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Abstract

Metagenomics and related methods have led to significant advances in our understanding of the 

human microbiome. Members of the genus Lactobacillus, although best understood for essential 

roles in food fermentations and applications as probiotics, have also come to the fore in a number 

of untargeted gut microbiome studies in humans and animals. Although Lactobacillus is only a 

minor member of the human colonic microbiota, the proportions of those bacteria are frequently 

either positively or negatively correlated with human disease and chronic conditions. Recent 

findings on Lactobacillus species in human and animal model microbiome research, together with 

the increased knowledge on probiotic and other ingested lactobacilli, have resulted in new 

perspectives on the importance of this genus to human health.
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Introduction

Members of the genus Lactobacillus were long thought to be among the most abundant 

microorganisms in the human gastrointestinal (GI) tract and associated with good intestinal 

health. Following the development of culture-independent, DNA-sequence analysis methods, 

the numbers of autochthonous Lactobacillus were adjusted to ≤ 1% of the total bacterial 

population in the distal human gut. One consequence of this change is that the relevance of 

this genus to human health has come under scrutiny. In contrast, there is increased 

acceptance of the application of allochthonous probiotic Lactobacillus in fermented foods 

and supplements as probiotics to maintain health and prevent and treat disease [1,2]. 

Although human studies frequently show a benefit with probiotic administration [3], the 

importance of autochthonous Lactobacillus remains under question.

Human disease is increasingly correlated with fecal microbiota composition. Similarly, 

intestinal bacteria are frequently correlated with numerous other host (genetics, age) and 

environmental (diet, medication) factors. Such associations have been useful for identifying 

pathobionts associated with disease as well as taxa such as Faecalibacterium prausnitzii and 

Akkermansia muciniphila as beneficial members of the indigenous microbiota. Similarly, a 

number of recent publications in which culture-independent methods were employed (e.g. 

16S rRNA gene amplicon sequencing) identified Lactobacillus as being significantly 

enriched in the distal gut during either health or disease (Figure 1 and Table 1). Because 

these approaches are largely untargeted, the outcomes provide an unbiased perspective on 

the relative importance of this genus weighed against other bacterial inhabitants of GI tract. 

This review will address findings on the diversity and abundance of intestinal Lactobacillus 
resulting from gut microbiome studies and emerging mechanistic evidence of endogenous 

and ingested (probiotic) Lactobacillus species in the GI tract.

Abundance and diversity of intestinal Lactobacillus

Lactobacillus species have been isolated from the entirety of the human GI tract (oral cavity 

to feces) as well as the skin and vagina [4,5]. This genus is estimated to constitute 6% of the 

total bacterial cell numbers in the human duodenum [6] and approximately 0.3% of all 

bacteria in the colon [4] (Figure 2). These levels are similar to the numbers of lactobacilli 

found in pigs, ranging from 5 to 0.1% of total bacteria in the proximal [7] and distal [8] gut, 

respectively. Lactobacillus was found in higher quantities in rhesus macaques (up to 30% 

and 10% of all bacteria in the small and large intestine, respectively) [9]. Proportions of 

Lactobacillus in rodent models ranged between 30 to 60% of bacterial numbers in the ileum 

and approximately 25% in the colon [10,11] (Figure 2). Lactobacillus can also dominate the 

human vaginal microbiota (90–100% of total bacteria present) and is found on the skin, but 

in much lower relative abundance [5] (Figure 2).

Only a few out of the >200 known Lactobacillus species have been consistently and 

repeatedly associated with the human GI tract. Recently, this number was increased to over 

50 Lactobacillus species that were repeatedly detected in the stools of healthy volunteers 

[•12]. The most abundant lactobacilli included L. casei, L. delbruckeii, L. murinus, L. 
plantarum, L. rhamnosus, and L. ruminus. Some of these species (e.g. L. rhamnosus and L. 
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murinus) are rarely isolated from environments outside the intestine and are considered gut-

autochthonous microorganisms. Other mucosal sites are colonized by distinct species (e.g. 

