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Abstract

We recently demonstrated a bilateral projection to the supraoculomotor area from the central 

mesencephalic reticular formation (cMRF), a region implicated in horizontal gaze changes. C-

group motoneurons, which supply multiply innervated fibers in the medial rectus muscle, are 

located within the primate supraoculomotor area, but their inputs and function are poorly 

understood. Here, we tested whether C-group motoneurons in Macaca fascicularis monkeys 

receive a direct cMRF input by injecting this portion of the reticular formation with anterograde 

tracers in combination with injection of retrograde tracer into the medial rectus muscle. The results 

indicate that the cMRF provides a dense, bilateral projection to the region of the medial rectus C-

group motoneurons. Numerous close associations between labeled terminals and each multiply 

innervated fiber motoneuron were present. Within the oculomotor nucleus, a much sparser 

ipsilateral projection onto some of the A- and B-group medial rectus motoneurons that supply 

singly innervated fibers was observed. Ultrastructural analysis demonstrated a direct synaptic 

linkage between anterogradely labeled reticular terminals and retrogradely labeled medial rectus 

motoneurons in all three groups. These findings reinforce the notion that the cMRF is a critical 

hub for oculomotility by proving that it contains premotor neurons supplying horizontal 

extraocular muscle motoneurons. The differences between the cMRF input patterns for C-group 

versus A- and B-group motoneurons suggest the C-group motoneurons serve a different 

oculomotor role than the others. The similar patterns of cMRF input to C-group motoneurons and 
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preganglionic Edinger-Westphal motoneurons suggest that medial rectus C-group motoneurons 

may play a role in accommodation-related vergence.
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1 | INTRODUCTION

It has long been recognized that extraocular muscle fibers can receive one of two types of 

innervation (Mayr, Gottschall, Gruber, & Neuhuber, 1975; Morgan & Proske, 1984; 

Schiaffino & Reggiani, 2011; Spencer & Porter, 1981, 2006). Approximately 80–90% of 

extraocular muscle fibers receive a single, en-plaque neuromuscular junction within the 

middle third of the muscle from large, heavily myelinated axons (Büttner-Ennever, Horn, 

Scherberger, & D’Ascanio, 2001; Namba, Nakamura, & Grob, 1968a; Namba, Nakamura, 

Takahashi, & Grob, 1968b). These are commonly referred to as “singly innervated fibers” 

(SIFs). Excitation of SIFs results in an all-or-nothing “twitch” response and, based on 

histochemical and ultrastructural features, their contraction characteristics are presumed to 

range from fatigable to fatigue resistant (Bach-y-Rita and Ito, 1966; Bach-y-Rita, 

Lennerstrand, Alvarado, Nichols, & McHolm, 1977; Bondi & Chiarandini, 1983; 

Chiarandini & Stefani, 1979; Jacoby, Chiarandini, & Stefani, 1989; Lynch, Frueh, & 

Williams, 1994; Nelson, Goldberg, & McClung, 1986). The other 10–20% of extraocular 

muscle fibers [Human: (Wasicky, Horn, & Büttner-Ennever, 2000) Rat: (Eberhorn, Büttner-

Ennever, & Horn, 2006; Mayr, 1971)] are innervated by thin axons, which form multiple 

boutonal and en-grappe neuromuscular junctions along the entire length of the muscle fiber 

(Namba et al., 1968a, 1968b). These are commonly referred to as “multiply innervated 

fibers” (MIFs). MIFs have slow, graded, “non-twitch” responses (Chiarandini & Davidowitz, 

1979; Chiarandini & Stefani, 1979; Jacoby et al., 1989; Nelson et al., 1986) and are 

categorized as highly fatigue resistant (Bach-y-Rita & Ito, 1966; Bach-y-Rita et al., 1977; 

Bondi & Chiarandini, 1983).

Medial rectus motoneurons are grouped into three distinct motoneuronal pools in monkeys, 

which were defined as the A-, B-, and C-group in early anatomical investigations (Büttner-

Ennever & Akert, 1981; Porter, Guthrie, & Sparks, 1983). The A- and B-groups are found 

ventrolaterally and dorsocaudally, respectively, within the oculomotor nucleus (III), while 

the C-group is located within the supraoculomotor area (SOA), on the dorsomedial 

periphery of III. Büttner-Ennever et al. (2001) compared labeling from injections of the 

distal and central parts of the medial rectus muscle, reasoning that distal injections would 

just label MIF motoneurons. They concluded that the C-group supplied input to the MIFs, 

while the A- and B-group motoneurons supplied SIFs. Further studies showed that separate 

SIF and MIF motoneuronal pools are a general feature of each extraocular muscle in 

monkeys, with SIF motoneurons located within their respective nucleus, while MIF 

motoneurons found peripheral to their respective nucleus (Wasicky et al., 2004).
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To date, we have limited understanding of the function of MIFs because their motoneurons 

have not been specifically recorded from during oculomotor behaviors. There have been 

investigations of MIF motoneuron inputs, in order to gain insight into their function. 

Wasicky et al. (2004) noted that anterograde tracers placed in the medial vestibular nucleus, 

Y group, and pretectum labeled terminals over the regions occupied by MIF motoneurons. 

More recently, retrograde trans-synaptic labeling experiments using rabies virus injections 

into the distal lateral rectus muscle of monkeys have identified MIF premotor neurons within 

the medial vestibular nucleus and the nucleus prepositus, the SOA and in the central 

mesencephalic reticular formation (cMRF) (Ugolini et al., 2006). With respect to the cMRF 

input, we recently noted that this region provides a considerable projection to the SOA in 

monkeys, and that the terminal field is particularly dense, immediately dorsal to III, where 

the C-group is located (Bohlen, Warren, & May, 2016). These results suggest that the cMRF 

may have direct projections to motoneurons involved in eye movement, and more 

specifically medial rectus MIF motoneurons.

Anatomically, the cMRF is a box-shaped region within the core of the caudal 

mesencephalon (Chen & May, 2000; Cohen, Matsuo, Fradin, & Raphan, 1985). With 

regards to connectivity, the cMRF projects to virtually all the brainstem regions associated 

with gaze changes [Monkey: (Cowie, Smith, & Robinson, 1994; Langer & Kaneko, 1990; 

Perkins, Warren, & May, 2009; Robinson, Phillips, & Fuchs, 1994; Wang, Perkins, Zhou, 

Warren, & May, 2013; Warren, Waitzman, & May, 2008); Cat: (Edwards, 1975; Edwards & 

de Olmos,1976; Langer & Kaneko, 1984; Perkins, May, & Warren, 2014)]. Arguably, the 

largest cMRF projection is to the superior colliculus [Monkey: (Chen & May, 2000; Wang et 

al., 2013; Zhou, Warren, & May, 2008); Cat: (Appell & Behan, 1990; Edwards & de Olmos, 

1976)]. In turn, the superior colliculus provides a major input to the cMRF [Monkey: (Cohen 

& Büttner-Ennever, 1984; Harting, 1977); Cat: (Edwards, 1975; Perkins et al., 2014)]. As 

crossed tectobulbospinal tract axons exit the deep layers of the superior colliculus, destined 

for the contralateral predorsal bundle, they provide collaterals to the ipsilateral cMRF, before 

decussating on their way to the pons and medulla [Monkey: (Moschovakis, Karabelas, & 

