Skip to main content
. 2018 Feb 8;17:1176935118755354. doi: 10.1177/1176935118755354
Algorithm 1: THE SKELETON OF HOW THE LASSO ESTIMATE WORKS WHEN EMBEDDED WITH AIC SCORE FUNCTION AND FEATURE SELECTION RANKING METHOD WHILE THE SEARCH SPACE IS RESTRICTED BY MAPK-KEGG SIGNALING PATHWAY.
for i = 1 to length(Genes) do
 Y = GENE[i]
 Features=MAPK.kegg.prior(Y, GENES[–i])
 PR = OrderFeatures(Y, fiiter.rank(Features))
for j = 1 to length(PR) do
  SP = Seareh,SpaceFromLassoPath(Y, PR)
  return BestFeatures = mini[(AIC(SP))]
  return FinalError = LOOCV(BestFeatures)
  PR= PR[,–j]
 end for
return BestFeatures(Y, min(FinalError))
end for