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Introduction
Recent advances in high-throughput DNA microarray tech-
nologies have fostered a growing interest in genomics,1 prot-
eomics,2 and drug discovery,3 offering a platform for a deeper 
understanding of gene-gene interaction and shedding light on 
previously uncharted avenues for understanding protein-pro-
tein and drug-protein interactions. However, a framework for 
understanding the causal relationship between gene-gene 
interactions and protein-protein interactions (PPIs) is yet to be 
developed. In fact, a growing number of studies have indicated 
that gene expression profiles could be functionally related to 
the protein expression levels.4 For example, direct interactions 
between proteins were found to be directly linked to their 
gene-gene expression profiles.5 Such interactions form a net-
work that underlies the causal relationship between gene-gene 
interactions and PPIs. Learning gene regulatory networks 
(GRNs) from gene expression profiles could, therefore, shed 
light on the underlying PPI networks which could open new 
avenues for posterior cellular systems investigations.

Using GRNs as a route for mapping the underlying PPI 
networks has been the focus of a growing number of recent 

investigations. In a recent study,6 it was indicated that integra-
tion between gene expressions and PPI networks could lead to 
prioritizing and ranking the genes most likely to be associated 
with breast and lung cancers. Moreover, experimental studies 
that complementarily use inferred GRNs and PPI networks 
have been able to suggest missing gene-gene interactions that 
does not initially show up in the inferred GRNs.7

Currently, different approaches are being pursued to learn 
gene-gene regulatory networks. Many of these approaches 
focus on establishing methodologies for statistically unveiling 
correlated pairs of genes.4,5,8-10 An inherent assumption in 
these approaches is that if 2 genes show statistical correlation, 
then it is likely that they influence each other at the cellular 
level. In fact, coregulation relationships between genes were 
shown to be related to similarity in their expression profiles.4 
Machine learning of graphical models is usually used to unveil 
correlations between multiple genes, inferring gene-gene regu-
latory networks. Typical machine learning models that are 
widely used comprise Boolean networks,4 Bayesian networks,8 
dynamic Bayesian networks,9 and dependency networks.10 
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Preference of a particular graphical model over another is 
largely dependent on the problem under investigation. 
However, learning of gene-gene regulatory networks from 
gene expression data, that are usually sparse, often suffers from 
overfitting problems, leading to many pairs of genes showing 
correlation by chance even though they are not biologically 
related.4 This severely restricts the applicability and utility of 
machine learning of graphical models techniques in the con-
text of gene-gene regulatory networks.

Interestingly, incorporation of biological prior knowledge in 
machine learning of graphical models has shown the prospects 
of efficient learning of gene-gene regulatory networks such as 
to overcome problems incurred by sparse gene expression 
data.11–14 In this context, incorporation of biological prior 
knowledge amounts to supplementing the graphical model 
technique with available information about gene expression 
data using cell signaling pathways relevant to the problem 
under investigation. This leads to restricting the variable space 
to lower dimensions and thereby circumventing the overfitting 
problems incurred in dealing with sparse gene expression pro-
file data. Information about cell signaling pathways is available 
from many biological knowledge databases, such as KEGG,15,16 
CPDB,17 REACTOME,18 GOLD.db,19 and PROTEIN 
LOUNGE.20 However, one shortcoming of the signaling 
pathways available, for example, from KEGG,15 is that they are 
usually represented in terms of family-to-family connections 
between genes rather than individual gene-to-gene connec-
tions. For example, the KEGG database shows that the MAPK 
kinase signaling pathway involves interaction between the 
fibroblast growth factor (FGF) family (22 genes) and the FGF 
receptor (FGFR) family (4 genes) without any reference to 
which individual genes are responsible for this interaction 
(Figure 1). To the best of our knowledge, there is no existing 
methodology for unveiling the specific gene-to-gene connec-
tions between gene families that underlie the generic connec-
tions represented in KEGG signaling diagrams/pathways. This 

definitely restricts the usability of the biological knowledge 
expressed in KEGG pathways for learning gene-gene regula-
tory networks.