Highstein, 1988); Cat: (Grantyn & Grantyn, 1982)]. So in addition to supplying the 

colliculus with input, the cMRF is privy to the target error signals sent from deep layers of 

the colliculus to the rest of the brainstem (Chen & May, 2000; Wang et al., 2013). In fact, 

stimulation of the monkey cMRF results in horizontal, conjugate, saccadic eye movements 

directed away from the stimulated side (Bender & Shanzer, 1964; Cohen et al., 1985; Cohen, 

Waitzman, Büttner-Ennever, & Matsuo, 1986). Furthermore, single cell recordings in head-

fixed monkeys have revealed that cMRF neurons fire maximally for horizontal eye 

movements away from the recorded side (Cromer & Waitzman, 2006, 2007; Waitzman, 

Silakov, & Cohen, 1996). The specificity for horizontal eye movements was questioned by 

Handel and Glimcher (1997), but Waitzman and colleagues (2000a, 2000b) suggested that 

vertical gaze changes are controlled by the mesencephalic reticular formation rostral to the 

cMRF. This region has been termed the peri-interstitial mesencephalic reticular formation 

(piMRF) for its proximity to the interstitial nucleus of Cajal (InC).

In light of the cMRF’s role in horizontal eye movements, a projection to medial rectus 

motoneurons seems reasonable. Indeed, transsynaptic retrograde experiments in the guinea 

pig indicate their midbrain reticular formation contains premotor neurons supplying the 
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medial rectus muscle (Graf, Gerrits, Yatim-Dhiba, & Ugolini, 2002). Furthermore, the 

cMRF’s projection to SOA (Bohlen et al., 2016) suggests that it may specifically target C-

group motoneurons. However, it is noteworthy that studies of the activity of cMRF neurons 

indicate that they fire a burst of action potentials for saccadic eye movements (Cromer & 

Waitzman, 2006; Moschovakis et al., 1988; Waitzman et al., 1996, 2008), in contrast to the 

other regions thought to supply input to MIF motoneurons (e.g., medial vestibular nucleus, 

nucleus prepositus, and SOA). These non-cMRF inputs primarily supply motoneurons with 

tonic signals that are appropriate for the expected slow, graded nature of MIF contraction, 

which may be useful for maintaining eye position. Thus, it seemed reasonable to test 

whether the cMRF projects directly to medial rectus motoneurons in primates, and to 

determine whether it specifically contacts the MIF motoneurons within the C-group. To 

examine these possibilities in M. fascicularis monkeys, we employed dual tracing techniques 

in which an injection of retrograde tracer was made into the medial rectus muscle to label all 

three subgroups and an anterograde tracer was placed in the cMRF to label terminals in and 

around the oculomotor nucleus. Due to the fact that the cMRF’s SOA projection was 

bilateral (Bohlen et al., 2016), in separate animals, we utilized muscle injections ipsilateral 

and contralateral to the side of the cMRF injection. Portions of this work have appeared in 

abstract form (Bohlen, Warren, & May, 2015; May, Horn, Mustari, & Warren, 2011).

2 | METHODS AND MATERIALS

These experiments were performed using seven adult or young adult Macaca fascicularis 
monkeys (RRID: NCBITaxon:9541) of both sexes. The methods described are in accordance 

with NIH guidelines for animal care and use, and were approved by the University of 

Mississippi Medical Center’s IACUC. Animals were sedated with ketamine hydrochloride 

(10 mg/kg, IM), administered with atropine sulfate (0.05 mg/kg, IM) to reduce airway 

secretions. They were then intubated and anesthetized on a 1–3% isoflurane/oxygen mix for 

the duration of the surgery. Temperature, heart rate, and rate of respiration were continually 

monitored and maintained within physiological norms. Each animal also received Carprofen 

(3 mg/kg, IM) as a preemptive analgesic. After closing, Sensorcaine (0.5–1.0 ml) was 

administered at the incision site. Buprenex (0.01 mg/kg, IM) served as a postsurgical 

analgesic.

Once anesthetized, animals were placed into a stereotaxic apparatus (Kopf Instruments, 

Tujunga, CA). The approach for central injections into the cMRF has been described 

elsewhere in detail (see Bohlen et al., 2016; May, Warren, Bohlen, Barnerssoi, & Horn, 

2016) and will be briefly described here. Medial parietal cortex was aspirated to visualize 

the superior colliculus and caudal pole of the pulvinar. Antero-grade tracer injections were 

stereotaxically placed into the cMRF with the aid of a primate stereotaxic atlas (Szabo & 

Cowan, 1984). A 1 μl Hamilton microsyringe containing 10% biotinylated dextran amine 

(10,000 MW) (BDA; n =6; Invitrogen) or a glass micropipette containing 2% Phaseolus 
vulgaris leucoagglutinin (PhaL; n =1; Vector Laboratories Cat# BA-0224, RRID: 

AB_231544) was held in a micromanipulator that was angled 10 °, tip rostral in the sagittal 

plane, and then rotated 10–11° clockwise, when observed from above. The needle or micro-

pipette was inserted through the pulvinar and lowered to a point ~7 mm below the surface of 

the superior colliculus. Along each track, two, 0.1 μl pressure injections of 10% BDA were 
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made approximately 1 mm apart. In some cases, a second track was made with the needle 

inserted at a different mediolateral position. For PhaL injections, the tracer was dissolved in 

pH 8.0, 0.1 M phosphate buffer (PB). Injections were made from a glass micropipette with a 

20 μm tip by iontophoresis (Model CS 3; Transkinetics; Canton, MA), using 7 μA, 7 s, 

square wave pulses for 10 min at each injection site (see Wang et al., 2013 for details). At 

the end of the surgery, incised tissues were sutured back together.

A second peripheral surgery was performed 14–20 days later to inject a retrograde tracer 

into the medial rectus muscle. The general surgical and anesthetic procedures were the same 

as for the first injection. An incision was made along the supraorbital ridge and then the 

orbicularis oculi muscle was disinserted to reveal the orbital contents. The medial rectus 

muscle was isolated and injected with 7 μl of 2% wheat germ agglutinin conjugated to 

horseradish peroxidase (WGA-HRP) or choleratoxin B subunit conjugated to horseradish 

peroxidase (ChTB-HRP) with a 10 μl Hamilton syringe (n =7; four muscles ipsilateral to the 

injected cMRF; three muscles contralateral to the injected cMRF). Tracer was placed in both 

the belly and the distal end of the muscle at the insertion. The orbicularis oculi muscle was 

reattached and the incision site was closed with suture.

Two days after the muscle injection, animals were sedated with ketamine HCl, and then 

deeply anesthetized with sodium pentobarbital (50 mg/kg, IP). They were then transcardially 

perfused with 0.1 M, pH 7.2 phosphate buffered saline, followed by 3 L of a mixture of 1% 

paraformaldehyde and 1.5% glutaraldehyde in 0.1 M, pH 7.2 PB. The brainstem was 

blocked in situ in the frontal plane. It was then postfixed in the same fixative for 2 hr at 4 °C, 

and stored in 0.1 M PB (pH 7.2) buffer at 4 °C. Serial sections of the brainstem were made 

in the frontal plane at 50 (PhAL) or 100 (BDA) μm using a Vibratome (Leica).

