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Abstract

Many human diseases result from the dysregulation of the complex interactions between tens to 

thousands of genes. However, approaches for the transcriptional modulation of many genes 

simultaneously in a predictive manner are lacking. Here, through the combination of simulations, 

systems modelling and in vitro experiments, we provide a physical regulatory framework based on 

chromatin packing-density heterogeneity for modulating the genomic information space. Because 

transcriptional interactions are essentially chemical reactions, they depend largely on the local 

physical nanoenvironment. We show that the regulation of the chromatin nanoenvironment allows 

for the predictable modulation of global patterns in gene expression. In particular, we show that 

the rational modulation of chromatin density fluctuations can lead to a decrease in global 

transcriptional activity and intercellular transcriptional heterogeneity in cancer cells during 

chemotherapeutic responses to achieve near-complete cancer cell killing in vitro. Our findings 

represent a ‘macrogenomic engineering’ approach to modulating the physical structure of 

chromatin for whole-scale transcriptional modulation.

Fully sequencing the human genome has allowed unprecedented exploration of the roles that 

genes play in diseases, including neurological and autoimmune disorders, heart disease, and 

cancer. One of the most significant findings from the human genome project was the fact 

that, in many cases, these diseases do not depend on the behaviour of individual genes, but 

on the complex interplay between tens to thousands of genes over long periods of time1–3. 

Despite this emerging understanding that many human diseases are thus inherently 

multifactorial and genomic in nature, no technologies have been developed that allow for the 

simultaneous, predictable engineering of multidimensional transcriptional interactions.

In this regard, many studies have explored the mechanisms that control the transcription of 

genes, and have provided new understanding of the epigenetics that govern diseases. At the 

level of histones and nucleosomal organization (~10 nm), it is widely recognized that the 

physical structure of chromatin plays an important role in governing gene expression4,5. In a 

disease where particular genes or their mutational variants produce a hierarchal, central 

network topology, this information can be leveraged to control many genes simultaneously 

by targeting a key node (Fig. 1a). These insights have greatly expanded our knowledge of 

the basis of genetic diseases, but they face the limitation that genetic changes to transcription 

factor binding sites, nucleosomal remodelling or specific gene compartments6,7 determine 

the activity of a few genes only; yet most genetic networks are inherently decentralized or 

diffuse (Fig. 1b). Therefore, methods to manipulate the expression patterns of many genes 

simultaneously for non-hierarchical diseases, including most cancers and many diseases of 

ageing (Fig. 1c), are largely missing. To address this need, here we present a method to 

target supra-nucleosomal (> 10 nm) chromatin physical structure as a means to predictably 

modulate global patterns in gene transcription. Starting from first-principle physical 

considerations and using a combination of Brownian dynamics and Monte Carlo simulations 

paired with systems modelling, we develop a model that explains the role of supra-

nucleosomal chromatin organization on gene expression at the level of physiochemical 
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interactions. Testing the predictions from this model with experimental results obtained from 

nanoscale measurements of chromatin structure using partial wave spectroscopic (PWS) 

microscopy—which measures nanoscopic alterations in the scaling of chromatin packing 

density with a sensitivity to chromatin organization between 20 and 350 nm—in live cells 

and from measurements of gene expression using mRNA microarrays, we show that altering 

the packing-density scaling of chromatin produces predictable changes in gene expression, 

and that one of the main functional roles of the physical organization of chromatin is 

controlling the genomic information space as well as intercellular transcriptional 

heterogeneity. Accordingly, whereas existing understanding of transcriptional regulation has 

focused on means that regulate individual genes (modifying transcription factor binding 

domains, performing nucleosomal post-translational modifications, or localizing genes to 

chromatin compartments), the approach introduced in this work modulates the physical 

structure of chromatin for global transcriptional modulation (Fig. 2a–d).

Owing to this role of physical structure of chromatin as a major regulator of the genomic 

information space through shaping the physiochemical nanoenvironment, we then apply the 

predictions in our model to overcome chemoevasion produced at the level of transcriptional 

heterogeneity8,9. One of the main challenges in cancer therapy is the innate ability of cells to 

adaptively sample their genome in order to develop mechanisms of chemotherapeutic 

evasion10. To reverse this process, we employ our model to show that the use of agents that 

reduce intranuclear variations in chromatin packing density, termed chromatin protective 

therapies (CPTs), should reduce this transcriptional heterogeneity, and therefore that CPT 

agents would be effective adjuvant compounds to prevent the emergence of chemoresistance 

by limiting the replicative adaptability of cancer cells8. Using live cell PWS microscopy11, 

we test this hypothesis on two potential adjuvants, celecoxib and digoxin, to see if they can 

act to reduce transcriptional heterogeneity and lead to significant amplification of cancer-cell 

lethality induced by chemotherapeutic agents. We validate this hypothesis in multiple 

models of aggressive gynaecological tumours and show that the level of chromatin 

modulation directly corresponds to the predicted in vitro efficacy.