Hence, the purpose of this work is 2-fold: first, to show that 
using family-to-family biological knowledge available from 
KEGG pathways along with gene expression profiles available 
from microarray experiments could be used to unveil individ-
ual gene-gene interactions whereof gene-gene regulatory net-
works could be robustly constructed and second, to use the 
gene-gene regulatory networks to infer the drug mode of 
action at the PPI level. To achieve this, we use microarray 
gene-gene expression profiles from 2 breast cancer cell line 
samples: resistant and sensitive to neoadjuvant docetaxel drug. 
We conduct 3 stages of investigation. First, we incorporate 
prior biological knowledge (family-to-family gene interac-
tions) from the MAPK signaling pathway available from 
KEGG knowledge database in machine learning and feature 
selection graphical models to construct gene-gene regulatory 
networks for both samples. The reason behind choosing 
MAPK signaling pathway is that because we found that the 
gene expression profiles in our study are enriched with genes 
from MAPK signaling pathway (240 genes). Second, we con-
duct network-network comparison of the resistant and sensi-
tive gene-gene regulatory networks to identify individual 
gene-gene interactions that were affected by the drug, that is, 
disappeared from the resistive sample. The affected gene-gene 
interactions are then mapped to the corresponding encoded 
protein chains. Third, we identify potential drug-protein 
interactions that underlie affected gene-gene interactions. To 
achieve this, we investigate the likelihood of interactions of 
expressed protein chains and the possibility of disruption of 
these interactions by the drug using protein-protein and drug-
protein docking molecular modeling protocols.

Methodology
Inference of gene-gene regulatory network

Affymetrix breast cancer cell line data that were subjected to 
the neoadjuvant docetaxel anticancer drug were retrieved 
from a previous study.21 The data comprise 2 sets of samples: 
14 samples that were found to be resistant to the anticancer 
drug and 10 samples that were found to be sensitive to it. To 
get meaningful gene expression data sets from the cell lines, 
the data (24 samples) were normalized using the Robust 
Multichip Average (RMA) algorithm.6 After normalizations, 
the genes in the 2 data sets were annotated by their probe-
IDs. The probe-IDs were obtained from the hgu95av2.db 
database available in Bioconductor database, which corresponds 
to the microarray chips used in the original study.21 The 2 
annotated data sets were then mapped to KEGG database 
using the KEGG.db package available in Bioconductor. This 
showed that many genes in the 2 data sets are annotated to 
MAPK signaling pathway (Table 1). The MAPK signaling 
pathway was therefore used as a prior biological knowledge to 

Figure 1.  KEGG database illustration of the MAP kinase pathway. 

Family-to-family interactions are indicated, eg, the FGF (22 genes) and 

FGFR (4 genes) families, without indication of their gene-to-gene 

interaction makeup. FGF indicates fibroblast growth factor; FGFR, 

fibroblast growth factor receptor.
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guide inference of gene-gene regulatory network as detailed 
in the following sections.

Inference of gene-gene regulatory networks under Akaike informa-
tion criterion-lasso restraints.  We modeled the gene-gene regu-
latory network for each data set using Bayesian graphical 
models in which the graph represents the probabilistic condi-
tional dependence between the graph vertices, genes in our 
case. Learning Bayesian graphical models can be achieved by 
assigning to each vertex (X) a number of parents (pa) and com-
puting the corresponding conditional distributions P as 
follows7:

P X X X pa1 n i i
i

n

,..., = P |
=1
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In this context, for each gene (X), in the data sets (resistive 
and sensitive; Table 1), we search for a subset of (causals) par-
ents (xi) that best predict that gene using a linear regression 
model of the form:
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n
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One way to find the best set of parents is to use a score func-
tion such as Akaike information criterion (AIC).22 For a given 
number of parents (n), the AIC uses the residual sum of squares 
as the likelihood estimate that these parents are good predic-
tors of a particular gene and incorporates a complexity penalty 
parameter (2p) that increases with the number of parents 
thereby discouraging overfitting:
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In fact, the AIC was shown to give more reliable results 
compared with alternative methods such as leave-one-out 
crossvalidation method (LOOCV) especially in gene expres-
sion data sets as well as in big data sets.11 The AIC score func-
tion in that form focuses on finding best-fit parents, which 
does not necessarily incur concurrent best estimate of the 
regressive parameters (βs), namely, model selection. To alleviate 
this concern, the lasso estimate23,24 was used alongside the AIC 
such as to ensure that the sum of the absolute values of the 