In order to visualize the HRP, free floating sections were first reacted with 

tetramethylbenzidine (TMB, Sigma) to reveal the location of the retrogradely labeled 

motoneurons. The TMB reaction product was then stabilized with diaminobenzidine (DAB; 

Sigma) to produce a brown reaction product (see Perkins et al., 2009 for details). To 

visualize the BDA labeled axonal arbors, free floating sections were incubated in a solution 

containing avidin-HRP (Vector Laboratories, Burlingame, CA), followed by incubation with 

the chromagen, DAB. Addition of cobalt chloride and nickel ammonium sulfate to the DAB 

solution stained these processes black. To visualize PhaL, free floating sections were first 

incubated with biotinylated goat anti-PhaL (Cat. No. BA-0224; Vector Laboratories) before 

being incubated in a solution of avidin-biotin-horseradish peroxidase complex (ABC 

Vectastain kit; Vector Laboratories Cat# PK-4002, RRID: AB_2336811). Peroxidase activity 

was then revealed using the aforementioned nickel–cobalt DAB approach, resulting in a 

black reaction product within labeled axons and axon terminals (see Bohlen et al., 2016 for 

details). One series containing every third section was reacted for light microscopy and a 

second reacted series was used to collect samples for electron microscopy. Specifically, 

retrogradely labeled medial rectus A-, B-, and C-groups were visualized and excised from 

the second series with the aid of a dissecting microscope (WILD-M8; Leica). These samples 

were osmicated, en bloc stained, sectioned, and stained using standard electron microscopy 

procedures (see Barnerssoi & May, 2016 for details). The ultrastructure of the labeled areas 

was photographed using a digital camera on a Joel 1400 electron microscope. The brainstem 
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sections from both these series were mounted onto gelatinized slides, air-dried, 

counterstained with cresyl violet, dehydrated, cleared, and coverslipped for microscopic 

inspection. Labeled axons and cells were plotted and drawn using a Nikon Eclipse 80i 

(Nikon Instruments, Melville, NY) microscope equipped with a drawing tube, and were 

photographed using a Nikon Eclipse E600i microscope equipped with a Nikon DS-Ri1 

digital camera. In some cases, multiple z-axis planes were fused into a single image. The 

color and contrast of images were digitally adjusted in Photoshop (Adobe) to approximate 

the viewed image.

3 | RESULTS

Figure 1 shows the distribution of retrogradely labeled medial rectus motoneurons (dots) 

within the oculomotor nucleus (III) ipsilateral to the injected (left) muscle. There were three 

populations of medial rectus motoneurons, consistent with many previous reports (Büttner-

Ennever & Akert, 1981; Erichsen, Wright, & May, 2014; Porter et al., 1983). The A-group, 

containing medial rectus SIF motoneurons, was present ventrolaterally within III (Figure 1a–

d) and included clusters within the medial longitudinal fasciculus (MLF) (Figure 1c,d). The 

B-group, containing a second population of medial rectus SIF motoneurons, was observed 

dorsally within the caudal portion of III (Figure 1d–f). Finally, the C-group, containing 

medial rectus MIF motoneurons, was found just outside the dorsomedial edge of III and was 

present for almost all its rostral-caudal extent (Figure 1b–e). In this case, the left cMRF was 

infused with a large BDA injection that extended from the rostral to caudal pole of the 

cMRF (Figure 1c–e; insets). There was some spread of tracer rostrally into the piMRF 

(Figure 1b; inset), dorsally into the nucleus of the posterior commissure (Figure 1e; inset), 

and medially to the edge of the MLF (Figure 1b,c; insets). Consistent with previous reports 

(Bohlen et al., 2016; May et al., 2016), there was a bilateral terminal field (stipple) present 

within the SOA (Figure 1a–f), and terminals were particularly dense around the 

preganglionic Edinger-Westphal nucleus (EWpg) (Figure 1a–e). The terminals within SOA 

included a set that completely overlapped the distribution of C-group medial rectus 

motoneurons (Figure 1a–d). Though much less densely distributed, terminals were also 

observed bilaterally within the borders of III. Some of these overlapped the distribution of 

the medial rectus SIF motoneuron populations making up the A-group (Figure 1b–e) and B-

group (Figure 1d–f). The pattern described here was consistent across all cases, although the 

density of labeled terminals varied with the location of the cMRF injection.

The relationship between anterogradely labeled cMRF axon terminals and the retrogradely 

identified medial rectus MIF motoneurons in the ipsilateral C-group for this case (Figure 1) 

is further illustrated in Figure 2. Only short lengths of labeled axons were visible in each 

section in this region, suggesting that they extend in a rostrocaudal direction. The labeled 

axons were thin, and were rarely observed to branch. The labeled axons were ornamented 

with small to medium sized boutonal enlargements all along their course. Numerous cMRF 

axon terminals were observed in close association (arrowheads) with ipsilateral medial 

rectus C-group motoneurons (Figure 2d). Furthermore, an individual axon often displayed 

more than one close association with an individual motoneuron or with adjacent 

motoneurons (Figure 2c). Consequently, nearly every C-group medial rectus motoneuron 
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had labeled cMRF terminals in close association with it (Figure 2c,d), and most displayed 

multiple close associations with several cMRF axons.

Figure 3 illustrates cMRF projections to the ipsilateral A-group (Figure 3c–e) and B-group 

(Figure 3f,g) medial rectus SIF motoneurons from the same BDA case illustrated in Figure 

1. The general morphology of the labeled axons was similar to that seen in the SOA, 

although there were far fewer axons present. Individual axons rarely made more than one or 

two contacts on an individual motoneuron, although this was more common for B-group 

cells (Figure 3f). Nevertheless, close associations (arrowheads) could be observed between 

these cMRF axon terminals and both A-group motoneurons (Figure 3c–e) and B-group 

motoneurons (Figure 3f,g). In comparison to the density of close associations present on C-

group motoneurons, close associations were much less common for A-group motoneurons 

and somewhat less common for B-group motoneurons, so some motoneurons did not receive 

inputs (Figure 3c,f).

Figure 4 shows photomicrographs of motoneuron and axon labeling seen in the three 

ipsilateral subgroups. The retrogradely labeled medial rectus motoneurons display reaction 

product throughout their cell bodies and extending out into their dendrites. The motoneurons 

in the C-group (Figure 4a,b) have smaller somata than those in the A-group (Figure 4c,d) or 

B-group (Figure 4e,f). Note the much greater density of axons around the C-group 

motoneurons. The labeled axons are quite thin, and are studded with small to medium sized 

en passant boutons. In these examples, C-group motoneurons displayed numerous closely 

associated terminal boutons (arrowheads, Figure 4a,b). These close associations could be 

observed on both the somata and dendrites. Close associations were also observed on the 

ipsilateral A-group (Figure 4c,d) and B-group (Figure 4e,f) medial rectus motoneurons. 

However, far fewer close associations were present for these SIF populations.

