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Abstract

Deficiency of β-Glucocerebrosidase (GBA) activity causes Gaucher Disease (GD). GD can be 

diagnosed by measuring GBA activity [1] Beutler and Kuhl 1990. In this study, we assayed dried 

blood spots from a cohort (n=528) enriched for GBA mutation carriers (n=78) and GD patients 

(n=18) using both the tandem mass spectrometry (MS/MS) and fluorescence assays and their 

respective synthetic substrates. The MS/MS assay differentiated normal controls, which included 

GBA mutation carriers, from GD patients with no overlap. The fluorescence assay did not always 

differentiate normal controls including GBA mutation carriers from GD patients and false 

positives were observed. The MS/MS assay improved specificity compared to the fluorescence 

assay.
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1. Introduction

Gaucher disease (GD; OMIM #230800, 230900, 231000) is an autosomal recessive 

lysosomal storage disorder (LSD) characterized by β-Glucocerebrosidase deficiency (GBA; 

EC 3.2.1.45; Acid β-D-Glucosidase; Glucosylceramidase) and the accumulation of its 

substrate Glucocerebroside (GL-1; Glucosylceramide) in lysosomes [2, 3]. The prevalence 

of GD ranges from ~1/1,000 live births in Ashkenazi Jewish populations to ~1:50,000 in the 

general population [4–6]. The progressive nature of GD and the availability of enzyme 

replacement and substrate reduction therapies create a need for early and accurate diagnosis 

of patients with GD [7–13]. However, the rarity and clinical heterogeneity of GD leads to 

diagnostic challenges [3, 14–17]. This study compared two assays used for screening GBA 

activity in DBS, the MS/MS assay and the fluorescence assay. The MS/MS assay was 

developed by Li et al and optimized by Zhang et al. [18, 19] and the fluorescence assay was 

originally developed by Chamoles et al. and optimized by Olivova et al. [20, 21].

Each assay employs a different synthetic substrate instead of the native GBA substrate Cn-

Glucocerebroside (n=16–24) [22]. The MS/MS assay uses C12-Glucocerebroside, a 

synthetic analog of the native substrate with a shorter fatty acyl chain. The substrate is 

cleaved by GBA extracted from the DBS sample to produce a C12-ceramide product. The 

product is quantified against a C14-ceramide internal standard by MS/MS [18, 19]. The 

fluorescence assay utilizes the synthetic substrate 4-methylumbelliferyl β-D-

glucopyranoside (4-MUG). GBA hydrolyses 4-MUG to release a fluorescent 4-

methylumbelliferon (4-MU) product, which is quantified by fluorometer [20, 21]. The 

synthetic substrates are outlined in Figure 1.

2. Materials and Methods

2.1 Sample collection

Specimens were collected with written informed consent at Columbia University and at 

Sanofi Genzyme (Cambridge, MA) according to procedure established at Sanofi Genzyme 

[23]. The blood was drawn into 10 mL BD Vacutainer Blood Collection Tubes with 

K2EDTA (Franklin Lakes, NJ) and 75 μL aliquots were spotted onto Whatman 903 filter 

paper (GE Healthcare, Piscataway, NJ). Blood spots were dried for a minimum of 4 h at 

room temperature. Dried sample cards were stored in sealed plastic bags at −20 °C with a 

desiccant and a humidity indicator. Cards were shipped at room temperature and stored at 

−80 °C until analysis.

2.2 Cohort Description and Clinical Status

The full cohort (n=528) contained control DBS (n=510) and GD DBS (n=18). Of these, 515 

samples were collected at Columbia University in the “Spot” study, which tested the 

association between GBA mutations, GBA activity and Parkinson’s disease [24]. The 515 

participants signed an informed consent to both enzyme activity analysis at Sanofi Genzyme 

and genotyping. The remaining 13 DBS samples came from Sanofi Genzyme collection of 

GD patients who consented to GBA enzyme activity analysis but not genotyping. After 

genotyping, the control group was further subdivided by GBA genotype into normal DBS 
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(n=432) and carriers (n=78). The control group was defined as unaffected with respect to 

GD, but some individuals had Parkinson’s disease as described in Alcalay et al. [24].