model regressive parameters (βs) is below a prespecified thresh-
old parameter (s) using the following penalty function:
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Optimization of gene-gene regulatory networks using KEGG prior 
knowledge restraints and feature ranking.  Systematic optimiza-
tion of the value of the (s) parameter could be prohibitive due 
to the large dimensionality of the search space defined by the 
model regressive parameters (βs). To circumvent this problem, 
we use prior knowledge of gene-gene interactions to guide the 
optimization process such that all possible subsets of parents 
for any particular gene are restricted to only those genes that are 
known to interact with that gene. To achieve this, we used prior 
knowledge of family-to-family gene connectivity shown in the 
MAPK signaling pathway, available from the KEGG database. 
We restricted all possible subsets of parents of any particular 
gene to the family of genes that show connectivity with the 
family of that gene. For example, the MAPK signaling pathway 
(Figure 1) shows that the FGF family of genes has a direct con-
nection with the FGFR family, which indicates that the search 
space for predicting any of the genes in the FGFR family 
should be restricted only to the genes in the FGF family. A 
notable advantage of this procedure is that individual gene-
gene connectivity that was not initially visible in the family-to-
family connections in the MAPK signaling pathway becomes 
visible. After restricting the search space for each gene using 
prior knowledge from MAPK signaling pathway, the univari-
ate filtering feature selection method was used to order the 
search space for each gene. The filtering feature selection 
method is a ranking method that incrementally orders all sub-
set of predictors according to correlation coefficients from the 
highest to the lowest, and therefore it is usually called feature 
ranking.21

We then test for a particular value of (s) to choose the best 
subset of parents using the AIC score function under lasso 
restraint, validating the results using LOOCV. The lowest cor-
related parent is then iteratively removed (Algorithm 1). Using 
the feature ranking method with AIC score function, the lasso 
estimate allows, therefore, to examine different values of (s) for 
all possible parents of a particular gene. This procedure was 
found to allow for a more relaxed (s) parameter (Table 2) com-
pared with that using only the lasso estimate described above.

GRN comparison and identifying potential  
drug-protein interactions

Network comparison and gene-to-protein mapping.  The gene-
gene regulatory networks for the 2 data sets, resistive and sensi-
tive to the neoadjuvant docetaxel drug, were compared based 
on their pairwise gene-gene connectivity. The gene-gene 

Table 1.  The total number of genes that were found to be matched 
between the resistive and sensitive data sets and MAPK signaling 
pathway in KEGG knowledgebase database.

Data set type Genes vs samples

Resistant data set 209 genes, 14 samples

Sensitive data set 209 genes, 10 samples

The genes were found by mapping probe-IDs to KEGG database using KEGG 
database (KEGG.db).
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interactions that disappeared from the resistive network were 
retained and are referred to as “disappeared connections” 
throughout. Mapping of the genes corresponding to the disap-
peared connections to the corresponding encoded protein 
chains was performed through the Human Gene Database 
(http://www.genecards.org/) and the corresponding structures 
of protein chains were obtained from the Protein Data Bank 
(http://www.rcsb.org/). This leads to mapping each gene to 
several PDB IDs that represent the same encoded protein, yet 
in different conformations.

Examining interaction between protein pairs corresponding to dis-
appeared gene-gene connections: protein-protein docking.  To 
investigate the physical reasons behind gene-gene correlation 
corresponding to disappeared connections, pairwise interac-
tions of the protein chains encoded by these genes were inves-
tigated. Investigation of PPIs was performed using the ClusPro 
2.0 protein-protein docking Web server (http://cluspro.
bu.edu/).25 The ClusPro server was recently reported to out-
perform the best human predictor groups, to select the top-
ranked models of PPI complexes and to reliably generate 
high-quality structures of these complexes from the structures 
of separately crystallized proteins in the absence of biological 
information.26 As the mode of interaction of the protein chains 
is largely unknown a priori, the balanced mode for computing 
the interaction scores was used in ClusPro. Each PPI mode is 
represented by ClusPro as a cluster of structure pairs that are 

structurally similar (root-mean-square deviation < 1.5). The 
number of structures of each cluster is indicative of the breadth 
of the free energy valley of the PPI and is used by the ClusPro 
server to rank different PPI modes. The scores of the top 10 
interaction modes were retained.

