example, mitogenic signaling through the 

β-arrestin–Src–ERK pathway67.

To further explore the functional properties of the genome that contribute to heritability of 

ER-negative breast cancer, we conducted a partitioned heritability analysis using linkage 

disequilibrium (LD) score regression68. Considering 52 ‘baseline’ genomic features, we 

observed the greatest enrichment for super-enhancers (2.5-fold, P = 2 × 10−7) and the 

H3K4me3 histone mark (2.4-fold, P = 0.0005), with 33% depletion (P = 0.0002) observed 

for repressed regions (Supplementary Table 15). No differences in enrichment for these 

features were observed between susceptibility to ER-negative and ER-positive breast cancer, 

but baseline genomic features are not specific to cell type68. The estimated correlation 

between ER-negative and ER-positive breast cancer based on ~1 million common genetic 

variants69,70 was 0.60 (standard error (SE) = 0.03), indicating that, although these two breast 

cancer subtypes have a shared genetic component, a substantial proportion of their genetic 

bases is distinct. The estimated correlation between ER-negative disease in the general 

population and overall breast cancer for BRCA1 mutation carriers was 0.72 (SE = 0.11).

In summary, in this study of women of European origin, we have identified ten new 

susceptibility variants for ER-negative breast cancer and replicated associations with ER-

negative disease for ten SNPs identified by previous GWAS. Most of these variants were not 

associated or were more weakly associated with ER-positive disease, consistent with the 

findings from pathway and partitioned heritability analyses showing that ER-negative breast 

cancer has a partly distinct genetic etiology. We also observed consistent associations with 

ER-negative disease for a further 105 susceptibility SNPs for breast cancer overall. Together, 

these 125 variants explain ~14% of an assumed twofold increased risk of developing ER-

negative disease for the first-degree female relatives of women affected with this subtype 

(the newly identified SNPs explain ~1.5%; Supplementary Table 16) and ~40% of the 

estimated familial risk that is attributable to all variants imputable from the OncoArray 

(Online Methods). We have also identified 9 new breast cancer susceptibility variants for 

BRCA1 mutation carriers and confirmed associations for a further 30 previously reported 

SNPs; these 39 variants explain ~8% of the variance in polygenic risk for carriers of these 

mutations (Supplementary Table 17). However, the lower number of risk-associated variants 

in disease with BRCA1 mutation may merely be a consequence of the smaller sample size, 

as the genetic correlation with ER-negative breast cancer is high. These findings may inform 

improved risk prediction, both for the general population and BRCA1 mutation 

carriers30,71,72. Further investigation is required for other populations of non-European 

origin. Fine-mapping and functional studies should lead to a better understanding of the 

biological basis of ER-negative breast cancer and may perhaps inform the design of more 

effective preventive interventions, early detection and treatments for this disease.

URLs

Database of Genotypes and Phenotypes (dbGaP), https://www.ncbi.nlm.nih.gov/gap; Breast 

Cancer Association Consortium (BCAC), http://bcac.ccge.medschl.cam.ac.uk/; Consortium 

of Investigators of Modifiers of BRCA1/2 (CIMBA), http://cimba.ccge.medschl.cam.ac.uk/; 

PCcalc software, http://ccge.medschl.cam.ac.uk/software/pccalc/; SNPTEST, https://
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mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html; GeneSets, http://

baderlab.org/GeneSets; GenGen package, http://gengen.openbioinformatics.org/en/latest/.

METHODS

Methods, including statements of data availability and any associated accession codes and 

references, are available in the online version of the paper.

ONLINE METHODS

Study subjects

Supplementary Table 1 summarizes the studies from BCAC that contributed data. The 

majority were case–control studies. Sixty-eight BCAC studies participated in the ER-

negative breast cancer component of the OncoArray, contributing 9,655 cases and 45,494 

controls. All studies provided core data on disease status and age at diagnosis/observation, 

and the majority provided information on clinicopathological and lifestyle factors, which has 

been curated and incorporated into the BCAC database (version 6). ER status for most 

(~70%) cases was obtained from clinical records. After removal of overlapping participants, 

genotype data were also available from eight GWAS9,12,16,37,38 (4,480 ER-negative cases 

and 12,632 controls) and 40 studies previously genotyped using the Illumina iCOGS custom 

array20 (7,333 ER-negative cases and 42,468 controls).

