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Abstract

U.S. Environmental Protection Agency air pollution monitoring data have been a valuable 

resource commonly used for investigating the associations between short-term exposures to PM2.5 

chemical components and human health. However, the temporally-sparse sampling on every third 

or sixth day may affect health effect estimation. We examined the impact of non-daily monitoring 

data on health effect estimates using daily data from the Denver Aerosol Sources and Health 

(DASH) study. Daily concentrations of four PM2.5 chemical components (elemental and organic 

carbon, sulfate, and nitrate) and hospital admission counts from 2003 through 2007 were used. 

Three every-third-day time series were created from the daily DASH monitoring data, imitating 

the U.S. Speciation Trend Network (STN) monitoring schedule. A fourth, partly irregular, every-

third-day time series was created by matching existing sampling days at a nearby STN monitor. 

Relative risks (RRs) of hospital admissions for PM2.5 components at lags 0 to 3 were estimated for 

each data set, adjusting for temperature, relative humidity, longer term temporal trends, and day of 

week using generalized additive models, and compared across different sampling schedules. The 

estimated RRs varied somewhat between the non-daily and daily sampling schedules and between 

the four non-daily schedules, and in some instances could lead to different conclusions. It was not 

evident which features of the data or analysis were responsible for the variation in effect estimates, 
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although seeing similar variability in resampled data sets with relaxation of the every third day 

constraint suggests that limited power may have played a role. The use of non-daily monitoring 

data can influence interpretation of estimated effects of PM2.5 components on hospital admissions 

in time-series studies.
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INTRODUCTION

Fine particulate matter (PM2.5) air pollution is a complex mixture of numerous chemical 

compounds. Investigation of health effects associated with PM2.5 chemical components may 

help identify the most toxic component(s) of PM2.5 (1). Because individual PM2.5 

components can serve as indicators of specific pollution sources such as traffic or power 

plants, identification of components associated with the most toxic sources could allow for 

more targeted regulation to reduce health risks of PM2.5 (2).

Monitoring data from the U.S. Environmental Protection Agency (EPA) Chemical 

Speciation Network (CSN) have been a valuable resource for studying the association of 

PM2.5 components and health. The CSN has measured PM2.5 chemical components at more 

than 300 U.S. sites since 2000 (3). Most time-series studies on effects of short-term 

concentration increases of PM2.5 components have used CSN data to evaluate the 

association with mortality or hospital admissions (4–8). However, despite increasing use in 

epidemiological studies, insufficient temporal and spatial coverage of CSN data is a concern 

and has been cited as a limitation in investigating health effects of PM2.5 components (4,9). 

The temporal sparseness is mainly due to the limited sampling schedule. Fifty-three core 

CSN sites, termed the Speciation Trends Network (STN) sites, sample PM2.5 components on 

an every-third-day schedule, while the majority of remaining sites typically sample every 

sixth day (10). This limited sampling frequency can be expected to lead to decreasing power 

and poor precision of health effect estimates compared to complete daily sampling. In 

addition, estimated effects from the limited data may be sensitive to the sampling days 

included in the analysis, even for analyses with nearly equal numbers of sampling days.

In this study, we examined whether different sampling schedules affect health effect 

estimates in a time-series study design. Taking advantage of five years of daily PM2.5 

component concentration data collected for the Denver Aerosol Sources and Health (DASH) 

study, we compared estimated effects of daily PM2.5 chemical component concentrations on 

daily hospital admissions using several related data sets: the complete daily time series, three 

non-daily time series based on hypothetical every-third-day schedules, and another non-daily 

time series based on the actual every-third-day schedule with some missing and irregular 

sampling days at a nearby STN site.
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MATERIALS AND METHODS

In the DASH study, PM2.5 and PM2.5 components were measured at one residential 

monitoring station daily over five years from 2003 to 2007. This monitoring site was 

selected to represent residential concentrations of PM2.5 components in Denver and to not be 

influenced by nearby pollution emission sources, including large roadways (Figure 1). A 

detailed description of the DASH study is available (11). We focused on four PM2.5 

components that make up the bulk of PM2.5 mass in Denver (11) and showed associations 

with hospital admissions in previous studies (6,7,12): elemental and organic carbon (EC and 

OC), sulfate and nitrate. Details on sampling and lab-analysis methods for each component 

have been described (13). Daily counts of hospital admissions during the corresponding 

study period were compiled from non-elective hospital admission discharge data for all ages 

collected by the Colorado Hospital Association. We aggregated daily admissions for 

cardiovascular and respiratory diseases based on the International Classification of Diseases, 