L. crispatus in the vagina) [•13]. There also appears to be host-specificity among some 

Lactobacillus species, as shown for linages of L. reuteri [14].

Infectious disease

Both human immunodeficiency virus (HIV) - infected humans and simian 

immunodeficiency virus (SIV) - infected rhesus macaques harbor reduced numbers of 

intestinal Lactobacillus [15,16] (Table 1). Lactobacillus depletion in rhesus macaques was 

associated with the loss of gut barrier-promoting T-helper 17 (Th17) cells and increased 

microbial translocation [16]. The potential of Lactobacillus to prevent or reverse intestinal 

damage during infection was demonstrated with the reduced interleukin-1β-mediated 

inflammation and improved barrier function upon inoculation of L. plantarum directly into 

ileal loops of SIV+ macaques shortly after SIV infection [17]. The intestinal epithelium in 

healthy animals responded similarly to L. plantarum, consistent with the finding that the 

ileal transcriptomes of L. plantarum were indistinguishable between SIV+ and SIV− animals 

[18]. In human populations, HIV+ patients on a multi-strain probiotic supplement exhibited 

higher numbers of memory Th17 cells in peripheral blood and in the intestine, and 

histological examination of colonic biopsies indicated increased intestinal barrier function 

[19].

Several recent animal studies have indicated a broader role for Lactobacillus in prevention 

and resolution of infectious disease. Tryptophan metabolites (indole aldehydes) produced by 

indigenous L. reuteri strains activate host aryl hydrocarbon receptors (AHR) to promote gut 

and vaginal epithelial barrier and antimicrobial responses required for limiting the expansion 

of Candida albicans, an opportunistic pathogen [••20]. Autochthonous Lactobacillus might 

also have a role in the resolution of infectious disease and recovery of immune homeostasis. 

Although Yerstina enterocolitica infection was cleared from toll-like receptor 1 (TLR1) 

knockout mice, the intestine was activated towards an inflammatory phenotype and the gut 

microbiota was enriched with Desulfovibrionaceae while containing lower numbers of 

Lactobacillus [••21]. Oral gavage with L. reuteri reduced anti-commensal antibodies, innate 

cytokines, and Th17 responses; thereby ameliorating immune hyper-reactivity [••21]. 

Conversely, post-Yersinia pseudotuberculosis infection lactobacilli were cultured from 

enlarged gut-associated lymphoid tissue and were associated with chronic lymphadenopathy, 

indicating that these bacteria might contribute to chronic, immune hyper-reactivity [22].

Irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD)

A meta-analysis of reports investigating the fecal microbiomes from IBS patients and 

healthy subjects concluded Lactobacillus was depleted in diarrhea-dominant, IBS patients 

[23] (Table 1). Another meta-analysis of IBS cohort studies determined that intestinal 

Lactobacillus was depleted in all cases of IBS in Chinese patients, but this association was 

not found or was reversed in patients from other countries [24]. Consistent with these 

results, meta-analysis of probiotic intervention studies (43 randomized controlled trials 
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(RCTs)) for treatment of IBS concluded that multi-species probiotics diminish symptoms 

(abdominal pain, bloating, and flatulence scores) [25].

Conversely, intestinal abundance of Lactobacillus and other genera including 

Bifidobacterium were recently positively correlated with Crohn’s disease (CD) patients 

[26,27] (Table 1). In both studies, Lactobacillus enrichment coincided with depletion of F. 
prausnitzii. Whether Lactobacillus is participating in disease or is simply adapted to survive 

the pro-inflammatory gut environment is not known. These findings contrast with ulcerative 

colitis (UC) in which probiotic Lactobacillus consumption has been associated with 

improved clinical symptoms [28]. Lactobacillus might be particularly supportive in CD and 

UC patients with caspase recruitment domain family member 9 (CARD9) risk alleles whose 

microbiome has a reduced production of AHR ligands [••29]. Consistent with this 

possibility, intestinal inflammation in CARD9 knockout (KO) mice was attenuated after 

inoculation of mice with Lactobacillus strains capable of metabolizing tryptophan [••29].