A total of 21,468 ER-negative cases were included in the combined analyses. Of these, 

5,793 had tumors that were also negative for progesterone receptor (PR) and human 

epidermal growth factor receptor 2 (HER2) and were defined as triple negative. PR and 

HER2 status were also obtained predominantly from clinical records. A further 4,217 cases 

were positive for PR or HER2 and were considered non–triple negative. The remainder had 

unknown PR or HER2 status. All participating studies were approved by their appropriate 

ethics review boards, and all subjects provided informed consent.

Subjects included from CIMBA were women of European ancestry aged 18 years or older 

with a pathogenic variant for BRCA1. The majority of the participants were sampled 

through cancer genetics clinics. Multiple members of the same family were included in 

some instances. Fifty-eight studies from 24 countries contributed OncoArray genotype data. 

After quality control and removal of participants overlapping with the BCAC OncoArray 

study, data were available on 15,566 BRCA1 mutation carriers, of whom 7,784 were 

affected with breast cancer (Supplementary Table 2). We also obtained iCOGS genotype 

data on 3,342 BRCA1 mutation carriers (1,630 with breast cancer) from 54 studies through 

CIMBA. All mutation carriers provided written informed consent and participated under 

ethically approved protocols.

OncoArray SNP selection

Approximately 50% of the SNPs for the OncoArray were selected as a ‘GWAS backbone’ 

(Illumina HumanCore), which aimed to provide high coverage for the majority of common 

variants through imputation. The remaining allocation was selected from lists supplied by 

each of six disease-based consortia, together with a seventh list of SNPs of interest to 
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multiple disease study groups. Approximately 72,000 SNPs were selected specifically for 

their relevance to breast cancer, on the basis of prior evidence of association with overall or 

subtype-specific disease, with breast density or with breast- tissue-specific gene expression. 

Lists were merged as described previously34.

Genotype calling and quality control

Details of the genotype calling and quality control for the iCOGS and GWAS are described 

elsewhere19,20,23,30, and those for OncoArray are described in the Supplementary Note.

Imputation

Genotypes for ~21 million SNPs were imputed for all samples using the October 2014 

(Phase 3) release of the 1000 Genomes Project data as the reference panel and based on 800 

haplotypes. The iCOGS, OncoArray and six of the GWAS data sets were imputed using a 

two-stage imputation approach, with SHAPEIT73 for phasing and IMPUTEv2 (ref. 74) for 

imputation. Imputation was performed in 5-Mb non-overlapping intervals. All subjects were 

split into subsets of ~10,000 samples, with subjects from the same study grouped in the 

subset. The Breast and Prostate Cancer Cohort Consortium (BPC3) and Breast Cancer 

Family Registry (BCFR) GWAS performed imputation separately using MACH and 

Minimac75,76. We imputed genotypes for all SNPs that were polymorphic (MAF > 0.1%) in 

either European or Asian samples. For the BCAC GWAS, data were included in the analysis 

for all SNPs with MAF >0.01 and imputation r2 >0.3. For iCOGS and OncoArray, we 

included data for all SNPs with imputation r2 >0.3 and MAF >0.005.

Statistical analyses of BCAC data

Per-allele odds ratios and standard errors were generated for the OncoArray and iCOGS data 

sets and for each GWAS, adjusting for principal components, using logistic regression. The 

OncoArray and iCOGS analyses were additionally adjusted for country and study, 

respectively. For the OncoArray data set, principal-components analysis was performed 

using data for 33,661 SNPs (which included the 2,318 markers of continental ancestry) with 

MAF ≥0.05 and maximum correlation of 0.1, using purpose-written software (PCcalc; see 

URLs) to allow standard calculations to be performed sufficiently rapidly on a very large 

data set. We used the first ten principal components, as the inclusion of additional 

components did not further reduce inflation of the test statistics. We used nine principal 

components for the iCOGS data set and up to ten principal components for the other GWAS, 

where this was found to reduce inflation.

Odds ratio estimates were derived using MACH for the BCFR GWAS, ProbABEL77 was 

used for the BPC3 GWAS, SNPTEST (see URLs) was used for the remaining GWAS and 

purpose-written software was applied for the iCOGS and OncoArray data sets. Odds ratio 

estimates and standard errors were combined by a fixed-effects inverse-variance-weighted 

meta-analysis using METAL39. This was first done across the eight GWAS, applying 

genomic control, as described previously20. It was then applied (without genomic control) to 

combine findings from the three BCAC genotyping initiatives (GWAS, iCOGS and 

OncoArray).
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The independence of the signals from two variants at 11q22.3 was assessed by fitting the 

logistic regression models described above with both variants as covariates. This was done 

separately for iCOGS and OncoArray data, and results for each variant were combined by 

meta-analysis.

