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Increasing evidence indicates that many small secretory pre-
proteins can undergo post-translational translocation across
the membrane of the endoplasmic reticulum. Although the cel-
lular machinery involved in post-translational translocation of
small secretory preproteins has begun to be elucidated, the
intrinsic signals contained within these small secretory prepro-
teins that contribute to their efficient post-translational trans-
location remain unknown. Here, we analyzed the eukaryotic
secretory proteome and discovered the small secretory prepro-
teins tend to have a higher probability to harbor the positive
charge in the n-region of the signal peptide (SP). Eliminating
the positive charge of the n-region blocked post-translational
translocation of newly synthesized preproteins and selectively
impaired translocation efficiency of small secretory prepro-
teins. The pathophysiological significance of the positive charge
in the n-region of SP was underscored by recently identified
preproinsulin SP mutations that impair translocation of prepro-
insulin and cause maturity onset diabetes of youth (MODY).
Remarkably, we have found that slowing the polypeptide elon-
gation rate of small secretory preproteins could alleviate the
translocation defect caused by loss of the n-region positive
charge of the signal peptide. Together, these data reveal not only
a previously unrecognized role of the n-region’s positive charge
in ensuring efficient post-translational translocation of small
secretory preproteins, but they also highlight the molecular con-
tribution of defects in this process to the pathogenesis of genetic
disorders such as MODY.

As established by the signal hypothesis, many newly-synthe-
sized secretory proteins possess signal peptides (SP)4 that
direct translocation across the membrane of the endoplas-
mic reticulum (ER) (1–3). Despite the lack of a precise con-
sensus sequence, all SPs share three common structural fea-
tures: 1) a positively charged region positioned at the N
terminus of the SP (the so-called “n-region”); 2) a hydropho-
bic region composed of 10 –15 nonpolar residues (“h-re-
gion”) that can enter the lipid bilayer of the ER membrane
and initiate interaction with the Sec61 protein translocon;
and 3) residues with small side chains located near the cleav-
age site of the SP (“c-region”) (3–6). Each of these SP regions
interact with cellular translocation and processing machin-
ery contained within the ER membrane.

A secretory preprotein may undergo translocation across the
ER membrane via co-translational translocation or via post-
translational translocation. In mammalian cells, most secretory
preproteins are co-translationally translocated (i.e. transloca-
tion is coupled to protein synthesis) using a process in which
the ribonucleoprotein signal recognition particle (7–9) can
interact with the SP (10, 11) and initiate delivery of the elon-
gating polypeptide chain to the Sec61 translocon. As the
nascent polypeptides enter the ER lumen, the SPs are effi-
ciently removed by signal peptidase on the lumenal side of
the ER membrane (12–14).

Compared with this well-characterized process, post-trans-
lational translocation is less well understood. It was initially
thought that post-translational translocation occurred mostly
in prokaryotes or in simple eukaryotes such as yeast (8). How-
ever, increasing evidence indicates that in higher eukaryotic
cells there are many secretory preproteins that can undergo
a post-translational translocation (15–18). Over the past 2
decades, several cellular components have been identified in
mediating post-translational translocation (19 –22), but the
intrinsic signals of small secretory preproteins that contribute
to their selection and efficiency for post-translational translo-
cation have not been elucidated.

In this report, we show that eliminating the positive charge in
the SP n-region blocks post-translational translocation and
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selectively impairs the translocation of small secretory prepro-
teins across the ER membrane. The orientation of SPs of many
secretory preproteins appears to follow a “positive-inside rule,”
by which the positively charged residues in the n-region of the
SPs are preferably oriented toward the cytosolic side of the ER
(11, 23–28). Eliminating the positive charge of the n-region
could result in mis-orientation of preproteins in the Sec61
translocon, thereby leading to abnormal nascent polypeptide
translocation (with consequent failure of SP cleavage by signal
peptidase). This appears to be the case for a recently identified
diabetogenic mutation preproinsulin-R6C, in which a posi-
tively charged residue in the SP n-region is mutated, leading to
inefficient post-translational translocation of preproinsulin
and maturity onset diabetes of youth (29 –31). Thus, the data in
this report reveal not only the importance of the positive charge
in the n-region of the SP in maintaining efficient translocation
of smaller secretory proteins (including preproinsulin), but
they also help to better understand the molecular basis of
genetic disorders caused by inefficient ER translocation of
newly synthesized preproteins.