Rheumatoid arthritis (RA)

The intestinal microbiota of patients with severe and early onset RA were shown to have 

increased proportions of L. salivarius, L. ruminus, and L. iners when compared to healthy, 

age-matched individuals [•30] (Table 1). Enrichment of Lactobacillus spp. was also observed 

in collagen-induced, arthritic mice [31]. These results are in opposition to recent RCTs of 

probiotics in RA patients. In one study, patients consuming L. casei showed reduced disease 

activity scores, higher quantities of serum IL-10, and decreased levels of serum TNFα, IL- 6 

and IL-12 compared to placebo [32]. The other RCT concluded that a mixed strain probiotic 

supplement significantly improved disease activity scores and lowered levels of serum C-

reactive protein (CRP) [33]. Such findings might indicate species or strain-specific 

differences between autochthonous and allochthonous Lactobacillus on RA disease activity.

Type 1 Diabetes (T1D)

The proportions of Lactobacillus were lower in adults with T1D than healthy, first-degree 

relatives and unrelated healthy individuals according to untargeted 16S rRNA analysis [•34] 

(Table 1). A similar reduction in Lactobacillus was observed in children with T1D [35] 

(Table 1). Interestingly, children exposed to probiotic Lactobacillus early in life were found 

to have a significantly reduced risk of developing islet autoimmunity [36]. It is not yet 

understood how Lactobacillus could be regulating islet beta-cell auto-immunity, although it 

has been suggested that a lack of intestinal lactate-producing bacteria depletes butyrate-

producing taxa leading to aberrant immune responses [35].

Multiple sclerosis (MS)

A cohort study found that the relative abundance of intestinal Lactobacillus was lower in MS 

patients compared to healthy adults [37] (Table 1). Similar depletions in intestinal 

Lactobacillus were observed in a pre-clinical, rodent model of MS [38]. Consistent with a 

benefit of Lactobacillus in this autoimmune disease were the findings from a recent RCT of 

MS patients, whereby consumption of a multi-species probiotic improved the expanded 
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disability status score, self-reported depression, anxiety and stress, as well as decreased 

serum CRP compared to placebo [39]. Because circulating levels of AHR ligands are lower 

in MS patients compared to healthy adults [40], Lactobacillus might be useful for the 

maintenance or replenishment of these compounds. To this regard, Lactobacillus-produced 

indole aldehydes had a potent anti-inflammatory effect on brain glial cells (astrocytes) to 

limit central nervous system inflammation in a mouse model of human MS [•41].

Obesity and Type 2 Diabetes (T2D)

There are conflicting reports on the association of intestinal Lactobacillus with obesity in 

humans [42–45] (Table 1). Likewise, initial studies found increased levels of Lactobacillus 
in patients with T2D [46], although this trend was eliminated or reversed when controlling 

for metformin treatment [47] (Table 1). Also contrary to these results, meta-analysis of RCT 

studies found that probiotic Lactobacillus improved weight management outcomes in obese 

adults [48]. Consumption of yogurt and other dairy products fermented by Lactobacillus is 

also significantly associated with protection from T2D and obesity (recently reviewed in 

[2]).

Because Lactobacillus species appear to be either associated with weight gain or weight loss 

[49], the disparate findings among obese individuals might be due to genetic differences 

among the lactobacilli. Strain and species distinctions could result in variations in 

carbohydrate metabolism and production of fermentation end-products, such as lactate [50]. 

The production of bile salt hydrolases is another distinguishing feature of some 

Lactobacillus species, and this activity is responsible for significantly altering the activation 

of farnesoid x receptor (FXR) signaling and hepatic lipid metabolism [51,52].

Cancer

In a systematic review of thirty-one studies, Lactobacillus along with a limited number of 

butyrogenic genera were consistently diminished in colorectal cancer patients [53] (Table 1). 