In order to verify that the BDA labeled terminals we observed did originate from the cMRF, 

PhaL was injected into the cMRF because this tracer has little to no fiber-of-passage uptake 

(Gerfen & Sawchenko, 1984; Wouterlood & Groenewegen, 1985). In the case shown in 

Figure 5, PhaL was injected into the left cMRF, and then the left medial rectus muscle was 

injected to retrogradely label medial rectus motoneurons (dots) on the same side. The PhaL 

injection site was small, and centrally placed within the cMRF (Figure 5d; inset), with some 

spread along the needle tract dorsally into the nucleus of the posterior commissure (nPC) 

and thalamus. Although the PhaL injection resulted in fewer labeled axons compared to the 

BDA case, the bilateral pattern of terminal distribution (stipple) was very similar, and 

provided the same result. The ipsilateral terminal field was observed to overlap the 

distribution of C-group motoneurons (Figure 5b–e). Labeled axons were also observed 

within III, overlapping with the distribution of the ipsilateral A- (Figure 5a–c) and B-group 

(Figure 5d–f) motoneurons, although these were far less concentrated than over the C-group. 

Only a very few labeled terminals were observed in contralateral III at the location of the A- 

and B-groups.

Figure 6 shows anterogradely labeled axon terminals in close association with retrogradely 

labeled medial rectus MIF motoneurons in the ipsilateral C-group from the same PhaL case 

as illustrated in Figure 5. Inspection of this area revealed numerous axon terminals in close 
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association with these motoneurons (Figure 6c–f). They often had more than one boutonal 

enlargement in close association (arrowhead) with an individual or several ipsilateral C-

group medial rectus motoneurons (Figure 6c–f). In addition, nearly every C-group medial 

rectus motoneuron received multiple labeled close associations. Thus, the result was 

essentially the same as with the BDA injection (Figure 2).

Figure 7 illustrates cMRF projections to the ipsilateral A-group (Figure 7b–d) and B-group 

(Figure 7e–g) medial rectus SIF motoneurons from the same PhaL case (Figure 5). In 

contrast to the C-group, the axons were scattered and far fewer in number within the A-

group (Figure 7c) and somewhat fewer in number in the B-group (Figure 7f). Axonal 

boutons were observed in close association with A-group motoneurons (arrowheads, Figure 

7c,d), but not all cells received a close association (Figure 7c). More labeled axons were 

present among the B-group motoneurons (Figure 7f) and most cells received several close 

associations (arrowheads, Figure 7f,g). Again, the results were very similar to BDA findings 

of a more sparse input (Figure 3).

The photomicrographs in Figure 8 show examples of close associations between PhaL 

labeled axon terminals and retrogradely labeled A-, B-, and C-group medial rectus 

motoneurons from this case (Figure 5). Inspection of the neuropil surrounding the labeled 

cells reveals differences in the density of cMRF axon terminals projecting to the three 

medial rectus populations. The C-group region (Figure 8a) clearly receives the majority of 

axon terminals, while the region around the A-group (Figure 8c) receives the least. In 

general, the PhaL labeled axons had thin diameters with regularly spaced, en passant 
boutons. Numerous close associations (arrowheads) were observed on the soma and 

dendrites of C-group (Figure 8a) motoneurons, while relatively fewer were observed in close 

association with A- or B-group motoneurons (Figure 8c,b, respectively).

Previously, we noted that the terminal field within the SOA was bilateral within the region 

populated by C-group motoneurons (Bohlen et al., 2015). In order to determine if the cMRF 

has a projection to motoneurons on the contralateral side, BDA was injected into the left 

cMRF and WGA-HRP or ChTB-HRP was injected into the right medial rectus muscle to 

retrogradely label motoneurons on the side contralateral to the cMRF injection site. The 

BDA injection site and resultant terminal distribution (stipple) are shown in combination 

with the location of the retrogradely labeled medial rectus motoneurons (dots) in Figure 9. 

The injection site was well confined to the lateral half of the left cMRF (Figure 9c–e). This 

lateral injection site resulted in a less dense terminal field within the SOA, a finding 

consistent with our previous report (Bohlen et al., 2015). Despite the decrease in terminal 

density, there was still significant overlap between this contralateral projection and the 

distribution of C-group medial rectus motoneurons on the right (Figure 9b–e). In contrast to 

the ipsilateral terminal fields in III on the left, there appeared to be only a few labeled axons 

in the region containing the A-group (Figure 9a–d) or B-group motoneurons on the right 

side (Figure 9e,f).

Figure 10 illustrates close associations between BDA labeled axon terminals from the left 

cMRF and medial rectus MIF motoneurons within the right C-group from the case 

illustrated in Figure 9. Like the cMRF projections to the ipsilateral side (Figure 4), cMRF 
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axons projecting to the contralateral side were very dense around these C-group 

motoneurons. Many axons made at least one close association with a labeled C-group 

motoneuron and often axons were observed making multiple close associations with 

multiple C-group motoneurons (Figure 10c,d). Every labeled contralateral C-group medial 

rectus motoneuron received close associations from cMRF boutons, and in most cases, they 

received numerous close associations from multiple axons.

Figure 11 illustrates cMRF projections to the contralateral A-group (Figure 11e,f) and B-

group (Figure 11c,d) medial rectus SIF motoneurons from the same case. The density of 

cMRF projections within the contralateral A- and B-group motoneurons was far less than 

observed for the ipsilateral A- and B-groups. Very few labeled axons were present within the 

A-group. In fact, only one short axon was observed with boutonal enlargements in the 

illustrated sample section (Figure 11e,f). There were more labeled axons within the 

contralateral B-group region, but these axons were quite dispersed. Just a few B-group 

motoneurons received one or two close associations from axons labeled from the 

contralateral cMRF (Figure 11c,d).

Photomicrographs of cMRF axon terminal arbors and medial rectus motoneurons located 

contralateral to the cMRF injection site are shown in Figure 12. Numerous close associations 

could be observed on the soma and dendrites of a contralateral C-group medial rectus 

motoneuron (Figure 12a; arrowhead). An example of a contralateral B-group medial rectus 

motoneuron is shown with somal close associations (Figure 12b; arrowhead). This example 

was one of the most heavily contacted cells observed. Finally, an example of an A-group 

motoneuron with an axon traversing one of its dendrites with no boutons or evidence of a 

close association is shown in Figure 12c (arrowhead). Note the differences in the density of 

terminals in the surrounding neuropil between C-group (Figure 12a), B-group (Figure 12b), 

and A-group (Figure 12c).

In order to confirm that the close associations observed at the light microscopic level 

included true synaptic contacts, samples from each subgroup were taken for electron 

microscopy. Electron micrograph examples of anterogradely labeled cMRF terminals 

synaptically contacting retrogradely labeled medial rectus motoneurons are shown in Figure 

13. Retrogradely labeled somatic and dendritic (Den*) profiles from motoneurons were 

identified by the presence of flocculent electron dense reaction product in their cytoplasm 

(Figure 13a–f, arrows). The anterogradely labeled axon terminals (At*) (Figure 13b–f) were 

identified as having a cytoplasm that was more electron dense compared to other nonlabeled 

terminals (At) (Figure 13a, c) in the vicinity. This anterograde label was often evenly 

distributed throughout the terminal cytoplasm, and in more lightly labeled examples, it 

appeared to aggregate most densely at the cytoplasmic edges of internal structures like 

vesicles and mitochondria (Figure 13f). Anterogradely labeled cMRF axon terminals were 

observed making synaptic contacts (arrowheads) onto medial rectus MIF motoneurons in C-

group both ipsilateral to cMRF injection site (Figure 13a,b) and contralateral to the cMRF 

injection (Figure 13c). In addition, cMRF synaptic terminals were observed to contact 

retrogradely labeled ipsilateral medial rectus SIF motoneurons within B-group (Figure 13d) 

and A-group (Figure 13e,f).
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4 | DISCUSSION

This study provides evidence, summarized in Figure 14, that the cMRF has a strong, direct, 

and bilateral projection to medial rectus MIF motoneurons in the C-group. The results also 

indicate that the cMRF has a weaker, ipsilateral projection to medial rectus SIF motoneurons 

within the A- and B-groups. The ultrastructural evidence proves that a mono-synaptic 

linkage exists for all three subgroups. The density of the projection of cMRF terminals on 

the C-group somata and dendrites suggests that this projection is able to drive the activity of 

these motoneurons, but the pattern of inputs to the A- and B- group cells indicates a more 

modulatory role (Figure 14). Two critical conclusions drawn from these findings are 

discussed below. First, the pattern of cMRF inputs to the MIF and SIF medial rectus 

motoneurons differ, indicating a difference in their functional roles during eye movements. 