Results

Eliminating positive charge in the n-region of the signal
peptide selectively impairs translocation for small secretory
preproteins

Recent studies have suggested that larger secretory prepro-
teins may be insensitive to the loss of positive charge in the
n-region of the signal peptide (30). To directly test this hypoth-
esis, we constructed GFP-tagged preproinsulin (preproCpep-
GFP) wildtype (WT) and diabetogenic preproinsulin-R6C
mutants that were truncated to different lengths in the mature
polypeptide region (Fig. 1A). We were not looking for function-
ality of the expressed constructs, only whether the nascent
translation product underwent SP cleavage, which is tightly
coupled to preproinsulin translocation into the ER lumen and
thus serves as a convenient assay of translocation (30).
Importantly, we found that the full-length preproCpepGFP-
R6C was successfully processed to proCpepGFP, similar to
that seen with the precursor bearing the WT signal peptide
(Fig. 1B, left panel, an SP cleavage site mutant preproCpep-
GFP-A24D (33) was used as a control to show the position of
uncleaved preprotein). Similarly, no detectable transloca-
tion defect was found in truncated preproCpepGFP with 200
residues (Fig. 1B, middle panel). Remarkably, however, as
the polypeptides were truncated to �160 residues, the trans-
location defect caused by the R6C mutation became increas-
ingly apparent (Fig. 1B, middle panel). At a length of 110
residues, �70% of the preprotein failed to be translocated to
allow conversion to the mature signal-cleaved form (Fig. 1,
B–D). The translocation defect caused by R6C was not
strictly dependent on the sequence of the mature protein
because the R6C mutation caused a similar defect in two
distinct preproteins with 110 residues (Fig. 1B, right panel).
These results suggest that eliminating the positive charge in
the n-region of the SP selectively impairs the translocation of
small secretory proteins.

R6C mutation does not affect preproinsulin signal peptide
cleavage or ER targeting but affects preproinsulin
translocation across the ER membrane

To further explore the fate of preproinsulin-R6C, we first
generated the double mutant preproinsulin-M5R/R6C and
found this was completely processed to proinsulin (PI, Fig. 2A),
indicating full rescue of the defect upon re-introduction of a
positive charge in the n-region despite persistence of the R6C
mutation. Next, HEK293T cells expressing preproinsulin-R6C
were extracted with sodium carbonate, followed by centrifuga-
tion that can separate content proteins of the ER lumen from
ER membrane-associated proteins (30, 33). Although the sig-
nal-cleaved proinsulin was recovered in the ER lumen fraction
(supernatant), along with the ER luminal protein BiP, the sig-
nal-uncleaved preproinsulin-R6C was recovered with ER mem-
brane protein fraction (pellet) along with the ER membrane
protein calnexin (Fig. 2B). These data indicate that preproinsu-
lin-R6C is targeted and associated with the ER membrane. To
establish whether preproinsulin-R6C could be translocated
across the ER membrane, we introduced a glycosylation site
at the 74th position of preproinsulin. As shown in Fig. 2C,
whereas signal-cleaved proinsulin acquired N-linked glycosyl-
ation (Glyco-PI with a glycan that is sensitive to PNGase F, Fig.
2C), signal-uncleaved preproinsulin-R6C was not glycosylated,
indicating that the signal-uncleaved fraction of preproinsulin-
R6C molecules was not delivered into the ER lumen. Alto-
gether, the data in Fig. 2, along with our previously published
findings (30), suggest that the positive charge in the n-region of
the SP is not required for targeting to the ER membrane but is
required for efficient preproinsulin translocation across the ER
membrane.