2.3 Genetic Testing

Samples from the 515 individuals with proper consent were genotyped in two ways. DNA 

was extracted using a standard salting-out method and all participants were genotyped for 

eight GBA mutations (p.N409S, p.L483P, p.L29Afs*18, ivs2+1G>A, p.D448G, p.V433L 

and p.R535H, and the p.[L483P; A495P; V499V] recombinant allele; legacy nomenclature: 

N370s, L444P, 84GG, ivs2+1G>A, D409G, V394L, R535H and the RecNciI recombinant 

allele, respectively) and two GBA variants (p.E365K and p.T408M, legacy nomenclature: 

E326K and T369M, respectively) as previously described [25, 26]. In addition, the GBA 
locus was fully sequenced in a second round of genotyping as described in Alcalay et al. 

[24]. The samples were blinded throughout GBA activity analysis.

2.4 GBA Enzyme Activity by Fluorescence Assay

GBA activity was measured as previously described [20] Briefly, one 3.2 mm-diameter 

punch from each DBS sample was extracted in 200 ;L 0.2 M citrate phosphate buffer, pH 5.2 

containing 1% Triton® X-100 (Sigma, St. Louis, MO) and 1% sodium taurodeoxycholate 

(≥97% purity, Sigma, St. Louis MO) in a 96-well plate. Substrate solution (12.5 mM 4-

MUG, Sigma, St. Louis, MO) was prepared either with or without inhibitor (0.5 mM 

Conduritol B Epoxide, Toronto Research Chemicals). Inhibited or uninhibited substrate 

solution was mixed 2:1 with DBS extract and incubated for 20 h at 37 °C. To stop the 

reactions, 100 μL of 0.5 M EDTA (pH 11.5) was added to each well. An eight point 4-MU 

standard curve (0 – 0.67 μM) was prepared on each plate in duplicate. The plate was read in 

a fluorometer at 355 nm excitation and 460 nm emission wavelengths. GBA activity was 

determined by subtracting the background activity measured in the inhibited reaction from 

that in the uninhibited reaction. Disease cut-off (1.71 μmol/L/h) was established as described 

in methods section 2.6. The limit of blank (LOB=0.16 μmol/L/h) and limit of detection 

(LOD=0.41 μmol/L/h) for the fluorescence assay were established previously [20].

2.5 GBA Enzyme Activity by MS/MS Assay

GBA activity was measured as part of an established MS/MS multiplex assay as previously 

described [18]. The GBA extract from one 3.2 mm punch per DBS sample was combined 

with C12-glucocerebroside substrate and C14-ceramide internal standard mixtures (The 

Center for Disease Control and Prevention, Atlanta, Georgia). Sealed 96-well plates were 

incubated on an orbital shaker at 37°C for 20 h and cleaned up according to the published 

protocol. Dried sample plates were stored at −20 °C. Prior to MS/MS analysis, plates were 

thawed and reconstituted with 200 μl of mobile phase (80:20 acetonitrile in water containing 

0.2% formic acid). All analytes were monitored on an API 4000 triple quadrupole mass 

spectrometer (ABSciex, Framingham, Massachusetts, USA) by Multiple Reaction 

Monitoring (MRM). The enzyme activity of each sample was calculated from the ion 

abundance ratio of product to internal standard as measured by the mass spectrometer. 

Background activity of a blank filter paper was subtracted from the DBS activity. Activity 

was expressed as micromoles of product per liter of whole blood per hour (μmol/l/h). Two 

QC samples with previously established activity levels for each enzyme and disease positive 
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samples were included in each plate as sample controls. The LOB=0.32 μmol/L/h and 

LOD=0.5 μmol/L/h for the MS/MS assay were established previously.

2.6 Statistical Analysis and Disease Cut-off

All statistical analysis was performed using the SAS v.9.4 software (SAS Enterprise, Cary, 

NC). A cut-off point distinguishing the control (normal + carrier) group and the GD group 

was derived by fitting a normal distribution to the control group (Fcontrol) and the GD group 

(Fdisease) using a direct estimation of each mean and standard deviation. The cut-off point 

χcut-off was then defined as the value with equal probability to occur in both, the control and 

the disease distribution:

where fcontrol and fdisease denoted the probability density function for Fcontrol and Fdisease. 

Any value χ ≤ χcut-off was more likely to occur in the disease group distribution and any 

value χ > χcut-off was more likely to occur in the control group.

The GD cut-off for the fluorosecence assay was established as 1.71 μmol/L/h. The GD cut-

off for the MS/MS assay was established as 1.49 μmol/L/h.

3. Results and Discussion

The study cohort (n=528) contained control DBS samples (n=510) and GD samples (n=18). 