Preventative and therapeutic roles of Lactobacillus in cancer are supported in studies with 

pre-clinical, rodent models, including a recently study in which a multi-strain probiotic 

altered Th-cell polarization away from Th17 cells in a mouse model of hepatocellular 

carcinoma [54]. However, Lactobacillus might not always be beneficial in certain extra-

intestinal sitesas shown by the higher levels of Lactobacillus found in malignant breast 

cancer compared to benign-disease tissues [55]. There was also a positive association 

between the levels of this genus in the oral microbiome and head and neck squamous cell 

carcinoma [56] (Table 1).

Cognitive development and behavior

Maternal prenatal stress might influence the infant microbiome, potentially damaging 

cognitive development. In humans, prenatal cortisol concentrations were inversely correlated 

with infant levels of intestinal Lactobacillus and Lactococcus, whereas Proteobacteria were 

enriched [•57] (Table 1). A comparable depletion of Lactobacillus was observed in rodent 

models of prenatal stress, with the microbiome of the offspring remaining disrupted into 
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adulthood [58]. Prenatal low-dose penicillin [59] or high fat diet [••60] could similarly 

induce long-term dysbiosis and behavioral deficits in mice. These deficits could be 

prevented by concurrent administration of Lactobacillus-containing probiotics to the dam 

[59] or by indigenous L. reuteri to offspring [••60].

In adult mouse models of microbiota-gut-brain axis deficits, administration of Lactobacillus-

containing probiotics was found to beneficially impact both cognition and colonic function, 

while reverting intestinal dysbiosis [61,62]. Such results might also be relevant to emotional 

disorders and this is supported in probiotics studies which have indicated that probiotic 

Lactobacillus might improve symptoms of human depression [63,64]. Therefore, 

beneficially modulating the microbiota using Lactobacillus can impact the microbiota-gut-

brain axis and should be more thoroughly studied in human mother-infant cohorts.

Conclusions

Our increased understanding of intestinal Lactobacillus from untargeted microbiome studies 

supports the premise that general properties conferred by this genus have far-reaching 

consequences on human health. Such knowledge could be further advanced via studies 

designed to determine the proximity of Lactobacillus to the intestinal epithelium or which 

focus attention on other sites on the body wherein members of this genus can constitute the 

majority of bacteria present (e.g. vagina). However, even without this information, strain 

and/or species-specific differences (e.g. tryptophan and bile metabolism) might be useful to 

explain variations in the involvement of this genus, either in the prevention or mitigation of 

disease or, alternatively, as a contributing factor to disease outcomes. Furthermore, the 

notable variation in intestinal abundance of this genus between healthy and diseased, or 

health-compromised, individuals indicates that Lactobacillus, or at least certain species or 

genotypes of Lactobacillus, could be useful gut biomarkers. These considerations can also 

inform the improved development and use of probiotics in different human populations.
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Highlights

• Intestinal lactobacilli are often detected in untargeted, gut microbiome 

studies.

• Depletion of intestinal Lactobacillus is frequently associated with disease.

• Probiotics use is supported by findings on indigenous Lactobacillus 
populations.

• Tryptophan metabolism is an emerging, beneficial trait of intestinal 

lactobacilli.

Heeney et al. Page 12

Curr Opin Biotechnol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Alteration of intestinal Lactobacillus in health and disease
Blue circles indicate Lactobacillus is depleted in disease compared to healthy controls. Red 

circles indicate Lactobacillus is increased in disease. Grey circle indicates Lactobacillus is 

either increased or decreased. Circles with black edges indicate a benefit for consumption of 

probiotics for treating disease. CD = Crohn’s disease, RA = rheumatoid arthritis, OB = 

obesity, T2D = type 2 diabetes, IBS = irritable bowel syndrome, T1D = type 1 diabetes, PNS 

= prenatal stress, HIV = human immunodeficiency virus, MS = multiple sclerosis.
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Figure 2. Relative abundance of Lactobacillus in humans and animals
Numbers underneath anatomical locations indicate estimates for total bacterial community 

cell numbers.
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