Examining interaction of neoadjuvant docetaxel drug with protein 
pairs: drug-protein docking.  Blind docking27,28 of the neoadjuvant 
docetaxel drug was then performed against all of the protein 
pairs that were retained from protein-protein docking using the 
AutoDock 4.1 suite of programs.29 Computation of the poten-
tial energy grids required by AutoDock at appropriate resolution 
is quite demanding for large proteins in terms of memory stor-
age and CPU time; therefore, the space around each protein was 
partitioned using a grid that encompasses the whole protein and 
extends outward by 40% of its extent in each direction. A grid 
cell extent of 64 Å was used throughout. For each grid cell, the 
grid potentials were computed at 0.5-Å resolution for the dock-
ing calculations. To alleviate the possibility of missing binding 
sites that lie across neighboring grid cells, 2 overlapping grids 
were used that are shifted by 20 Å in each direction. We note that 
partitioning the space around the protein into grid cells that are 
treated independently by AutoDock serves 2 purposes: first, it 
circumvents the prohibitive computational cost of performing 
blind docking to the whole of each protein in a single run; sec-
ond, because the same grid cell extent is used throughout, this 
setup maintains a consistent ratio of the number of docking 
simulations to protein size, which varies across different protein 
chains. In all of the docking simulations, the protein was kept 
rigid and fixed in space, whereas the peptide was placed at a ran-
dom initial position and orientation. In the drug docking, a 
search in the space surrounding the protein was performed using 
the Lamarckian genetic algorithm (GA-LS)30 with no restric-
tion on the drug conformation. For every arbitrary starting posi-
tion of the drug, 20 hybrid GA-LS docking runs were performed 
using a population size of 200, a maximum number of energy 
evaluations of 3 000 000, a maximum number of generations of 
27 000, and 300 iterations of local search. The structures of the 
docked drug were stored and subsequently checked for overlap 
with the interface regions of each protein pairs. Drug structures 
that overlap with at least 3 residues of the interface of neighbor-
ing proteins, using a 3.0-Å distance threshold between the CA 
atoms, were selected and the drug-protein complex with the 
lowest binding free energy was retained in each case.

Figure 2 summarizes the aforementioned methodology 
steps that underline the approach used in this work.

Results and Discussion
Incorporating KEGG prior knowledge and 
construction of gene-gene regulatory networks

As described in the “Methodology” section, we incorporated 
prior biological knowledge (gene family-to-family interactions) 
from the MAPK signaling pathway that we extracted from 

Algorithm 1: THE SKELETON OF HOW THE LASSO ESTIMATE 
WORKS WHEN EMBEDDED WITH AIC SCORE FUNCTION AND 
FEATURE SELECTION RANKING METHOD WHILE THE SEARCH 
SPACE IS RESTRICTED BY MAPK-KEGG SIGNALING PATHWAY.

for i = 1 to length(Genes) do
  Y = GENE[i]
  Features=MAPK.kegg.prior(Y, GENES[–i])
  PR = OrderFeatures(Y, fiiter.rank(Features))
  for j = 1 to length(PR) do
    SP = Seareh,SpaceFromLassoPath(Y, PR)

    return BestFeatures = mini[(AIC(SP))]

    return FinalError = LOOCV(BestFeatures)
    PR= PR[,–j]
  end for

  return BestFeatures(Y, min(FinalError))
end for

Table 2.  Comparison between the combined ranking method with AIC 
and the lasso estimate vs the lasso estimate.