Natural design of many small secretory preproteins requires
the presence of positive charge in the n-region of the SP for
efficient ER translocation

To broaden our understanding of the general significance of
the positive charge in the n-region of the SP, we examined the
eukaryotic secretome (34) and found that among 1877 secre-
tory preproteins, 69.3% overall had positive charge in the n-re-
gion of SP (Table S1). However, when grouped by length, the
fraction of such proteins with the positive charge in the n-re-
gion of the SP was found to increase as the polypeptide becomes
shorter, reaching �80% for proteins smaller than 130 residues
(Fig. 3A and Table S1). To test whether the translocation effi-
ciency of small secretory preproteins is more dependent on the
positive charge of the n-region, we mutated positively charged
residues in the n-region of six secretory preproteins with
different lengths, including FLAG-tagged junction adhesion
molecule 2 (pre-Jam2, 306 amino acids); FLAG-tagged pre-
proopiomelanocotin (pre-POMC, 275 amino acids); Myc- and
FLAG-tagged preproparathyroid hormone (prepro-PTH, 143
amino acids); untagged preproinsulin (pPI, 110 amino acids);
FLAG-tagged preosteocalcin (pre-OTC, 108 amino acids); and
Myc-tagged predefensin (pre-Def, 77 amino acids) (Fig. 3B).
Indeed, loss of the positive charge in the n-region of the SP
exerted no detectable impact on the translocation of the two
large preproteins, pre-Jam2 and pre-POMC (Fig. 3, H and I).

n-region positive charge and small preprotein translocation
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However, loss of the positive charge in the n-region of the SP
caused more than 60% of all four tested small secretory prepro-
teins: predefensin, pPI, prepro-PTH, and pre-OTC failed to be
translocated across the ER membrane (Fig. 3, C–F, quantified in
G). Interestingly, even wildtype (WT) predefensin was not rap-
idly translocated into the ER during a 10-min translation period
labeled with 35S-labeled amino acids (Fig. 3C), indicating that
such a short secretory preprotein has low co-translational
translocation efficiency. Taken together, these results suggest
that small secretory preproteins are intrinsically predisposed to

inefficient co-translational translocation and are susceptible to
further translocational impairment as a consequence of loss of
the positive charge in the n-region of the SP.

Positive charge in the SP n-region plays an important role in
post-translational translocation of small secretory preproteins

Because preproteins shorter than 160 residues can undergo
post-translational translocation (19), we asked whether the
positive charge of the n-region exerts a unique influence on
such preproteins. To increase detection of preproteins that are

Figure 1. Translocation defect caused by R6C mutation occurs only in the GFP-tagged preproinsulin shorter than 160 amino acids. A, full-length and
truncated GFP-tagged preproinsulins with different lengths ranging from 348 to 110 amino acids (aa). The signal peptide (SP, red), insulin B-chain (light blue),
C-peptide (yellow), insulin A-chain (blue), and the insertion site of GFP (green) are indicated. Authentic preproinsulin without tag is shown in the lower panel. B,
293T cells were transfected with plasmids encoding different lengths of preproteins shown in A with wildtype (WT) or R6C signal sequence. At 40 h post-
transfection, the cells were labeled with [35S]Met/Cys for 10 min without chase. The newly synthesized preproteins were immunoprecipitated with anti-insulin
antibody. Uncleaved preproteins (P) and cleaved mature proteins (M) are indicated. The SP cleavage site mutation preproCpepGFP-A24D was used as a control
of full-length signal-uncleaved preproCpepGFP. � indicates nonspecific bands. C, newly synthesized preproteins shown in B from as least three independent
experiments were quantified using ImageJ. The percentages of signal-uncleaved preproteins in the corresponding total newly synthesized wildtype (WT) and
R6C mutant preproteins were calculated and are shown as mean � S.D. *, p � 0.05 compared with WT. D, increases of percentages of signal-uncleaved
preproteins of the mutants minus that of the WT were calculated and shown as mean � S.D. *, p � 0.05 comparing to mutant preprotein with a length of 200
residues.
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kinetically impaired in translocation, we used metabolic incor-
poration of radioactive amino acids with a pulse-labeling time
limited to 5 min. At the zero chase time, up to 75% of fully
synthesized predefensin molecules had not yet been translo-
cated. During 10 and 30 min after the translation period (in the
presence of MG132 to prevent proteasomal degradation of
untranslocated preproteins and cycloheximide to prevent fur-
ther protein synthesis after labeling), most of the predefensin
molecules underwent subsequent translocation, forming defensin.
By contrast, mutant predefensin-R2A molecules, eliminating
the positive charge in the n-region of the SP, were blocked from
further translocation into the ER (Fig. 4, A and B). This phe-
nomenon was not unique to predefensin, as similar results were
obtained for two other small secretory preproteins, preproin-
sulin-R6C and prepro-PTH-K5A/K9A (Fig. 4, C–E). We also
noted that the prepro-PTH n-region K5A/K9A mutant exhib-
ited a more severe post-translational translocation defect than
that of another disease-causing mutation that is located in the
h-region of prepro-PTH SP (35, 36), prepro-PTH-C18R (Fig.
4E). Together, these data strongly suggest that the positive
charge in the n-region of the SP plays a general and important
role in post-translational translocation of small secretory
preproteins.

