Table 7.
Comparison with the previous studies of AD vs. NC classification on ADNI dataset. The boldface denotes the best performance for each metric. (GM: Gray Matter; SVM: Support Vector Machine; CT: Cortical Thickness; PCA: Principal Component Analysis; LDA: Linear Discriminant Analysis; ROI: Region Of Interest; QDA: Quadratic Discriminant Analysis; RLR: Regularized Linear Regression; SAE: Stacked Auto-Encoder).
| Method | Feature Type | Classifier | Subjects (AD/NC) | Accuracy (%) | Sensitivity (%) | Specificity (%) |
|---|---|---|---|---|---|---|
| Zhang and Shen (2012) | GM volumes | SVM | 45/50 | 84.80 | – | – |
| Cho et al. (2012) | CT | PCA+LDA | 128/160 | – | 82.00 | 93.00 |
| Coupé et al. (2012) | HP/EC volumes | QDA | 60/60 | 90.00 | 88.00 | 92.00 |
| Liu et al. (2012) | GM voxels | Ensemble SRC | 198/229 | 90.80 | 86.32 | 94.76 |
| Casanova et al. (2013) | GM voxels | RLR | 171/188 | 87.10 | 84.30 | 88.90 |
| Eskildsen et al. (2013) | ROI CT | LDA | 194/226 | 84.50 | 79.40 | 88.90 |
| Schmitter et al. (2015) | 10 Volumes | SVM | 221/276 | – | 86.00 | 91.00 |
| Suk et al. (2015a) | GM volumes+SAE | SVM | 51/52 | 88.20 | – | – |
| Proposed | GM volumes | JLLR+DeepESM | 186/226 | 91.02 | 92.72 | 89.94 |