9th revision codes within the five counties (Adams, Arapahoe, Denver, Douglas, and 

Jefferson counties) adjacent to the DASH monitoring site. Cardiovascular hospital 

admissions were identified by codes 460–519 and respiratory disease by codes 390–459, 

including the following subcategories: ischemic heart disease (410–414), congestive heart 

failure (428), cerebrovascular disease (430–438), ischemic stroke (434.01, 434.11, 434.91, 

436), chronic obstructive pulmonary disease (COPD: 490–492, 496), asthma (493), 

pneumonia (480–486), and upper respiratory infection (460–466, 477).

We used the complete daily DASH monitoring data to simulate data that would have been 

available from non-daily sampling schedules. We created four non-daily sampling schedules 

and populated values for the included days using the daily DASH monitoring data. Because 

most STN sites measure PM2.5 components every third day, three regular every-third-day 

schedules (E1, E2, and E3) were created, starting on January 1, 2, and 3, 2003, respectively. 

A fourth, more realistic scenario (E4:STN) was created by matching the days on which 

validated PM2.5 speciation data was actually collected from the nearby STN site shown in 

Figure 1. The sampling schedule at this STN site was similar to the every-third-day schedule 

beginning on January 3, 2003 (E3), except for six mismatched dates and 120 additional 

missing days throughout the five year period compared to those of E3. PM2.5 chemical 

component concentrations measured daily at the DASH site were then assigned to 

corresponding days in all four non-daily sampling schedules. There were 1826 days in the 

five year study period, and the DASH data were 99% complete with between 1808 and 1809 

daily observations, depending on component. After pairing up the DASH data with the non-

daily sampling schedules, data sets for E1, E2 and E3 contained just over 600 observations 

per component while the data set for E4:STN contained just under 500 observations per 

component (Table 1). The actual monitoring data at the STN site were not used to avoid the 

influence of different sampling equipment and methods on variation in health effect 

estimates.

The time-series analysis was performed separately for the daily and four non-daily data sets. 

Effects of 24-hour daily average concentrations of the four PM2.5 components on daily 

hospital admissions were estimated using generalized additive models adjusting for time 

from the start of the study, day of week, and 24-hour daily averages of temperature and 
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relative humidity. The non-linear trends of time and temperature with daily hospital 

admissions were accounted for using regression splines (14). Degrees of freedom (df) for the 

splines were given a priori as 60 df for time (12 df per year) and 3 df for temperature. We 

also used fewer df such as 4 and 6 df per year in a sensitivity analysis. Effects at pollution 

day lags 0 to 3 (i.e., pollution on the same day of to three days before the hospital 

admission) were estimated. Estimated effects in each data set were presented as relative risks 

(RRs) and 95% confidence intervals (95% CIs) for an interquartile range increase in 

concentration of each component. We also presented estimated effects of PM2.5 total mass 

for comparison with those of the PM2.5 components

To assess the influence of non-daily time-series data sets on health effect estimates, we 

compared the magnitude of the estimates across the daily and four non-daily data sets on the 

same component, hospitalization diagnosis, and lag. We also examined whether estimates 

across data sets lead to different conclusions based on statistical significance of the observed 

association defined by a lower 95% CI bound greater than 1. We focused on results for total 

cardiovascular and respiratory disease hospital admissions, and congestive heart failure and 

asthma hospital admissions, as examples from each of the general cardiovascular and 

respiratory diagnosis groups, to highlight some of the more discrepant health effect 

estimates across data sets. Results for the other specific diseases are shown in the 

Supplemental Information (Supplemental Figure 3).

We carried out further analyses to better understand three features that might have 

influenced the resulting health effect estimates across non-daily and daily data sets: data 

distribution, outlying measurements, and residual confounding by time. For this 

investigation, we chose the examples showing distinctively different health effect estimates 

between data sets; the examples are cases of the same component, hospitalization diagnosis, 

and lag that exhibited statistically significant differences between estimates in at least one 

pair of two data sets. Although non-overlapping confidence intervals have been commonly 

used to assess the statistical difference between two estimates, because this approach is 

overly conservative, we relied here on a standard hypothesis testing approach using a two-

sample t-test (15). To assess the effects of outlying measurements, we investigated whether 

the difference of effect estimates across data sets lessened after removing outliers by 

trimming PM2.5 component, hospital admission, or meteorology data at 1, 2.5, and 5 

percentiles from both ends of each distribution. Our approach to temporal smoothing in the 

non-daily data sets may not have adequately captured the long-term temporal trends and 

could therefore result in residual confounding. In an additional sensitivity analysis, we 

therefore adjusted for time smoothed over the complete set of days before fitting the model 

with every-third-day PM2.5 component data.