Reducing the nascent polypeptide elongation rate partially
rescues the translocation defect caused by loss of positive
charge in the n-region of the SP

We reasoned that a small secretory preprotein may rapidly
complete translation of the entire polypeptide before being
properly targeted to the ER membrane translocation machin-
ery. In such a case, the fully synthesized preprotein would be
released into the cytosol, accounting for the need to enter the
ER via a post-translational mechanism (22). For this reason, we
wished to test whether slowing the rate of polypeptide chain
elongation might provide more time for small secretory prepro-
teins to be recognized and targeted to the ER translocon,
thereby enhancing co-translational translocation (37). With

this in mind, we treated cells with differing low doses of cyclo-
heximide that have been shown to decrease the rate of polypeptide
chain elongation (37, 38). Cells expressing preproinsulin-R6C (or
WT) and treated with cycloheximide were pulse-labeled without
chase to monitor the efficiency of co-translational translocation.
Although total protein synthesis was of course decreased upon
cycloheximide treatment, the percentage of untranslocated pre-
proinsulin-R6C declined from 71% in the cells without treat-
ment to 26% in cells treated with 1 �g/ml cycloheximide (Fig.
5A and quantified in B). These data suggest that one reason
secretory preproteins utilize the post-translational transloca-
tion route is because they complete their synthesis too quickly
for efficient targeting to the ER translocation machinery. Co-
translational translocation of small secretory preproteins can
partially rescue the inefficient translocation, but such small
preproteins are especially susceptible to translocation defects
caused by a loss of positive charge in the n-region of SP.

Discussion

Protein targeting into the ER is essential for the normal func-
tion of many secretory proteins. Secretory preproteins can
enter the ER through co-translational and/or post-translational
translocation (8, 15). In this study, we demonstrate a loss of
co-translational translocation efficiency for short secretory pre-
proteins as well as an increased translocational dependence on the
positive charge in the n-region of the SP (Fig. 1). Whereas co-
translational translocation efficiency appears excellent for secre-
tory preproteins of more than 160 residues, the fraction of new-
ly-synthesized untranslocated molecules increases for smaller
secretory preproteins. Indeed, as much as 75% of secretory pre-
proteins of �77 residues are not translocated during the trans-
lation period (Fig. 3, C and G) but are translocated into the ER
lumen during the post-translational period (Fig. 4, A–D). The
most parsimonious explanation of the present data is that the
positive charge in the n-region of the SP is important for post-
translational translocation of small secretory preproteins.

