Algorithm 1: THE SKELETON OF HOW THE LASSO ESTIMATE WORKS WHEN EMBEDDED WITH AIC SCORE FUNCTION AND FEATURE SELECTION RANKING METHOD WHILE THE SEARCH SPACE IS RESTRICTED BY MAPK-KEGG SIGNALING PATHWAY. |
---|
for
i = 1 to
length(Genes) do
Y = GENE[i] Features=MAPK.kegg.prior(Y, GENES[–i]) PR = OrderFeatures(Y, fiiter.rank(Features)) for j = 1 to length(PR) do SP = Seareh,SpaceFromLassoPath(Y, PR) return BestFeatures = mini[(AIC(SP))] return FinalError = LOOCV(BestFeatures) PR= PR[,–j] end for return BestFeatures(Y, min(FinalError)) end for |