Second, the dominant bilateral cMRF projection to both C-group and EWpg suggests that 

medial rectus MIF motoneurons may play a role in vergence movements during near triad 

actions.

4.1 | Technical considerations

One consideration in using tracers is spread outside the targeted area. In this study, the 

adjacent regions of particular concern include the piMRF, rostrally, the nucleus of the 

posterior commissure, dorsally, the decussation of the superior cerebellar peduncle, 

ventrally, and the fibers of the MLF, medially. The piMRF and the nucleus of the posterior 

commissure are believed to be associated with vertical gaze control (Chen & May, 2007; 

Perkins et al., 2014; Waitzman et al., 2000a, 2000b). Perhaps for this reason, those cases 

with spread of tracer into these regions showed little difference in the pattern of close 

associations with medial rectus motoneurons. With regard to tracer spillover into the MLF 

and the brachium conjunctivum, or uptake by predorsal bundle axons traversing the cMRF, 

we utilized PhaL as a tracer in one case, rather than BDA, because PhAL is reputed to not be 

picked up by fibers (Gerfen & Sawchenko, 1984; Wouterlood & Groenewegen, 1985). This 

case had essentially the same pattern of terminals around the ipsilateral medial rectus 

subgroups and the area of the contralateral C-group motoneurons as did the BDA cases 

(Figures 1 and 5), although labeled predorsal bundle axons were not present in the pons. It 

did differ in that few, if any, terminals were present in contralateral III. This suggests the 

limited terminal labeling seen adjacent to contralateral A-and B-group cells following BDA 

injections may come from some source other than the cMRF. An additional point worth 

noting is that negative findings about synaptic contacts on the motoneurons need to be 

considered in light of the fact that much of their dendritic field was not visualized. 

Conversely, given that there are relatively few synaptic contacts on the somata and proximal 

dendrites of C-group motoneurons (Erichsen et al., 2014), the considerable fraction of 

contacts observed indicates that cMRF terminals may provide the main axosomatic input to 

these cells.

4.2 | Implications for MIF function

At the outset of this investigation, a primary goal was to determine whether MIF 

motoneurons received different inputs than SIF motoneurons. We have partially confirmed 

this point in that there is a large, bilateral projection to the medial rectus MIF motoneurons 
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within the C-group and a minor, ipsilateral projection to SIF medial rectus motoneurons 

(Figure 14). The extent of this difference suggests that the cMRF projection to MIF 

motoneurons plays a different role than the cMRF projection to the SIF motoneurons, and 

that the two target populations are likely to have different physiological functions. Other 

projections may selectively terminate on MIF or SIF motoneuronal populations in primates. 

Wasicky et al. (2004) found that the superior vestibular nucleus has projections that only 

overlie the A- and B-groups. In the same study, anterograde tracer injections into the 

pretectal area labeled terminals in areas containing MIF motoneurons. Anterograde tracers 

injected into the interposed and fastigial nuclei of the cerebellum also result in terminal 

fields in the SOA that overlie the C-group, but not the A- and B-group (May, Porter, & 

Gamlin, 1992). Conversely, not all inputs show segregation between the MIF and SIF 

motoneurons. For example, the abducens internuclear axons terminate over all three medial 

rectus populations (Büttner-Ennever & Akert, 1981; Wasicky et al., 2004). It is interesting 

that both the abducens internuclear neurons and the cMRF are believed to play roles in 

horizontal saccadic eye movements, and that we have shown here that the cMRF also 

projects to all three groups. Retrograde trans-synaptic tracer techniques have also been used 

to examine this question. Ugolini et al. (2006) injected rabies virus into either the macaque 

lateral rectus muscle insertion or belly to reveal that lateral rectus MIF motoneurons lack 

several inputs that the SIF motoneurons receive, including projections from the paramedian 

pontine reticular formation. Lateral rectus MIF motoneurons did receive monosynaptic 

inputs from the cMRF, SOA, nucleus prepositus hypoglossi, and portions of the medial 

vestibular nucleus. The present results confirmed the evidence for premotor cells in cMRF 

that project to the MIF motoneurons, but also demonstrated a cMRF input to SIF 

motoneurons. Interestingly, the cMRF projection to both medial and lateral rectus MIF 

motoneurons is bilateral.

These differences in input suggest that the MIF and SIF motoneurons may have distinct 

patterns of activity and function. Unfortunately, no one has, to date, recorded from an 

identified MIF motoneuron. In fact, there is no evidence for a separate subpopulation of 

extraocular motoneurons that preferentially displays tonic activity, as one might expect for 

cells supplying MIFs, since these fibers seem specialized for graded and tonic contraction. 

Instead, most neurophysiological investigations have reported that all recorded extraocular 

motoneurons for a given extraocular muscle are involved in all actions of that muscle (Fuchs 

& Luschei, 1970; Henn & Cohen, 1973; Keller & Robinson, 1972; Miller, Davison, & 

Gamlin, 2011; Schiller, 1970; Van Horn & Cullen, 2009). It is possible that the small, 

peripherally located, MIF motoneurons may have been missed; particularly, if their firing is 

so dissimilar from SIF motoneuron activity that they were dismissed as nonmotoneurons. 

Alternatively, the MIF motoneuron pattern of activity may be similar to that of SIF 

motoneurons, and any difference in action is produced solely by muscle fiber characteristics. 

In fact, Nelson et al. (1986) showed that MIFs produce a slow graded response to high 

frequency stimulation. Certainly, the present data indicate that MIF motoneurons are 

probably supplied with a saccade-related burst of activity from the cMRF.

MIF contraction is reported to take place at a much lower stimulus frequency (~30/s) 

compared to the rate required to induce SIF contraction (350–600/s) (Bach-y-Rita & Ito, 

1966; Buller & Lewis, 1965; Hess & Pilar, 1963). Based on this, Fuchs and Luschei (1971) 
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concluded that the MIFs do not serve any role in eye movement because stimulation of the 

abducens nerve at a rate of 30/s produced no detectable effect on muscle tension. However, 

these experiments used monkeys anesthetized with barbiturates, and slow (oxidative) muscle 

fibers, like MIFs, are significantly more impaired by sodium pentobarbital (Taylor, Abresch, 

Lieberman, Fowler, & Portwood, 1984). Thus, direct barbiturate effects on the MIF muscle 

fibers may have masked the stimulation effects. Furthermore, it seems counterintuitive that a 

subgroup that makes up 10–20% of the extraocular muscle fibers would have no role in eye 

movements, and not produce any muscle tension. In fact, microstimulation of the area dorsal 

to III results in bilateral pupillary constriction, with depression and adduction of the eye 

(Jampel, 1967; Jampel & Mindel, 1967). This most likely reflects the bilateral activation of 

EWpg and the C-group.