Data set Corr.AIC.
Lasso

Lasso 
estimate

Resistive samples 0.33 0.4

Sensitive samples 0.30 0.4

Abbreviation: AIC, Akaike information criterion.
The combination method gives a better result than using the lasso estimate only.

http://www.genecards.org/
http://www.rcsb.org/
http://cluspro.bu.edu/
http://cluspro.bu.edu/
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KEGG knowledgebase into the machine learning and feature 
selection graphical model to construct gene-gene regulatory 
networks from the resistive and sensitive data sets (Table 1). 
The key point is that a gene can be involved in hundreds of 
biological functions or pathways and it is not a priori known 
which pathways or gene set annotations are relevant in a given 
context. Incorporation of prior knowledge allowed for a statisti-
cally robust estimation of pairwise correlations between indi-
vidual genes annotated in the MAPK signaling pathway. These 
correlations were used for the construction of the gene-gene 
interaction network for both sensitive and resistive samples 
(Figure 3A and B).

Network comparison: resistive vs sensitive

Comparison of the resistant and sensitive gene-gene interac-
tion networks (Figure 3A and B) reveals that the resistant net-
work is highly connected with distinct domains of connectivity, 
delineated by dashed lines in Figure 3. These domains com-
prise one large domain in which the RAF1 and MAP2K2 
genes are pivotal for its subdomain connection, a domain in 

which the RAS gene is highly connected and other smaller 
domains that are sparsely populated. Although the resistant 
network shows 178 edges, only 52 edges exist in the sensitive 
network where the network domains, compared with the resis-
tive network, are highly disrupted with lower degree of con-
nectivity. Clearly, the change in the network topology embodies 
the effect of the docetaxel drug; however, the mechanism 
underlying this change is largely unknown. After all, it is the 
interactions between the myriad of proteins encoded by the 
network genes that cause gene-gene correlations and it is the 
drug interactions with these proteins that cause cessation of 
gene-gene correlations. To unveil such a mechanism, we stud-
ied these interactions at the molecular level.

Assessment of the docetaxel drug potential to disrupt 
the network

One way to account for such change in the gene-gene network 
topology is to assess the extent of disruption incurred by the 
drug to the interaction of the proteins encoded by the network 
genes. Such disruption, if any, could be expansive such as to 

Figure 2.  Flowcharts for the main steps involved in the 2 stages underlying the approach used in this work for identifying potential protein targets for 

neoadjuvant docetaxel anticancer drug.
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prevail the network or could be localized with a large-scale 
domino effect (second-order effect) throughout the network. 
Both scenarios could lead to network disruption; for the pur-
pose of this work, we focused on the former. We focused on the 
affected network edges (pairs of genes), that is, disappeared 
from the resistive sample, 126 edges. We mapped each pair of 
genes to known pairs of protein chain structures, as outlined in 
the “Methodology” section and performed protein-protein 
docking simulations, 354 simulations, to delineate their favora-
ble modes of interaction using the ClusPro server.25 This leads 
to identification of 289 protein pairs that showed favorable 
modes of interactions. Favorable PPIs in ClusPro are deter-
mined by the cluster size of the docked structure clusters; this 
criterion has been shown to outperform human predictor 
groups to reliably generate high-quality structures of these 
complexes from the structures of separately crystallized pro-
teins in the absence of biological information.26 To determine 
whether the drug is able to disrupt these favorable protein-
protein modes of interaction, we performed blind drug-protein 
docking to each protein, 42 191 simulations, and inspected 3 
criteria: (1) favorable drug-protein thermodynamic interaction, 
(2) drug interaction with the protein-protein interface region is 
thermodynamically more favorable than other regions on the 
protein surface, and (3) the drug-protein interaction takes place 
such that the drug overlaps at least 3 residues in the hotspot 
regions—residues essential for PPI31,32—in the protein-protein 
interface. These 3 criteria are tailored to target 3 competitive 
molecular levels of interactions in the thermodynamic domain 
such as to rule out the integrity of PPI in the presence of the 
drug. In a previous work, we used the same strategy for identi-
fying potential lead structures that can disrupt virus assembly.33 
Imposing these criteria leads to identification of 34 PPIs, 
namely, 34 gene-gene interactions that are potentially dis-
rupted by the docetaxel drug (Figure 4A). Interestingly, most of 
the proteins (and thereby the corresponding genes) that satisfy 

the above criteria show a high degree of connectivity (Figure 
4B) are spread throughout the network (Figure 4C). This indi-
cates that the docetaxel drug disrupts the network by concur-
rent attacks that target different proteins that exist in different 
domains of connectivity. To further understand the cellular 
mechanisms that are possibly disrupted by the docetaxel drug, 
we need to inspect the specific gene-gene connections that are 
most likely affected by the drug.