Figure 2. R6C mutation impairs preproinsulin translocation across the ER membrane. A, 293T cells were transfected with plasmids encoding preproin-
sulin-WT, R6C, or M5R/R6C. At 40 h post-transfection, the cells were labeled with [35S]Met/Cys for 10 min without chase. Newly synthesized preproinsulin-WT
and mutants were immunoprecipitated (IP) and resolved using SDS-4 –12% NuPAGE and phosphorimaging. B, 293T cells were transfected to express prepro-
insulin-R6C. The cells were lysed at 40 h post-transfection; membrane association of preproinsulin-R6C was examined using sodium carbonate extraction as
described under “Experimental procedures.” The supernatants (S) and pellets (P) were analyzed by Western blotting using anti-Myc for detecting Myc-tagged
preproinsulin-R6C, anti-BiP for detecting an ER luminal protein BiP, and anti-calnexin for detecting an ER membrane protein calnexin. C, 293T cells were
transfected with plasmids encoding preproinsulin-WT, a glycosylated mutant A74N, and double mutant R6C/A74N. Newly synthesized preproinsulin-WT and
mutants were labeled and immunoprecipitated as in A. The immunoprecipitations were digested with or without peptide:N-glycosidase (PNGase-F) before
analysis as in A. EV, empty vector; PI, proinsulin.
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A recently identified diabetogenic mutation, preproinsulin-
R6C that causes SP misorientation during translocation (30,
31), highlights a critical role of the positive charge in the n-re-

gion of the SP for efficient translocation (Fig. 2A). Interestingly,
while eliminating the n-region’s positive charge caused up to
70% of the newly synthesized 110-residue preproinsulin-R6C to

Figure 3. Small secretory proteins have more positive charge in the n-region’s SP and are more susceptible to the loss of n-region’s positive charge.
A, analysis of the percentage of the secretory proteins with the positive charge in the n-region of the SP in 1877 eukaryotic secretory proteins. Among these
proteins, on average, 69.3% (red bar) had positive charge in the n-region of their SP. A trend indicated that the percentage of proteins with the positive charge
in the n-region of the SP as the polypeptide became shorter. B, signal sequences and lengths of predefensin, preosteocalcin, preproinsulin, prepro-PTH,
pre-POMC, and pre-JAM2. The n-regions of signal sequences are boxed. The positively charged residues in the n-region are highlighted in red. C–G, 293T cells
transfected with plasmids encoding small secretory preproteins, including wildtype (WT) or mutant predefensin (preDef), preproinsulin (pPI), prepro-PTH, and
preosteocalcin (preOTC), were pulse-labeled with 35S-labeled amino acids (aa) for 10 min without chase. The newly synthesized preproteins were immuno-
precipitated, resolved in SDS-4 –12% NuPAGE gels, phosphorimaged (C–F), and quantified using ImageJ. The percentages of uncleaved preproteins from at
least three independent experiments were calculated and shown as mean � S.D. in G. *, p � 0.05 compared with WT preproteins. H and I, 293T cells transfected
with plasmids encoding large secretory preproteins pre-POMC and pre-JAM2 were pulse-labeled with 35S-labeled amino acids for 10 min without chase. The
newly synthesized WT and mutant preproteins were immunoprecipitated, resolved using 10% SDS-PAGE, and phosphorimaged. EV, empty vector.
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fail to translocate across the ER membrane, it did not appear
critical for translocation of the 348-residue GFP-tagged pre-
proinsulin (Fig. 1, B and C). When the GFP-tagged preproinsu-
lin was truncated to different lengths, the translocation defect
caused by the R6C substitution only became apparent when the
secretory preprotein was �160 residues, and this was not crit-
ically dependent on the sequence of the downstream domain
(Fig. 1). We conclude that the positive charge in the n-region of
the SP is important for the efficient translocation of small secre-
tory preproteins.

One of the potential differences between large and small
secretory preproteins is their mode of translocation. Because of
the short time window to complete translation, small secretory
preproteins may be released from the ribosome before they
have been recognized and targeted to the translocon. These
preproteins entering the cytosol then need to translocate into
the ER post-translationally (22). Growing evidence suggests
that post-translational translocation is more prevalent than
previously thought (19, 20, 22, 39), via a process that can engage
multiple helper proteins, including SecA/B, Kar2P (BiP), Sec62/
63, calmodulin, TRC40, Bag6 and HSP70 (19 –22, 40 – 44). Over
200 human secretory preproteins have the potential to undergo

post-translational translocation (15, 45), and most of these are
small secretory preproteins.