The current notion is that MIFs and MIF motoneurons serve slow movements, like smooth 

pursuit, or tonic behaviors, like fixation (see Spencer & Porter, 2006 for review). In this 

light, an input from the cMRF might seem surprising, as there is considerable evidence for 

saccade-related activity and little evidence for vestibular slow phase or pursuit-related 

activity in this region (Cohen et al., 1986; Pathmanathan, Cromer, Cullen, & Waitzman, 

2006a; Pathmanathan, Presnell, Cromer, Cullen, & Waitzman, 2006b; Waitzman et al., 

1996). However, many cMRF cells maintain high rates of activity after a saccade is 

completed (Waitzman et al., 1996). Such cells might be appropriate to provide input to MIF 

motoneurons, if they help maintain eye position. A more recent study by Waitzman, Van 

Horn and colleagues (2008) indicates that when disjunctive saccades are made, cMRF cells 

adapt the duration of their firing to match the slower eye speeds. This type of input might be 

appropriate to drive MIF motoneurons.

The initial cMRF stimulation studies also showed that bilateral activation produced fixation 

(Cohen et al., 1985, 1986) and the majority of cMRF neurons display high rates of tonic 

activity (Waitzman et al., 1996). In fact, a cMRF projection to the omnipause cells in the 

nucleus raphe interpositus, whose activity correlates with fixation, has been reported (Wang 

et al., 2013), but this projection is predominantly GABAergic, which would tend to suggest 

it suppresses fixation. Perhaps the cMRF’s premotor input actually turns off the tonic 

fixation-related activity of MIF motoneurons during horizontal saccades. If this were the 

case, one might expect an equivalent projection to abducens MIF motoneurons. Such a 

projection is present (Ugolini et al., 2006), but seems relatively sparse (Bohlen et al., 2016).

Based on the distribution of the medial rectus C-group dendrites within the SOA and EWpg, 

it has been suggested that medial rectus MIF motoneurons are involved in vergence 

movements (Erichsen et al., 2014; Tang, Büttner-Ennever, Mustari, & Horn, 2015; Figure 

14). Our work on cMRF projections supports this contention, as we have observed bilateral 

inputs with similar densities and morphologies terminating on preganglionic motoneurons in 

EWpg and on medial rectus MIF motoneurons (May et al., 2016, present results). 

Furthermore, medial rectus MIF motoneuron dendrites receive considerable input within 

EWpg (Erichsen et al., 2014), so the axosomatic contacts from cMRF terminals described 

here may simply be an extension of the cMRF projection they receive within this adjacent 

nucleus. Certainly, it is noteworthy that MIF contraction speeds and lens accommodation 

rates are well matched. Indeed, the actions of all the components of the near triad are quite 
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slow (Judge & Cumming, 1986; Mays, Porter, Gamlin, & Tello, 1986), and while 

disconjugate saccades are faster than symmetric vergence movements, they are still slower 

than conjugate ones (Enright, 1984; Maxwell & King, 1992). Perhaps this match occurs, in 

part, because a larger role is played by MIF fibers in accomplishing the movement and 

maintaining the position of the eyes during vergence. It also should be noted that during 

fixation, the eyes are not actually perfectly stable. Slow drifts, physiological tremor, and 

microsaccades occur during fixation and play an important role in keeping retinal 

photoreceptors from fading (Martinez-Conde, Macknik, Troncoso, & Dyar, 2006; Otero-

Millan, Macknik, & Martinez-Conde, 2014). Consideration must be given to the possibility 

that MIFs might play a role in these movements, particularly drift.

A portion of the MIFs in frontally eyed species have specialized end organs called palisade 

endings located at the myotendinous junction (Ruskell, 1978). Palisade endings were 

assumed to be sensory structures, compensating for a general lack of conventional 

proprioceptive receptors (muscle spindles) in the extraocular musculature (Billig, Buisseret-

Delmas, & Buisseret, 1997; Donaldson, 2000; Ruskell, Kjellevold Haugen, Bruenech, & van 

der Werf, 2005; Steinbach, 1987; Weir, Knox, & Dutton, 2000). However, palisade endings 

also show features that correlate with a motor function: for example, they contain vesicles 

and are immunoreactive for cholinergic markers (Blumer et al., 2009; Eberhorn et al., 2005; 

Konakci et al., 2005a, 2005b; Lukas et al., 2000). Furthermore, injections of anterograde 

tracer into the extraocular motor nuclei label palisade endings, indicating the source of these 

features lies in the MIF motoneuron pools (Lienbacher, Mustari, Ying, Büttner-Ennever, & 

Horn, 2011; Zimmermann, May, Pastor, Streicher, & Blumer, 2011; Zimmermann et al., 

2013). Since nearly all C-group motoneurons were heavily invested with cMRF terminals, it 

stands to reason that those supplying palisade endings received input. It has recently been 

shown that the medial rectus muscles of frontally eyed animals display a particularly 

enriched population of palisade endings, leading to the idea that this enrichment plays a 

critical role in maintaining convergence during stereopsis (Blumer et al., 2016). Our findings 

that the cMRF provides heavy input to motoneurons in both the EWpg and C-group is in 

agreement with this proposal.

4.3 | Vergence-accommodation cross-coupling

Any change along the Z-axis view necessitates a change in lens accommodation in order for 

the foveated target to be in focus (Hung, 2001). Retinal disparity signals can drive both 

vergence and lens accommodation, a pairing known as convergence-accommodation 

(Fincham & Walton, 1957). Conversely, an out-of-focus retinal image (i.e., accommodative 

error) also drives both accommodation and vergence, a pairing known as accommodation-

convergence (Morgan, 1968). Based on behavioral data from human psychophysics studies, 

Hung (1997) proposed a dual-feedback model to explain these interactions. A link between 

the two systems has been substantiated through neurophysiological recordings, which 

revealed premotor neurons, termed midbrain near response cells, whose activity is related to 

both convergence and accommodation (Judge & Cumming, 1986; Mays, 1984; Zhang, 

Mays, & Gamlin, 1992). Our examination of cMRF projections (Bohlen et al., 2016, present 

results) indicates that like midbrain near response cells, the cMRF also has projections to 

both medial rectus motoneurons and preganglionic motoneurons in EWpg. The presence of 
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this second, paired premotor projection may help explain why lens accommodation and 

vergence are so intimately linked. In fact, although we have illustrated the cMRF projections 

to EWpg and the C-group with separate arrows in Figure 14, we feel it is likely that they 

originate from the same cells.

Conversely, A- and B-group SIF motoneurons are positioned with their dendrites located 

primarily within III (Erichsen et al., 2014; Tang et al., 2015). Thus, they may be able to drive 

conjugate gaze along the X-axis due to inputs that do not change lens accommodation. 

While these cells were shown to receive cMRF input in the present study, this input differed 

in its density and was ipsilateral, not bilateral, suggesting it serves a conjugate gaze role. 