Docetaxel mode of action: DAXX-mediated 
interaction

The drug-protein interactions that underlie the disruption of 
the gene-gene connections were ordered in terms of the cor-
responding drug-protein binding energy as shown in Figure 
3A. Of these interactions, drug interaction with the DAXX-
gene–encoded protein (that disrupts DAXX-FAS interaction) 
is the most thermodynamically favorable interaction (Figure 
4A) and the drug interaction with the FGR1-encoded protein 
(that disrupts FGFR1-FGF13 interaction) corresponds to the 
highest vertex connectivity (Figure 4B). The molecular details 
of theses interactions are shown in Figure 5. The molecular 
interactions shown in Figure 5 show faithful complementarity 
between interacting protein surfaces and clear overlap between 
the drug and the hotspots on the target proteins, providing 
clues for the thermodynamic stability of the PPI and high-
lighting the drug potential to disrupt these interactions.

In agreement with our results, highlighting the DAXX-FAS 
connection as a potential drug target, the DAXX protein, the 
protein encoded by the DAXX gene, has been reported to bind 
specifically to the FAS death domain.34 Moreover, accumula-
tion of more cytoplasmic DAXX in cancer cell lines, for exam-
ple, due to interaction with a drug, is believed to participate in 
cellular apoptosis (programmed cell death)35 and thereby pro-
viding routes for anticancer drug development.

Figure 3.  Gene-gene regulatory networks constructed from the gene expression profiles for (A) neoadjuvant docetaxel resistive samples and (B) 

neoadjuvant docetaxel sensitive samples after incorporation of biological prior knowledge from the MAPK signaling pathway. Active and inactive genes 

are highlighted in gray and white, respectively. The domains of connectivity are delineated by a dashed line in each network and genes with vertex 

connectivity greater than 4 are highlighted in blue.
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Our results also suggest that drug FGR1 interaction has the 
potential to disrupt FGFR1-FGF13 interaction. Overexpression 
of FGFs has been reported in prostate cancer malignancies such 
that increased FGF signaling activates multiple signal transduc-
tion pathways, all of which play a role in prostate cancer pro-
gression.36 This agrees with the high vertex connectivity that 
FGR1 shows in the resistive network (Figure 4B) and indicates 
that docetaxel interaction with FGR1 probably breaks the chain 
of reaction throughout these signaling transduction pathways 
(disrupting FGR1 connections in the sensitive sample).

Conclusions
We used biological prior knowledge of family-to-family gene 
interactions available in the KEGG database to reveal indi-
vidual gene-to-gene interaction networks that underlie the 

gene expression profiles of 2 cell line data sets: sensitive and 
resistive to neoadjuvant docetaxel breast anticancer drug. Using 
machine learning of graphical models to infer the topology of 
the gene-gene interaction networks revealed that incorporation 
of biological prior knowledge allows for a more robust regres-
sion model optimization compared with mainstream optimiza-
tion techniques that are statistically driven by AIC penalization 
and lasso estimation of regression parameters.

Interestingly, comparison of the topology of the 2 networks 
reveals that the resistant network is highly connected with 2 
large domains of connectivity: one in which the RAF1 and 
MAP2K2 genes form hubs of connectivity and another in 
which the RAS gene is highly connected. On the contrary, the 
sensitive network was found to be highly disrupted with a 
lower degree of connectivity. To unveil the physical reasons 