Along with this, smaller secretory preproteins have a higher
probability to harbor the positive charge in the n-region of the
SP than do large secretory preproteins (Fig. 3A). In this study
examining six distinct polypeptides, including two large pre-
proteins (pre-JAM2 and pre-POMC) and four small prepro-
teins (preproinsulin, prepro-PTH, preosteocalcin, and pre-
defensin), we provide experimental evidence confirming that
the translocation defect caused by loss of the positive charge in
the n-region of the SP is specific for small secretory preproteins
(Fig. 3). We propose that the positive charge in the n-region
of the SP is likely to play a significant role for all small secre-
tory preproteins whose net ER translocation efficiency is
increasingly dependent upon a post-translational transloca-
tion mechanism.

Consistent with this hypothesis, we observed that post-trans-
lational translocation of small secretory preproteins across the
ER membrane was virtually completely blocked when the pos-
itive charge in the n-region of the SP was eliminated (Fig. 4).
Slowing the polypeptide chain elongation rate (with low-dose
cycloheximide treatment) provides additional time for the nas-

Figure 4. Loss of positive charge in the n-region of SP impairs post-translational translocation of small secretory preproteins. A, 293T cells transfected
with plasmids encoding predefensin-WT or n-region mutant R2A were labeled for 5 min followed by 0, 10, or 30 min of chase in the presence of 10 �M MG132
and 10 �g/ml CHX. Post-translational translocation of predefensin-WT and mutant were analyzed in 4 –12% NuPAGE gel. B, newly synthesized signal-un-
cleaved and -cleaved predefensin-WT and R2A from three experiments were quantified using ImageJ. The percentages of signal-uncleaved predefensin-WT
and R2A at 0-, 10-, or 30-min chase time points were calculated and shown. C, 293T cells transfected with plasmids encoding preproinsulin-WT or R6C were
labeled for 5 min followed by a 0-, 10-, or 30-min chase in the presence of 10 �M MG132 and 10 �g/ml CHX. Post-translational translocation of preproinsulin-WT
and R6C were analyzed in 4 –12% NuPAGE gel. D, newly synthesized signal-uncleaved and -cleaved preproinsulin-WT and R2A from three experiments were
quantified using ImageJ. The percentages of signal-uncleaved preproinsulin-WT and R6C at a 0-, 10-, or 30-min chase time points were calculated and shown.
E, 293T cells transfected with plasmids encoding prepro-PTH wildtype (WT), n-region mutant K5A/K9A, or h-region mutant C18R were labeled for 5 min
followed by a 0- and 10-min chase in the presence of 10 �M MG132 and 10 �g/ml CHX. Untranslocated but fully synthesized WT predefensin, preproinsulin, and
prepro-PTH could clearly undergo post-translational translocation and were further processed during the 10 –30-min chase. However, post-translational
translocation of all three SP n-region mutants were essentially blocked. By contrast, the mutation in the h-region of prepro-PTH C18R could undergo post-
translational translocation during a 10-min chase.

n-region positive charge and small preprotein translocation
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cent chain to emerge from the ribosome and be directed to the
ER translocon; remarkably, while decreasing the overall protein
synthesis rate, this maneuver significantly improved the frac-
tion of molecules that were successfully translocated despite
loss of the positive charge in the n-region of the SP (Fig. 5).
Altogether, we posit that because of a limited time for efficient
targeting to the ER translocon prior to the rapid completion of
secretory protein translation, small secretory preproteins are
intrinsically predisposed to lower efficiency in co-translational
translocation, which is readily demonstrated by measuring
translocation during the synthesis period marked by pulse-la-
beling. In such cases, post-translational translocation becomes
an important backup mechanism to enhance delivery of small
secretory preproteins into the ER lumen. Correlating precisely
with this backup mechanism, small secretory preproteins are
susceptible to further translocational impairment as a conse-
quence of the loss of the positive charge in the n-region of the
SP. Such considerations are important, as there are serious
pathophysiological consequences to defective ER translocation
that has been linked mechanistically to multiple human dis-
eases, including diabetes (29 –31), hypoparathyroidism (36),
chondrodysplasia (46), and Ehlers-Danlos syndrome (47).