Further experiments are needed to determine whether the cMRF projection to each of its 

motoneuron targets comes from separate sets of neurons.

4.4 | Role of the cMRF

The heavy, bilateral projection by the cMRF to EWpg and to medial rectus MIF 

motoneurons in C-group suggest that the cMRF plays a role in the near triad (Bohlen et al., 

2016; present results). This seems to run counter to the original reports by Cohen et al. 

(1984, 1985) that cMRF stimulation produces conjugate contraversive saccades. 

Furthermore, other studies have suggested that the midbrain near response cells responsible 

for vergence changes are located in the SOA (Das, 2011, 2012; Mays, 1984). However, the 

description of vergence velocity cells seems to place them in the medial cMRF (Mays et al., 

1986). So another point in need of investigation is the extent to which the premotor neurons 

in the cMRF and the near response neurons in SOA represent distinct populations.

More recently, Waitzman et al. (2008) found that when the cMRF was electrically activated, 

it could elicit either conjugate or disjunctive eye movements, depending on the 

microstimulation point. Perhaps the conjugate areas provide the SIF motoneuron projection 

and the disjunctive areas provide the MIF motoneuron projection. In this same study, cMRF 

neuron activity was correlated with the movement of an individual eye during disjunctive 

saccades. If these were premotor neurons, then is possible that the projections to the 

ipsilateral and contra-lateral C-group originate from separate pools of premotor neurons 

within the cMRF (Figure 14). For a conjugate saccade, the ipsilateral medial rectus 

motoneuron projection would presumably be excitatory and the contralateral projection, 

inhibitory. However, if the cMRF projection is indeed modulating gaze with respect to target 

distance during disjunctive saccades, as suggested by Waitzman et al. (2008), a more 

complex pattern of inhibition or excitation may be needed. Since the new target may be 

closer or further away from the current fixation point, it might require either a convergent or 

divergent modification of the conjugate plan of action for each eye.
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Abbreviations

At axon terminal

At* labeled axon terminal

BC brachium conjunctivum

BDA biotinylated dextran amine

CC caudal central subdivision of III

ChTB-HRP choleratoxin B subunit conjugated to HRP

cMRF central MRF

DAB diaminobenzidine

Den dendrite

Den* labeled dendrite

EWcp centrally projecting Edinger-Westphal nucleus

EWpg preganglionic Edinger-Westphal nucleus

HRP horseradish peroxidase

III oculomotor nucleus

InC interstitial nucleus of Cajal

MIF multiply innervated fiber

MLF medial longitudinal fasciculus

MRF mesencephalic reticular formation

nPC nucleus of the posterior commissure

PAG periaqueductal gray

PhaL Phaseolus vulgaris leucoagglutinin

piMRF peri-InC portion of the MRF

SIF singly innervated fiber

SOA supraoculomotor area

TMB tetramethylbenzidine

WGA-HRP wheat germ agglutinin conjugated to HRP
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FIGURE 1. 
Distribution of biotinylated dextran amine (BDA) labeled reticulo-oculomotor terminals 

with respect to medial rectus motoneurons found in the ipsilateral A-, B-, and C- groups. 

Chartings of a rostral to caudal series (a–f) of representative sections through the 

oculomotor nucleus (III) following a large, medial BDA injection centered in the left central 

mesencephalic reticular formation (cMRF) (insets b–e) that was combined with a 

choleratoxin subunit B conjugated to horseradish peroxidase (ChTB-HRP) injection into the 

left medial rectus muscle. This large injection resulted in dense axon terminal labeling 

(stipple) ipsilaterally within periaqueductal gray (PAG), bilaterally within the 

supraoculomotor area (SOA), and bilaterally, to a lesser extent, within III. Retrogradely 

labeled medial rectus motoneurons (dots) were located in the left A-, B-, and C-groups. 

There was extensive overlap between labeled cMRF terminals and labeled cells in the C-

group (b–e). Terminals could also be observed within the regions containing medial rectus 

A-group (a–d) and B-group motoneurons (d–f) [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 2. 
BDA labeled reticulo-oculomotor terminals in close association with ipsilateral medial 

rectus C-group motoneurons. (a) Shows the section illustrated, demonstrating a portion of 

the injection of BDA (see Figure 1 for details) (Box in a indicates sample in b.) (b) 

Distribution of labeled cMRF axon terminals (stipple) in the SOA and III. The location of 

the ChTB-HRP labeled medial rectus motoneurons in the A-, B-, and C-groups is indicated 

by dots. (Box indicates sample c) (c). Numerous close associations (arrowheads) could be 

observed between cMRF axon terminals and every ipsilateral medial rectus C-group 

motoneuron. Gray box indicates area where the higher magnification insert d is from. Note 

the large number of close associations on the somata and proximal dendrites. [Color figure 

can be viewed at wileyonlinelibrary.com]
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FIGURE 3. 
BDA labeled reticulo-oculomotor terminals in close association with ipsilateral medial 

rectus A-group (c–e) and B-group (f and g) motoneurons. (a) Shows the section illustrated 

(Box in a indicates sample in b). In (b), labeled terminals (stipple) are distributed around 

and in III. ChTB-HRP labeled medial rectus motoneurons in the A-, B-, and C-groups are 

indicated by dots. (Boxes in b show sample areas for c and f.) (c,f) High magnification 

drawing of the retrogradely labeled medial rectus A-group and B-group motoneurons, 

respectively, showing close associations (arrowheads) with labeled cMRF terminals on 

many, but not all cells following a large injection of the cMRF. Gray boxes show location of 

high magnification insets shown in d, e, and g. [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 4. 
Photomicrographs of BDA labeled cMRF axon terminals in close association with ipsilateral 

ChTB-HRP labeled medial rectus motoneurons. Plates a and b show C-group medial rectus 

MIF motoneurons with close associations (arrowheads) from cMRF boutons. Note the 

presence of several close associations on the cell bodies and dendrites. Plates c and d show 

A-group medial rectus motoneurons with axodendritic and axosomatic close associations. 

Plates e and f show B-group medial rectus motoneurons with primarily axodendritic close 

associations. Note the greater density of the terminals in the C-group region (a and b) 

compared to the A- and B-group regions (c–f). [1.0 micron thick Z planes merged to 

produce image: a =3, b =6, c =7, d =3, e =1, f =1]. [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 5. 
Distribution of Phaseolus vulgaris leucoagglutinin (PhaL) labeled reticulo-oculomotor 

terminals with respect to medial rectus motoneurons found in the ipsilateral A-, B-, and C-

groups. Chartings of a rostral to caudal series of representative sections through III 

following a medium-sized PhaL injection centered in the left cMRF (insets d–e) that was 

combined with a ChTB-HRP injection into the left medial rectus muscle. The cMRF 

injection site was well confined within the rostrocaudal extent of the nucleus (d). This 

injection resulted in axon terminal labeling (stipple) that could be observed ipsilaterally 

within the PAG, bilaterally within the SOA, and bilaterally, to a lesser extent, within III. 