In addition, we relaxed the every third day structure and expanded our suite of analyses to 

include any temporally-limited data. Our focus on the every third day schedule was based on 

the sampling scheme of the EPA monitoring data which are publically available and 

commonly used in many time-series studies on PM2.5 components. The observed variation 

of health effect estimates across the every third day data sets, however, could occur with use 

of any limited time-series data set. To explore the impact of temporally-limited data, we 

sampled one third of the daily data 1000 times. Then, we performed health effect analyses 
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for each sampled data set and compared the resulting distribution of estimates to those from 

the every third day data sets. The resampling employed two approaches: random selection of 

603 days and random selection of a time series of 603 sequential days without replacement.

RESULTS

Summary statistics of the PM2.5 component measures, meteorology, and hospital admissions 

for each of the five pollution monitoring schedules are presented in Table 1. Daily PM2.5 

component concentrations varied by as much as 19% across the different schedules, 

although the means were relatively consistent. In particular, the standard deviation of sulfate 

was 19% lower in the first every-third-day schedule (E1) and 19% higher in the STN 

schedule (E4:STN), compared to the complete schedule (C). The mean and standard 

deviation of meteorology in the non-daily schedules agreed within 2% compared to the 

complete daily schedule. The standard deviations of the non-daily hospital admission counts 

varied at most by 10% from the complete schedule.

There was some variability in estimated RRs of hospital admissions across the several data 

sets for all PM2.5 components and hospital discharge diagnoses examined (Figures 2 and 3, 

Supplemental Tables 1 and 2). In most cases, this variability did not result in meaningful 

differences in reported findings, largely because most RRs were null. There were some 

notable exceptions, however, with the lower bound of a 95% CI being greater than 1 in some 

data sets, but not other data sets, for the same component, lag, and hospitalization diagnosis. 

For example, the statistically significant effect estimate of EC for total cardiovascular 

disease at lag 0 observed in the complete data set (C) had smaller, non-significant, point 

estimates in two of the incomplete data sets (E3 and E4:STN) (Figure 2, Supplemental Table 

1). As another example, the effect estimate of nitrate on cardiovascular disease at lag 0 was 

significantly positive in an incomplete data set (E4:STN), but somewhat smaller and not 

statistically significant in other three (C, E1, and E2), including the complete data set. These 

more notable differences were also seen for the effect estimate of EC on congestive heart 

failure (Figure 3, Supplemental Table 2) at lag 0. For total respiratory disease (Figure 2, 

Supplemental Table 1), we observed null effects of EC at lags 1 and 3 in most but not all of 

the data sets. Similar patterns were observed for asthma (Figure 3, Supplemental Table 2) 

and EC at lag 3, for OC at lags 2 and 3, and for nitrate at lag 0. PM2.5 also exhibited some 

variation of RRs across sampling schedules. Use of fewer degrees of freedom for time did 

not meaningfully change these results.

We next focus attention only on differences of effect estimates using the complete data set 

(C) in comparison to the data set comprising days for which data were actually available 

from the local STN site (E4:STN). Here we observed differences for cardiovascular disease 

(EC lag 0 and nitrate lag 0), respiratory disease (EC lag 1 and lag 3), and asthma (EC lag 3 

and OC lag 2) hospitalization diagnoses (Figures 2 and 3, Supplemental Tables 1 and 2).

To explore possible sources of discrepant estimates across data sets, we focused on the 

particular cases with statistically different RR estimates across data sets based on the 

hypothesis test for the same PM2.5 component, hospitalization diagnosis and lag. These 

eight cases were EC and respiratory disease at lags 1 and 3, EC and congestive heart failure 
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at lags 0 and 1, OC and asthma at lags 2 and 3, sulfate and asthma at lag 0, and nitrate and 

asthma at lag 0 (Figures 2 and 3). Comparing distributions across data sets, there were no 

substantial differences in means or standard deviations of the PM2.5 component or health 

outcome data, with a few exceptions. RRs of sulfate and nitrate on asthma hospital 

admission at lag 0 showed differences largely between the first every-third-day data set (E1) 

and the other data sets; for this data set, standard deviation of daily asthma hospital 

admission counts was larger than for the other data sets (Table 1). However, this pattern was 

not found in the other selected cases. There were also no distinct differences in the 

distributions of meteorology, day of the week, and weekday/weekend between the data sets. 