For selected SNPs, we estimated per-allele odds ratios by ER status using all available 

BCAC data for 82,263 cases with known ER status and 87,962 controls from the iCOGS and 

OncoArray studies. We also estimated per-allele odds ratios by triple-negative status (triple-

negative versus other ER-negative subtypes) and tumor grade, using available BCAC data 

for ER-negative cases and corresponding controls. Tests for heterogeneity by subtype were 

derived by applying logistic regression to cases only. This was done separately for the 

iCOGS and OncoArray data sets, adjusting as before, and results were then combined in a 

fixed-effects meta-analysis. Multinomial regression was applied to cases only to test for a 

linear trend for tumor grade, with the model constrained so that the difference between grade 

1 and grade 3 was double that for the difference between grade 2 and grade 3; this method 

was also used to test for a linear trend with age at diagnosis, with ordinal values 1, 2, 3 and 4 

representing ages <40, 40–49, 50–59 and ≥60 years, respectively.

Statistical analyses of CIMBA data

Associations between genotype and breast cancer risk for BRCA1 mutation carriers were 

evaluated using a 1-degree-of-freedom per-allele trend test (Ptrend), based on modeling the 

retrospective likelihood of the observed genotypes conditional on breast cancer 

phenotypes36. This was done separately for iCOGS and OncoArray data. To allow for non-

independence among related individuals, an adjusted test statistic was used that took into 

account correlation in genotypes3. All analyses were stratified by country of residence and, 

for countries where the strata were sufficiently large (United States and Canada), by 

Ashkenazi Jewish ancestry. The results from the iCOGS and OncoArray data sets were then 

pooled using fixed-effects meta-analysis. We repeated these analyses modeling ovarian 

cancer as a competing risk and observed no substantial difference in the results obtained.

The independence of the signals from two variants at 11q22.3 was assessed using 

OncoArray data only, fitting a Cox regression model with per-allele effects for both variants, 

adjusting for birth cohort, stratifying by country of residence, and using robust standard 

errors and clustered observations for relatives. This approach provides valid significance 

tests of association, although the resulting hazard ratio estimates can be biased35.

Meta-analysis of BCAC and CIMBA

A fixed-effects meta-analysis of the results from BCAC and CIMBA was conducted using 

an inverse-variance-weighted approach assuming fixed effects, as implemented in 

METAL39. The effect estimates used were the logarithm of the per-allele hazard ratio 

estimate for association with breast cancer risk for BRCA1 mutation carriers from CIMBA 

and the logarithm of the per-allele odds ratio estimate for association with risk of ER-

negative breast cancer based on BCAC data, both of which were assumed to approximate the 

same relative risk. We assessed genomic inflation using common (MAF > 1%) GWAS 
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backbone variants. As λ is influenced by sample size, we calculated λ1,000 so that the values 

were comparable with those from other studies.

All statistical tests conducted were two-sided.

Definition of known association signals

We identified all associations previously reported from genome-wide or candidate analyses 

at a significance level of P < 5 × 10−8 in overall breast cancer, in ER-negative or ER-positive 

breast cancer, for BRCA1 or BRCA2 mutation carriers, or in meta-analyses of these 

categories. We included only one SNP in any 500-kb interval unless joint analysis provided 

genome-wide significant evidence (conditional P < 5 × 10−8) of more than one independent 

signal. Where multiple studies reported associations in the same region, we considered the 

first reported association unless a later study identified a different variant in the same region 

that was more strongly associated with breast cancer risk. One hundred and seven previously 

reported association signals were identified, 11 of which were found through GWAS of ER-

negative disease or of breast cancer for BRCA1 mutation carriers or were reported as being 

more strongly associated with ER-negative breast cancer. These are listed in Table 2. The 

other 96 previously reported association signals are listed in Supplementary Table 10.

Definition of new association signals

To search for new loci, we assessed all SNPs excluding those within 500 kb of a known 

association signal. This approach identified 206 SNPs in nine regions that were associated 

with disease risk at P < 5 × 10−8 in the meta-analysis of BCAC ER-negative breast cancer 

and breast cancer for CIMBA BRCA1 mutation carriers. The SNP with the lowest P value 

from this analysis was considered to be the lead SNP. No additional loci were detected from 

analysis of BCAC data only. Imputation quality, as assessed by the IMPUTE2 imputation r2 

value in the OncoArray data set, was ≥0.89 for the ten lead SNPs reported (Supplementary 

Table 3).