Retrogradely labeled medial rectus motoneurons (dots) were located in the A-, B-, and C-

groups. There was extensive overlap between labeled cMRF terminals and labeled cells in 

the C-group (b–e). Terminals could also be observed within the regions containing the A-

group (a–d) and B-group (d–f) motoneurons. [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 6. 
PhaL labeled reticulo-oculomotor terminals in close association with ipsilateral medial 

rectus C-group motoneurons. (a) Shows the section illustrated and a portion of the PhaL 

injection site (Box shows sample in b.) (b) Distribution of labeled cMRF axon terminals 

(stipple) in the SOA. The location of the ChTB-HRP labeled medial rectus motoneurons in 

the A-, B-, and C-groups is indicated by dots. (Box shows sample in c.) (c) Numerous close 

associations (arrowheads) could be observed between cMRF axon terminals and every 

ipsilateral medial rectus C-group motoneuron seen. Gray boxes indicate areas where the 

higher magnification inserts d–f are taken from. [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 7. 
PhaL labeled reticulo-oculomotor terminals in close association with ipsilateral medial 

rectus A-group motoneurons (b–d) and B-group motoneurons (e–g). (a) Shows the section 

illustrated. (Box shows region sampled in b and e.) (b and e) Distribution of anterogradely 

labeled cMRF axon terminals (stipple) and location of the ChTB-HRP labeled motoneurons 

(dots). (Boxes indicates areas sampled in c and f.) Several close associations (arrowheads) 

could be observed between cMRF axon terminals and some, but not all, A-group 

motoneurons (c) and most B-group motoneurons (f). Gray boxes indicate areas where the 

higher magnification inserts d and g are taken from. [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 8. 
Photomicrographs of PhaL labeled cMRF axon terminals in close association with ipsilateral 

medial rectus motoneurons labeled with ChTB-HRP. (a) Two C-group medial rectus MIF 

motoneurons with numerous axosomatic and axodendritic close associations. (b) A, B-group 

medial rectus motoneuron with axodendritic and axosomatic close associations. (c) An A-

group medial rectus motoneuron with close associations. [1.0 micron thick Z planes merged 

to produce image: A =8, B =11, C =10]. [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 9. 
Distribution of BDA labeled reticulo-oculomotor terminals with respect to medial rectus 

motoneurons found in the contralateral A-, B-, and C- groups. Chartings show a rostral to 

caudal series of representative sections (a–f) through III following a laterally located, BDA 

injection in the left cMRF (insets c and d) that was combined with ChTB-HRP injection into 

the right medial rectus muscle. The injection resulted in moderate axon terminal labeling 

(stipple) located ipsilaterally within the PAG and bilaterally within the SOA. A few 

terminals were present within III. ChTB-HRP labeled medial rectus motoneurons (dots) 

were located in the A-, B-, and C-groups. There was extensive overlap between labeled 

cMRF terminals in the SOA and the labeled cells in the contralateral C-group (b–e). Within 

contralateral III, terminal fields were minimal, with only a few terminals observed within the 

regions association with the right medial rectus A-group (b–e) and B-group (e,f). [Color 

figure can be viewed at wileyonlinelibrary.com]
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FIGURE 10. 
BDA labeled reticulo-oculomotor terminals in close association with contralateral medial 

rectus C-group motoneurons. (b) Shows the section illustrated and a portion of the BDA 

injection site (see Figure 9 for details) (Box shows sample in a.) (a) The distribution of 

labeled cMRF axon terminals (stipple) and location of the A-, B-, and C-group medial rectus 

motoneurons (dots) are shown. (Box indicates region illustrated in c.) (c) Numerous close 

associations (arrowheads) can be observed between cMRF axon terminals and each of the 

contralateral medial rectus C-group motoneurons. Gray box indicates area where the higher 

magnification insert (d) is taken from. [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 11. 
BDA labeled reticulo-oculomotor terminals in close association with contralateral medial 

rectus A- and B-group motoneurons. (a) Shows the section illustrated and a portion of the 

BDA injection site (see Figure 9 for details) (Box shows sample in b.) (b) The distribution 

of labeled cMRF axon terminals (stipple) and location of the A-, B-, and C-group medial 

rectus motoneurons (dots) are shown. (Boxes indicate regions illustrated in c and e.) (c and 

d) Close associations (arrowheads) were observed between cMRF axon terminals and a few 

of the contralateral B-group medial rectus motoneurons. Gray box in c indicates area where 

the higher magnification insert in (d) is from. (e and f) A close association (arrowhead) 

observed between a cMRF axon terminal and only one of the contralateral A-group medial 

rectus motoneurons. Gray box in (e) indicates the area where the higher magnification insert 

shown (f) is from. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 12. 
Photomicrographs of the relationship between BDA labeled cMRF axon terminals and 

contralateral, ChTB-HRP labeled motoneurons. (a) A-, C-group medial rectus MIF 

motoneuron that has numerous axosomatic and axodendritic close associations (arrowheads) 

with cMRF boutons. (b) A-, B-group medial rectus motoneuron with a single axon 

displaying axosomatic close associations as it passes. (c) An example of an A-group 

motoneuron. Only one labeled axon is present in the field and it does not contact this cell. 

[1.0 micron thick Z planes merged to produce image: a =5, b =7, c =5]. [Color figure can be 

viewed at wileyonlinelibrary.com]
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FIGURE 13. 
Central mesencephalic reticular formation (cMRF) inputs synaptically contact medial rectus 

motoneurons. Electron micrographs show anterogradely labeled cMRF terminals in synaptic 

contact (arrowhead) with retrogradely labeled medial rectus motoneurons. (a and c) Low 

magnification views showing examples of a retrogradely labeled dendrites (Den*) from 

medial rectus C-group motoneurons ipsilateral (a) and contralateral (c) to the cMRF 

injection site. There is flocculent electron dense HRP reaction product (arrow) in the 

dendrites. Anterogradely labeled axon terminals (At*) from the BDA injection into the 

cMRF are more electron dense than an unlabeled axon terminals (At). (Boxed area in a is 

shown in b.) (b) A higher magnification view, shows the synaptic contact of an 

anterogradely labeled cMRF terminal (At*) onto the labeled dendrite (Den*). (d) An 

example of a retrogradely labeled B-group medial rectus dendrite (Den*) with an 

anterogradely labeled cMRF axon forming a synaptic contact (At*) onto it. There is also a 

second labeled cMRF axon terminal in close apposition to an unlabeled dendrite (Den). (e) 

A lower magnification view of labeled cMRF axon terminals in the region of the A-group 

medial rectus motoneurons. (Box in e shown at higher magnification in f.) (f) Retrogradely 

labeled A-group dendrite that receives a synaptic contact from a labeled cMRF terminal 

(At*). Scale bar in a, c, and e =1 um, in b, d, and f =500 nm
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FIGURE 14. 
Summary of cMRF connections to motoneuron types. The cMRF provides a large (thick 

line), bilateral projection to the medial rectus motoneurons in the C-group (present work) 

and to preganglionic motoneurons in the preganglionic Edinger-Westphal nucleus (EWpg) 

(May et al., 2016). In addition, there is a modest (thin line) projection to the medial rectus 

motoneurons within the ipsilateral A- and B-groups. Since the C-group contains 

motoneurons supplying multiply innervated fibers (MIFs), and the A- and B-groups contain 

motoneurons supplying singly innervated fibers (SIFs) the pattern of projections suggests 

the cMRF influences these two populations differently. [Color figure can be viewed at 

wileyonlinelibrary.com]
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