The full GBA gene was sequenced in consented samples (n=515) as described in methods. 

After genotyping, the control group was further subdivided into normal DBS (n=432) and 

GBA carriers (n=78). The carrier group included any heterozygous GBA sequence variation 

including non-coding mutations regardless of disease relevance. Table 1 outlines the cohort 

and genotyping results.

GBA activity was measured in all samples by both the MS/MS and the fluorescence assays. 

Activity results from the two assays are correlated in Figure 2. The mean activity of the 

normal and carrier DBS was significantly different (p<0.0001) Table 2, but neither assay 

could differentiate the carrier and normal DBS populations as expected. The correlation 

coefficient of the two assays R = 0.8073.

The mean GBA activity measured in normal controls, GBA carriers and GD DBS by the 

MS/MS and the fluorescence assays is listed in Table 2. Seven of the GD samples had 

activity levels below the LOD of the MS/MS assay (0.5 μmol/L/h), while all GD samples 

tested above the LOD of the 4-MU GBA assay (0.41 μmol/L/h). As expected, the GBA 

activity of all controls (normal DBS plus carriers) was significantly different from GD DBS 

activity in both assays (p<0.0001).

The GBA activity distribution span a greater range in the MS/MS assay compared to the 

fluorescence assay. The GBA activity measured by the MS/MS assay showed a clear 

separation between GD and normal control samples including GBA mutation carriers as 

shown in Figure 3. In contrast, the activity distribution measured by the fluorescence assay 
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was continuous between the groups and false positives were observed. Specifically, eight 

GBA mutation carriers and two normal controls were tested below the GD cut-off of 1.71 

μmol/L/h in the fluorescence assay. The GBA activity measured in carriers of specific 

mutations is reported in Supplementary Tables 1 and 2.

Both assays showed 100% sensitivity as they correctly detected all 18 GD samples as true 

positives. The MS/MS assay also showed 100% specificity, while the fluorescence assay 

specificity was slightly lower at 98.1%. The enzyme activity of GBA carriers clustered at the 

lower end of the normal activity distribution as observed previously [19, 21]. For GBA 
carriers in the MS/MS assay the 95% confidence interval (CI) = 2.7 – 13.1 compared to 5.7 

– 18.5 for normal controls. For GBA carriers in the fluorescence assay the 95% CI = 1.0 – 

4.4 compared to 1.8 – 6.0 for normal controls.

Assay characteristics such as reaction pH, time and temperature are similar in both assays. 

The difference in the specificity of the two assays may result from the structural differences 

of their respective synthetic substrates. The MS/MS assay uses a close structural analogue of 

the natural substrate. The ceramide moiety of the C12-Glucocerebroside substrate differs 

from the natural substrate only in the length of the fatty acid chain [19, 22]. In addition, the 

β-linked glucose head group known to bind the active site of GBA is flexible in the C12-

Glucocerebroside and rigid in the 4-MUG substrate. This may affect the substrate enzyme 

configuration during GBA hydrolysis.

The difference between the fluorescence assay and MS/MS assay may be important to 

newborn screening and diagnostic laboratories [30–32]. False positives observed in GD 

screening with the fluorescence assay have been reported previously [33, 34]. False-positive 

test results can cause anxiety to patients and increase costs to the healthcare system. 

Therefore, borderline activity results in the fluorescence assay should be followed by 

genotyping.

4. Conclusion

This study demonstrated that the MS/MS GBA activity assay has higher specificity than the 

fluorescence GBA assay. Since other assay characteristics were similar in both assays, the 

structural features of the substrates might contribute to the observed differences. Both assays 

are suitable for GBA activity screening, but borderline results in the fluorescence assay 

should be followed by genotyping.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Synthetic substrates schema
a. C12-Glucocerebroside used in the MS/MS assay b. 4-methylumbelliferyl β-D-

glucopyranoside used in the fluorescence assay.
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Figure 2. Fluorescence and mass spectrometry assay correlation
The GBA activity levels in control DBS (normal DBS plus GBA carriers) and GD DBS 

samples as measured by the MS/MS and the fluorescence (4-MU) assays. The red dotted 

lines indicates LOD for each assay as described in methods. R=0.8073.
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Figure 3. Frequency distribution of GBA enzyme activities in each assay
a. GBA activity distribution in the MS/MS assay. b. GBA activity distribution in the 

fluorescence assay.
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