Candidate causal SNPs

To define the set of potentially causal variants at each of the new susceptibility loci, we 

selected all variants with P values within two orders of magnitude of the P value for the most 

significant SNP at each of the ten new loci. This is approximately equivalent to selecting 

variants whose posterior probability of causality is within two orders of magnitude of that of 

the most significant SNP40,41. This approach was applied to identify potentially causal 

variants for the signal given by the more common lead SNP at 11q22.3 (rs11374964). A 

similar approach was applied for the rarer lead SNP at this locus (rs74911261), but this was 

based on P values from analyses adjusted for rs11374964.

Proportion of familial risk explained

The relative risk of ER-negative breast cancer for the first-degree female relative of a woman 

with ER-negative disease has not been estimated. We therefore assumed that the twofold 

increase in risk observed for overall disease also applied to ER-negative disease. To estimate 

the proportion of this risk explained by the 125 variants associated with ER-negative disease, 
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we used MAF and odds ratio estimates from the OncoArray-based genotype data and 

applied the formula

where pi is the MAF for variant i, βi is the log(OR) estimate for variant i, τi is the standard 

error of βi and λ = 2 is the assumed overall familial relative risk.

The corresponding estimate for the familial relative risk due to all variants is the frailty-scale 

heritability, defined as

where γi is the true relative risk conferred by variant i, assuming a log-additive model. We 

first obtained the estimated heritability based on the full set of summary estimates using LD 

score regression68, which derives a heritability estimate on the observed scale. We then 

converted this to an estimate on the frailty scale using the formula

where P is the proportion of samples in the population that are cases.

Proportion of polygenic risk-modifying variance explained for BRCA1 mutation carriers

The proportion of the variance in polygenic frailty modifying risk for BRCA1 mutation 

carriers explained by the set of associated SNPs was estimated by

where ci is the squared estimated coefficient of variation in incidence associated with SNP i 
(ref. 78) and σ2 is the total polygenic variance, estimated from segregation data79.

In silico annotation of candidate causal variants

We combined multiple sources of in silico functional annotation from public databases to 

help identify potential functional SNPs and target genes, on the basis of previous 

observations that breast cancer susceptibility alleles are enriched in cis-regulatory elements 

and alter transcriptional activity28,80–82. The influence of candidate causal variants on 

transcription factor binding sites was determined using the ENCODE-Motifs resource43. To 

investigate functional elements enriched across the region encompassing the strongest 

candidate causal SNPs, we analyzed chromatin biofeatures data from the Encyclopedia of 

DNA Elements (ENCODE) Project42 and the Roadmap Epigenomics Project44 together with 

other data obtained through the NCBI Gene Expression Omnibus (GEO), namely chromatin 

state segmentation by hidden Markov models (chrom-HMM), DHSs, and histone 

modifications for the epigenetic marks H3K4, H3K9 and H3K27 in HMECs, myoepithelial 
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cells, and T47D and MCF7 breast cancer cells and transcription factor ChIP–seq in a range 

of breast cell lines (Supplementary Table 6). To identify the SNPs most likely to be 

functional, we used RegulomeDB45; to identify putative target genes, we examined potential 

functional chromatin interactions between distal and proximal regulatory transcription factor 

binding sites and promoters in the risk regions, using Hi-C data generated in HMECs47 and 

ChIA-PET data generated in MCF7 cells. This approach detects genome-wide interactions 

brought about by or associated with CCCTC-binding factor (CTCF), RNA polymerase II 

(Pol II) and ER, all of which are involved in transcriptional regulation47. Annotation of 

putative cis-regulatory regions and predicted target genes used the integrated method for 

predicting enhancer targets (IM-PET)46, the predicting specific tissue interactions of genes 

and enhancers (PreSTIGE) algorithm48, Hnisz51 and FANTOM49. Intersections between 

candidate causal variants and regulatory elements were identified using Galaxy, BedTools 

v2.24 and HaploReg v4.1 and were visualized in the UCSC Genome Browser. Publically 

available eQTL databases, including Gene-Tissue Expression (GTEx50; version 6, multiple 

tissues) and Westra52 (blood), were queried for candidate causal variants.

eQTL analyses

eQTL analyses were performed using data from the TCGA and METABRIC projects59,60.