A few outliers were identified in plots of PM2.5 component concentrations against fully-

adjusted health effects model residuals (results not shown). Effect estimates from some 

every-third-day data sets were attenuated and differences between data sets were no longer 

statistically significant in half of the example cases when the hospitalization count data were 

trimmed. However, in general, differences in the health effect estimates across the data set 

remained after trimming (Supplemental Figure 1). Trimming the PM2.5 component data or 

the meteorology data had no impact on reducing differences. Removal of the temporal trend 

estimated from the complete data reduced the discrepancies in the effect estimates of EC on 

respiratory and congestive heart failure hospital admissions but not in those for other PM2.5 

components and outcomes (Supplemental Figure 2).

In the resampling analysis using one third of the daily data, health effect estimates from the 

every third day data sets were generally within the range of the 95% coverage of the 

distribution of 1000 health effect estimates from 1000 resampled data sets (Supplemental 

Figure 4).

DISCUSSION

Our purpose in utilizing a daily time series of speciated PM2.5 data to generate hypothetical 

non-daily data sets was to gain insight into the possibility that conclusions reached from 

health effects analyses could be influenced by the availability of pollutant data. Many time-

series analyses performed in the U.S. use EPA monitoring network data for PM2.5 and PM2.5 

chemical components because of the widespread availability of the data (4–8). However, the 

PM2.5 chemical speciation data are largely collected on an every-third-day or an every-sixth-

day schedule. The question, then, is whether we should be concerned that using non-daily 

pollution data in health analyses might lead to different conclusions than those that would 

have been reached had daily data or a different schedule of non-daily data been available. 

We found some differences in health effect estimates, and in the conclusions that in some 

cases would likely be drawn, when non-daily data based on every third day sampling or 

other temporally-limited sampling rather than daily data were used, or when one set of non-

daily data was used rather than another.

Our findings suggest that some of the discrepant or inconsistent findings across time-series 

studies of PM2.5 components could be caused at least in part by differences in the available 

analysis data sets. There may be several explanations for this. A primary consideration is 

that using one third of the data reduces the statistical power to detect associations. We found 

associations between PM2.5 and four PM2.5 components with cardiovascular hospital 
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admissions in the complete data sets but these were not present in about half of the every 

third day data sets, possibly due to lack of power. Several previous studies consistently 

found associations between four PM2.5 components and cardiovascular diseases at lag 0 

using the EPA data sampled every three days (7,8). These studies, however, had longer study 

periods and larger populations resulting in increased power. As a reflection of this reduced 

power, the 95% CIs for effects estimated using non-daily data were generally wider than 

those based on daily data (Figures 2 and 3). The variation of estimates observed not only in 

the every third day data but also using any third of the complete data suggested a role of 

reduced power. Similarly, the use of different sets of pollution-hospitalization days will 

produce different estimates due to random variability. Depending upon how these are 

interpreted, this variability can potentially translate into bias. For example, a time-series 

study using the STN data in California reported an association between EC and respiratory 

admissions in children at lag 3 (6). In our analysis, EC at lag 3 had an estimated effect that 

was consistent with that finding relating to respiratory hospital admissions when the E4:STN 

data schedule was used (Figure 2). However, we also found much weaker and not 

statistically significant associations using other data subsets, including the complete and the 

two regular every-third-day data sets (E1 and E2). In light of many comparisons made in this 

paper, these diverging results are generally consistent with each other. Bias can be 

introduced when authors focus on reporting or emphasizing statistically significant results; 

this source of random bias can be particularly important in time-series studies of PM2.5 

components which commonly explore the association between multiple components and 

outcomes.

Another possible explanation would be bias in the estimates due to features of the data used 

in the analysis. To investigate this, we hypothesized that aspects of the data distribution, 

presence of outlying values, and/or the approach to adjustment for the temporal trend could 

be responsible for producing differences in health effect estimates across the various data 

sets. However, we did not identify any of these as strongly influential. Rather, each feature 

contributed to some of the observed differences for particular PM2.5 components and 

hospitalization outcomes, but their patterns were not consistent across all examples. It is 

likely that our reliance on a fixed number of degrees of freedom for temporal trend resulted 

in less residual temporal confounding, leading to smaller differences of health effect 

estimates than may have been present if we relied on automated model selection criteria. A 

simulation study, in which the number of degrees of freedom was automatically selected 

using penalization, demonstrated increased bias and mean square errors as the correlation 

between air pollution concentrations and a confounding temporal trend increased (16). We 

cannot rule out the possibility that the observed differences were due to other features that 

we did not examine, or whether these were simply the result of random variability.