Experimental procedures

Materials

Rabbit anti-Myc and anti-GFP were from Immunology Con-
sultants Laboratories; guinea pig anti-human insulin was made
by Novus; zysorbin was from Zymed Laboratories Inc.; 35S-
amino acid mixture (Met � Cys) was from ICN; dithiothreitol
(DTT), protein A-agarose, MG132, and anti-FLAG M2 were

from Sigma; Met/Cys-deficient Dulbecco’s modified Eagle’s
medium (DMEM) and all other tissue culture reagents were
from Invitrogen. The plasmid encoding human pre-POMC was
from Drs. Mencarelli and Di Blasio at Instituto Auxologico
Italiano, Italy.

Mutagenesis, cell culture and transfection, and metabolic
labeling and immunoprecipitation

The plasmids encoding human wildtype and mutant pre-
proCpepGFP, in which GFP was inserted into the C-peptide of
human preproinsulin, were constructed as described previ-
ously (30, 32). To make truncated preproCpepGFP, stop
codons at designed sites were introduced by a site-directed
mutagenesis kit (Stratagene). FLAG-tagged human predefen-
sin, prepro-PTH, preosteocalcin, and junction adhesion mole-
cule 2 (pre-Jam2) were synthesized by Integrated DNA Tech-
nologies (IDT) and were subcloned into pcmsGFP using EcoRI
and XbaII. Predefensin, preproinsulin, prepro-PTH, preosteo-
calcin, pre-JAM2, and pre-POMC mutants were generated by
the site-directed mutagenesis kit (Stratagene). HEK293T cells
were plated onto 12-well plates 1 day before transfection with
Lipofectamine (Invitrogen) using 1–2 mg of plasmid DNA. At
48 h after transfection, cells were pulse-labeled with [35S]Met/
Cys for 5 or 10 min as indicated. In some experiments, the
labeled cells were chased in the presence or absence of MG132
or cycloheximide (CHX) for different times as indicated.

Sodium carbonate extraction and Western blotting

For sodium carbonate extraction, the transfected 293T cells
were suspended in 0.1 M sodium carbonate, pH 12, homoge-
nized, and incubated on ice for 1 h followed by sedimentation at
50,000 rpm at 4 °C for 1 h. The supernatants and pellets were
collected. For Western blotting, the collected supernatants and
pellets were boiled in SDS sample buffer containing 100 mmol/
liter DTT, resolved by 4 –12% NuPAGE, electrotransferred to
nitrocellulose, and blotted with anti-Myc, anti-GRP78 (BiP),
and anti-calnexin followed by appropriate secondary anti-
bodies conjugated with HRP, with development by enhanced
chemiluminescence.

Statistical analyses

Statistical analyses were carried out by analysis of variance
followed by using GraphPad Prism 5. A p value of � 0.05 was
taken as statistically significant.

Author contributions—H. G., J. S., X. L., and Y. X. data curation;
H. G., J. S., X. L., Y. X., H. W., H. S., Q. L., Y. H., R. M., Y. W., and
J. C. methodology; J. S., X. L., R. Z., Y. H., R. M., and M. L. formal
analysis; P. A. and M. L. funding acquisition; P. A. and M. L. writing-
review and editing; M. L. conceptualization; M. L. supervision; M. L.
investigation; M. L. writing-original draft.

Acknowledgments—We thank Drs. Shu-ou Shan (Caltech) and Peter
Walter (University of California at San Francisco) for helpful
discussions.

Figure 5. Reducing translation elongation rate partially rescues the
translocation defect caused by loss of positive charge in the n-region of
the SP. A, 293T cells were transfected with preproinsulin-WT or R6C. At 40 h
post-transfection, the cells were labeled with [35S]Met/Cys in the presence of
0, 0.5, or 1 �g/ml CHX for 10 min without chase. The newly synthesized pre-
proinsulin molecules were immunoprecipitated with anti-insulin and ana-
lyzed using SDS-4 –12% NuPAGE. B, untranslocated preproinsulin-R6C and
processed proinsulin from three independent experiments were quantified
using ImageJ. The percentages of the untranslocated pPI-R6C in total newly
synthesized preproinsulin are shown as mean � S.D., * indicates p � 0.05.
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