Skip to main content
. Author manuscript; available in PMC: 2018 Feb 12.
Published in final edited form as: Med Image Anal. 2017 Jan 24;37:101–113. doi: 10.1016/j.media.2017.01.008

Table 7.

Comparison with the previous studies of AD vs. NC classification on ADNI dataset. The boldface denotes the best performance for each metric. (GM: Gray Matter; SVM: Support Vector Machine; CT: Cortical Thickness; PCA: Principal Component Analysis; LDA: Linear Discriminant Analysis; ROI: Region Of Interest; QDA: Quadratic Discriminant Analysis; RLR: Regularized Linear Regression; SAE: Stacked Auto-Encoder).

Method Feature Type Classifier Subjects (AD/NC) Accuracy (%) Sensitivity (%) Specificity (%)
Zhang and Shen (2012) GM volumes SVM 45/50 84.80
Cho et al. (2012) CT PCA+LDA 128/160 82.00 93.00
Coupé et al. (2012) HP/EC volumes QDA 60/60 90.00 88.00 92.00
Liu et al. (2012) GM voxels Ensemble SRC 198/229 90.80 86.32 94.76
Casanova et al. (2013) GM voxels RLR 171/188 87.10 84.30 88.90
Eskildsen et al. (2013) ROI CT LDA 194/226 84.50 79.40 88.90
Schmitter et al. (2015) 10 Volumes SVM 221/276 86.00 91.00
Suk et al. (2015a) GM volumes+SAE SVM 51/52 88.20
Proposed GM volumes JLLR+DeepESM 186/226 91.02 92.72 89.94