The TCGA eQTL analysis was based on 79 ER-negative breast tumors that had matched 

gene expression, copy number and methylation profiles together with corresponding 

germline genotypes available. All 79 individuals were of European ancestry, as ascertained 

using the genotype data and the local ancestry in admixed populations (LAMP) software 

package (LAMP estimate cutoff > 95% European)83. Germline genotypes were imputed into 

the 1000 Genomes Project reference panel (October 2014 release) using IMPUTE2 (refs. 
75,84). Gene expression had been measured on the Illumina HiSeq 2000 RNA-seq platform 

(gene-level RSEM normalized counts85), copy number estimates were derived from the 

Affymetrix SNP 6.0 array (somatic copy number alteration minus germline copy number 

variation called using the GISTIC2 algorithm86) and methylation β values were measured on 

the Illumina Infinium HumanMethylation450 array, as previously described59. Primary 

TCGA eQTL analysis focused on all potentially causal variants in the ten new regions 

associated with breast cancer risk in the meta-analysis of ER-negative cases and controls 

from BCAC and BRCA1 mutation carriers from CIMBA. We considered all genes located 

up to 1 Mb away on either side of each of these variants. The effects of tumor copy number 

and methylation on gene expression were first removed using a method described 

previously58, and eQTL analysis was performed by linear regression as implemented in the 

R package Matrix eQTL87.

The METABRIC eQTL analysis was based on 135 normal breast tissue samples resected 

from patients with breast cancer of European ancestry. Germline genotyping for the 

METABRIC study was also performed on the Affymetrix SNP 6.0 array, and ancestry 

estimation and imputation for this data set were conducted as described for TCGA. Gene 

expression in the METABRIC study had been measured using the Illumina HT12 microarray 

platform, and we used probe-level estimates. As for TCGA, we considered all genes in ten 

regions using Matrix eQTL.
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We also performed additional eQTL analyses using the METABRIC data set for all variants 

within 1 Mb of L3MBTL3 and CDH2 and expression of these specific genes.

Global genomic enrichment analyses

We performed stratified LD score regression analyses68 for ER-negative breast cancer using 

the summary statistics based on meta-analyses of the OncoArray, GWAS, iCOGS and 

CIMBA data sets. We used all SNPs in the 1000 Genomes Project Phase 1 v3 release that 

had MAF >1% and imputation quality score R2 >0.3 in the OncoArray data. LD scores were 

calculated using the 1000 Genomes Project Phase 1 v3 EUR panel. Further details are 

provided in the Supplementary Note.

We tested the differences in functional enrichment between ER-positive and ER-negative 

subsets for individual features through a Wald test, using the regression coefficients and 

standard errors for the two subsets based on the models described above. Finally, we 

assessed the heritability due to genotyped and imputed SNPs70 and estimated the genetic 

correlation between ER-positive and ER-negative breast cancer69. The genetic correlation 

analysis was restricted to the ~1 million SNPs included in HapMap 3.

Pathway enrichment analyses

The pathway gene set database 

Human_GOBP_AllPathways_no_GO_iea_January_19_2016_symbol.gmt (GeneSets; see 

URLs)61 was used for all analyses. Pathway size was determined by the total number of 

genes in the pathway to which SNPs in the imputed GWAS data set could be mapped. To 

provide more biologically meaningful results and reduce false positives, only pathways that 

contained between 10 and 200 genes were considered.

SNPs were mapped to the nearest gene within 500 kb; SNPs that were further than 500 kb 

away from any gene were excluded. Gene significance was calculated by assigning the 

lowest P value observed across all SNPs mapped to a gene63,64, on the basis of the meta-

analysis of BCAC and CIMBA data described above.

The gene set enrichment analysis (GSEA)61 algorithm, as implemented in the GenGen 

package (see URLs)62,63, was used to perform pathway analysis. Briefly, the algorithm 

calculates an enrichment score (ES) for each pathway based on a weighted Kolmogorov–

Smirnov statistic62. Pathways that have most of their genes at the top of the ranked list of 

genes obtain higher ES values.

We defined an ES threshold (ES ≥ 0.41) to yield a true positive rate (TPR) of 0.20 and a 

false positive rate (FPR) of 0.14, with true positive pathways defined as those observed with 

false discovery rate (FDR) < 0.05 in a prior analysis carried out using the analytic approach 

defined above applied to iCOGS data for ER-negative disease.