Figure 4.  (A) Drug-protein binding energies (in kJ mol−1) that underlie the disappearance of gene-gene interactions from the resistive sample network 

compared with the sensitive sample network. (A) Proteins targeted by the drug are indicated in parentheses and (B) their connectivity indices in the 

resistive sample network. (C) Targeted genes are superposed in black on the resistive sample network.
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behind such change in network topology, we investigated the 
interactions of the neoadjuvant docetaxel drug with the protein 
chains encoded by the gene-gene connectivities that disap-
peared from the resistive sample. We performed protein-pro-
tein docking simulations of the encoded protein chains, to 
delineate their thermodynamically favorable modes of interac-
tion using the ClusPro server.25 The potential of the neoadju-
vant docetaxel drug to disrupt these thermodynamically 
favorable modes of interaction was further investigated by esti-
mation of the drug-protein interaction free energy at the 
chain-chain interface using the AutoDock program.29 We 
found that the sensitive network is likely disrupted by interac-
tion of the neoadjuvant docetaxel drug with the DAXX and 
FGR1 proteins which is consistent with the observed accumu-
lation of cytoplasmic DAXX35 and overexpression FGR1 pre-
cursors in cancer cell lines.36 This indicates that he DAXX and 
FGR1 proteins could be potential targets for the neoadjuvant 
docetaxel drug.

The work, therefore, provides a new route for understanding 
the effect of the drug mode of action from the viewpoint of the 
change in the topology of gene-gene regulatory networks and 
provides a new avenue for bridging the gap between gene-gene 
interactions and PPIs which could have deep implications on 
mainstream drug development protocols.

Author Contributions
The paper is equity contributed by authors. The first author has 
conducted machine learning and graphical construction 
through mentioned algorithms and prior to that all preprocess-
ing steps for cell files have been done by the first author. The 
second author has contributed to protein mapping and docking 

analysis. The second author has also proofed read the paper 
thoroughly. The paper has been written equally by authors.

References
	 1.	 Molla M, Waddell M, Page D, Shavlik J. Using machine learning to design and 

interpret gene-expression microarrays. AI Mag. 2004;25:23–44.
	 2.	 Huang JX, Mehrens D, Wiese R, et al. High-throughput genomic and pro-

teomic analysis using microarray technology. Clin Chem. 2001;47:1912–1916.
	 3.	 Iskar M, Zeller G, Zhao XM, van Noort V, Bork P. Drug discovery in the age of 

systems biology: the rise of computational approaches for data integration. Curr 
Opin Biotechnol. 2012;23:609–616.

	 4.	 Markowetz F, Spang R. Inferring cellular networks—a review. BMC Bioinfor-
matics. 2007;8:S5.

	 5.	 Webb E, Westhead D. The transcriptional regulation of protein complexes: a 
cross-species perspective. Genomics. 2009;94:369–376.

	 6.	 Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries 
of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003;31:e15.

	 7.	 Geiger D, Heckerman D. Learning Gaussian networks. UAI. 1994:235–243.
	 8.	 Heckerman D, Meek C, Cooper G, Holmes D, Jain L. A Bayesian Approach to 

Causal Discovery: Innovations in Machine Learning. Berlin, Germany; Heidel-
berg, Germany: Springer; 2006.

	 9.	 Murphy K, Mian S. Modelling gene expression data using dynamic Bayesian 
networks. Technical Report, Computer Science Division, University of Califor-
nia, Berkeley, CA; 1999.

	10.	 Heckerman D, Chickering DM, Meek C, Rounthwaite R, Kadie C. Depen-
dency networks for inference, collaborative filtering, and data visualization. J 
Machine Learning Res. 2000;1:49–75.

	11.	 Aloraini AAM. Extending the Graphical Representation of Four KEGG Pathways 
for a Better Understanding of Prostate Cancer Using Machine Learning of Graphical 
models. York, UK: University of York; 2011.

	12.	 Aloraini A, Cussens J, Birnie R. Extending prostate cancer KEGG pathways 
using machine learning of graphical models. Syst Inform World Net. 2010;10: 
56–67.

	13.	 Aloraini A, Cussens J, Birnie R. Extending KEGG pathways for a better under-
standing of prostate cancer using graphical models. Paper presented at: Proceed-
ings of the 3rd International Workshop on Machine Learning in Systems Biology 
(MLSB); Ljubljana, Slovenia; September 5-6, 2009.