In the present study, there were differences in health effect estimates across different time-

series data sets based on the lower bound of the 95% CI. For all five data set groups, for all 

four PM2.5 components, hospitalization diagnoses and lags, we observed that in 

approximately 40% of the groups (14 out of 64) the 95% CI of at least one of the effect 

estimates in the five data set groups did not include one. Selective reporting of statistically 

significant results without prior hypotheses can be misleading and is not recommended in 

epidemiological studies (17). One strategy for minimizing the multiple testing problem is to 
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reduce the number of tests interpreted as key findings by relying on pre-specified choices of 

the components, outcomes and modeling strategies of primary interest (18). Such discipline 

is particularly important in studies investigating multiple different exposures as well as 

outcomes. Our purpose in this study, however, was to illustrate the influence that incomplete 

time-series data might have in drawing conclusions regarding associations between PM2.5 

components and cardiorespiratory outcomes. Analysis of time-series PM2.5 component data 

will generally only have one of these pollutant data sets available for use in the analysis. In 

such analyses, findings are interpreted based on the one available data set without the benefit 

of knowing how well that data set reflected results that would have been obtained had a 

more complete data set been used. Although there are criteria other than statistical 

significance based on the lower bound of confidence intervals that can be used to evaluate 

associations and draw conclusions, we adopted this commonly-used approach in order to 

demonstrate our point. We evaluated statistical differences in effect estimates across data 

sets only as a tool to identify a subset of effect estimates for further exploration.

Sensitivity of health effect estimates to non-daily pollution data using sampling patterns that 

imitate the existing governmental monitoring data has been reported in other studies. Using 

data from the Air Pollution and Health: A Combined European and North American 

Approach (APHENA) study (19), investigators created every-sixth-day PM10 and ozone data 

from the complete daily data in four European cities and repeated their health analyses using 

the limited data. The results showed that using systematically missing time-series PM10 data 

produced smaller and less precise mortality effect estimates compared to estimates using the 

complete data. Similar to our approach, Klemm et al (2011) created every-third-day and 

every-sixth-day data sets from their own daily data from 1998 to 2007 in Atlanta, and 

compared mortality effect estimates from criteria air pollutants as well as EC and OC in 

adults over age 65 (20). They found that effect estimates fluctuated across data sets and 

changed signs in some cases. Effect estimates in their non-daily data sets varied not only 

relative to those with daily data, but also relative to those in other non-daily data sets with 

different starting days, as shown also in our findings. In the present study, the use of hospital 

admission data rather than mortality data allowed us to examine effects of non-daily data for 

a larger array of disease outcomes with increasing power. In addition to comparing effect 

estimates, we explored several possible features of the data that may produce different effect 

estimates for different subsets of the same pollution data set. The identification of such 

features is important since it may be possible to adopt an approach to analysis of time-series 

studies that would control these features and thus reduce the sensitivity of effect estimates in 

analyses based on non-daily pollution data without the need for complete daily data. The 

three characteristics that we hypothesized to be most likely to affect differences in effect 

estimates did not seem to influence the results. It is possible that future studies will be able 

to identify other such features.

The EPA speciation monitoring network was established to provide speciated PM2.5 data for 

supporting both policy decisions and health effects research (21). Although the CSN data are 

a useful resource for epidemiological studies, our results suggest the need for additional care 

in interpreting findings when analyses are based on non-daily pollution data.
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Figure 1. 
Map showing the DASH and EPA STN monitoring sites within the five-county Denver 

metropolitan area, and the number of total hospital admissions by zip code areas for 2003–

2007.
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Figure 2. 
Relative risks (RRs) and 95% confidence intervals (CIs) of cardiovascular disease (CVD) 

and respiratory disease (RD) hospital admissions for an interquartile increase of PM2.5 and 

four PM2.5 components across lag 0 to 3 by time-series data of complete and every third 

sampling days in the five-county Denver metropolitan area for 2003–2007.
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Figure 3. 
Relative risks (RRs) and 95% confidence intervals (CIs) of congestive heart failure (CHF) 

and asthma hospital admissions for an interquartile increase of PM2.5 and four PM2.5 

components by time-series data of complete and every third sampling days in the five-county 

Denver metropolitan area for 2003–2007.
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