To visualize the pathway enrichment analysis results, an enrichment map was created using 

the Enrichment Map (EM) v 2.1.0 app61 in Cytoscape v3.30 (ref. 88), applying an edge-

weighted force-directed layout. To measure the contribution of each gene to enriched 

pathways and annotate the map, we reran the pathway enrichment analysis multiple times, 
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each time excluding one gene. A gene was considered to drive the enrichment if the ES 

dropped to zero or less (pathway enrichment driver) after it was excluded. Pathways were 

grouped in the map if they shared >70% of their genes or their enrichment was driven by a 

shared gene.

See the Supplementary Note for further details.

Data availability

A subset of the data that support the findings of this study is publically available via dbGaP 

(see URLs; accessions phs001265.v1.p1 for BCAC data and phs001321.v1.p1 for CIMBA 

data). Requests for data can be made to the corresponding author or the Data Access 

Coordination Committees (DACCs) of BCAC (see URLs) and CIMBA (see URLs). BCAC 

DACC approval is required to access data from the ABCFS, ABCS, ABCTB, BBCC, BBCS, 

BCEES, BCFR-NY, BCFR-PA, BCFR-UT, BCINIS, BSUCH, CBCS, CECILE, CGPS, 

CTS, DIETCOMPLYF, ESTHER, GC-HBOC, GENICA, GEPARSIXTO, GESBC, HABCS, 

HCSC, HEBCS, HMBCS, HUBCS, KARBAC, KBCP, LMBC, MABCS, MARIE, MBCSG, 

MCBCS, MISS, MMHS, MTLGEBCS, NC-BCFR, OFBCR, ORIGO, pKARMA, POSH, 

PREFACE, RBCS, SKKDKFZS, SUCCESSB, SUCCESSC, SZBCS, TNBCC, UCIBCS, 

UKBGS and UKOPS studies (Supplementary Table 1). CIMBA DACC approval is required 

to access data from the BCFR-ON, CONSIT TEAM, DKFZ, EMBRACE, FPGMX, GC-

HBOC, GEMO, G-FAST, HEBCS, HEBON, IHCC, INHERIT, IOVHBOCS, IPOBCS, 

MCGILL, MODSQUAD, NAROD, OCGN, OUH and UKGRFOCR studies (Supplementary 

Table 2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genomic region around the independent ER-negative risk-associated variants 

11_108345515_G_A (rs11374964) and 11_108357137_G_A (rs74911261). A 1-Mb 

regional association plot shows the statistical significance of all genotyped and imputed 

SNPs with the genome-wide significance level (P = 5 × 10−8) represented by the dashed red 

line. The positions of candidate causal variants for two independent signals (depicted as red 

and blue ticks) are shown in relation to RefSeq genes. Missense variants are labeled with 

asterisks. Mammary cell enhancers overlapping candidate SNPs predicted to target nearby 

Milne et al. Page 31

Nat Genet. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genes by IM-PET46 are depicted as black bars. Chromatin interactions from ENCODE 

ChIA-PET data in MCF7 cells overlapping candidate variants are shaded to reflect 

interaction confidence scores with darker shading indicating greater confidence. Epigenomic 

features (derived from publicly available ChIP–seq and DNase–seq data sets) that overlap 

candidate variants are shown as red or blue segments, depending on the intersected signal. 

Density tracks show the summed occurrence of ChIP–seq and DNase–seq peak signals at 

each position. Roadmap Epigenomics Project chromatin state models for HMECs and 

myoepithelial cells grouped into enhancer, promoter or transcribed annotations are shown as 

yellow, red and green segments, respectively. Transcript levels in MCF7 cells and HMECs 

are represented by histograms depicting mean normalized RNA-seq expression. All MCF7 

ChIA-PET (ENCODE) and HMEC Hi-C47 chromatin interactions are represented by black 

and blue arcs, respectively. NHGRI GWAS catalog SNPs are shown as green ticks. All 

OncoArray SNPs (genotyped or imputed) are shown as black ticks, and uninterrogated, 

common SNPs (dbSNP138, European (EUR) MAF > 1%) are shown as red ticks. Features 

may be examined in detail via exploration of a custom UCSC Genome Browser session 

accessible via hyperlinks within Supplementary Table 5. TF, transcription factor; DHS, 

DNase I–hypersensitive site.
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