	14.	 Aloraini A. A directed acyclic graphical approach and ensemble feature selection 
for a better drug development strategy using partial knowledge from KEGG sig-
nalling pathways. Paper presented at: 2014 13th International Conference on 
Machine Learning and Applications; Detroit, MI; December 3-5, 2014:620–624.

Figure 5.  Structural details of protein-protein interactions (left column; yellow and green), hotspot regions (blue) on the protein-protein interface and 

interaction of the neoadjuvant docetaxel drug (red) with the hotspot regions (right column) for (A) DAXX-FAS interaction and (B) FGFR1-FGF13 interaction.



Aloraini and ElSawy	 9

	15.	 Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res. 2000;28:27–30.

	16.	 Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for repre-
sentation and analysis of molecular networks involving diseases and drugs. 
Nucleic Acids Res. 2010;38:D355–D360.

	17.	 Gold LS, Slone TH, Manley NB, et al. The carcinogenic potency database: anal-
yses of 4000 chronic animal cancer experiments published in the general litera-
ture and by the U.S. National Cancer Institute/National Toxicology Program. 
Environ Health Perspect. 1991;96:11–15.

	18.	 Fabregat A, Sidiropoulos K, Garapati P, et al. The reactome pathway knowledge-
base. Nucleic Acids Res. 2016;44:D481–D487.

	19.	 Hackl H, Maurer M, Mlecnik B, et al. GOLD.db: genomics of lipid-associated 
disorders database. BMC Genomics. 2004;5:93.

	20.	 Besaw ME. Protein lounge. JMLA. 2013;101:164.
	21.	 Chang JC, Wooten EC, Tsimelzon A, et al. Gene expression profiling for the 

prediction of therapeutic response to docetaxel in patients with breast cancer. 
Lancet. 2003;362:362–369.

	22.	 Dietterich TG. Approximate statistical tests for comparing supervised classifica-
tion learning algorithms. Neural Comput. 1998;10:1895–1923.

	23.	 Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B Met. 
1996;58:267–288.

	24.	 Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. J 
R Stat Soc B. 2011;73:273–282.

	25.	 Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: an automated dock-
ing and discrimination method for the prediction of protein complexes. Bioinfor-
matics. 2004;20:45–50.

	26.	 Kozakov D, Hall DR, Beglov D, et al. Achieving reliability and high accuracy in 
automated protein docking: ClusPro, PIPER, SDU, and stability analysis in 
CAPRI rounds 13-19. Proteins. 2010;78:3124–3130.

	27.	 Hetenyi C, van der Spoel D. Efficient docking of peptides to proteins without 
prior knowledge of the binding site. Protein Sci. 2002;11:1729–1737.

	28.	 Hetényi C, van der Spoel D. Blind docking of drug-sized compounds to proteins 
with up to a thousand residues. FEBS Lett. 2006;580:1447–1450.

	29.	 Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: auto-
mated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–2791.

	30.	 Garrett MM, David SG, Robert SH, et al. Automated docking using a Lamarck-
ian genetic algorithm and an empirical binding free energy function. J Comput 
Chem. 1998;19:1639–1662.

	31.	 Bowman AL, Nikolovska-Coleska Z, Zhong H, Wang S, Carlson HA. Small 
molecule inhibitors of the MDM2-p53 interaction discovered by ensemble-
based receptor models. J Am Chem Soc. 2007;129:12809–12814.

	32.	 Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol. 
1998;280:1–9.

	33.	 ElSawy KM, Twarock R, Verma CS, Caves LSD. Peptide inhibitors of viral assem-
bly: a novel route to broad-spectrum antivirals. J Chem Inf Model. 2012;52:770–776.

	34.	 Yang X, Khosravi-Far R, Chang HY, Baltimore D. Daxx, a novel Fas-binding 
protein that activates JNK and apoptosis. Cell. 1997;89:1067–1076.

	35.	 Mo YY, Yu Y, Ee PL, Beck WT. Overexpression of a dominant-negative mutant 
Ubc9 is associated with increased sensitivity to anticancer drugs. Cancer Res. 
2004;64:2793–2798.

	36.	 Kwabi-Addo B, Ozen M, Ittmann M. The role of fibroblast growth factors and 
their receptors in prostate cancer. Endocr Relat Cancer. 2004;11:709–724.