Hence, we show that global patterns in gene transcription can be controlled by manipulating 

the physical nanoenvironment within the nucleus. Although we apply the functional 

consequence of such macrogenomic engineering to the screening of chemotherapeutic 

adjuvants, the approach paves the way for the study and treatment of diseases—such as 

Parkinson’s disease, atherosclerosis and autoimmune disorders—that are governed by the 

complex interplay of dozens of genes.

Results

In chromatin, chemical reactions such as gene transcription take place in a highly dense and 

heterogeneous physical nanoenvironment, the consequences of which are not yet fully 

understood. Here, we present and use a predictive model to leverage the effects of this 

physical nanoenvironment on gene transcription in order to control global patterns in gene 

expression. This model achieves this by considering that these chemical reactions depend 

on: (1) the accessibility of the genome12, (2) the intrinsic molecular characteristics of the 

gene (binding affinities, local concentration of reactant species, and reaction rates, among 

Almassalha et al. Page 3

Nat Biomed Eng. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



others)13, and (3) the effects of physical interactions on these chemical reactions13–15. 

Notably, the supranu-cleosomal physical organization of chromatin and the associated 

spatial fluctuations of concentration, and the overall accessibility of chromatin, have a role 

in determining the behaviour of these chemical reactions, as explored below.

To begin, we consider the elements that control the physical nanoenvironment within the 

eukaryotic nucleus and that influence many genes simultaneously. Chromatin (DNA and 

DNA-associated proteins, such as histones, polymerases and transcription factors) is the 

predominant macromolecular assembly within the nucleus16. Thus, the nuclear physical 

nanoenvironment with respect to multiple genes is shaped by the assembly of chromatin 

packed into supra-nucleosomal structures (> 10 nm) (Fig. 2a–d). Recent evidence suggests 

that chromatin polymer is a disordered chain that is packed together at different densities 

throughout the nucleus17. Independent of the exact configuration and of the kinetics of 

supranucleosomal folding, 3D chromatin packing density can be described statistically by 

the scaling of the mass of chromatin (M) contained within a sphere of radius r, M(r), and by 

the associated auto-correlation function (ACF) of chromatin packing density. The ACF is the 

quantitative relationship between smaller components (such as nucleotides and 

nucleosomes) and larger structures (up to chromosomal territories). Although the exact 

nature of chromatin organization is a topic of active debate, most of the recent evidence 

suggests that for supra-nucleosomal length scales up to the Mbp range, chromatin can be 

characterized as a mass fractal (power-law scaling) media with a fractal dimension (scaling 

exponent) D < 3, a property which is commonly found in a variety of polymer systems18–27: 

M ∝ rD and , where V is volume28–30. It will be of consequence to 

the discussion below that ACF also quantifies the intranuclear heterogeneity of chromatin 

packing density, and thus the scaling of chromatin packing density and packing-density 

heterogeneity are inherently linked. Experimentally, the power-law scaling of chromatin 

packing density was found using both ex vivo molecular techniques such as neutron 

scattering and chromatin conformation capture (3C, 5C and Hi-C)31–33 as well as in vitro by 

nanoscale-sensitive imaging techniques such as transmission electron microscopy (TEM), 

PWS microscopy, fluorescence correlation spectroscopy and photon localization microscopy 

(PLM)34–37.

By using this evidence, and without loss of generality, we consider the mass and ACF of 

chromatin structure to follow a power-law scaling form with fractal dimension, D. To extend 

this work to non-fractal conditions, one should note that D is proportional to the molecular 

correlation distance regardless of the exact form of the correlation function (for example, 

when D > 3)38–40. In cases with a non-fractal ACF, D instead statistically quantifies the 

fraction of large versus small length-scale structures in chromatin (a larger D implies a 

greater fraction of larger length scales)39,41, and the physical properties of chromatin 

(including the accessible surface area and the local variations in density, which are two 

critical quantities that play a major role in global transcriptional regulation) can still be 

quantified using the ACF. Consequently, in the context of this work, the scaling of chromatin 

packing density refers to the polymeric properties of chromatin as it relates to the scaling 

dimension (or scaling exponent), D, of its mass, as a function of distance from a reference 

point. Clearly, multiple chromatin conformations may potentially correspond to the same 
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scaling dimension. However, as it occurs with other polymers, modifying the scaling 

dimension will produce critical differences in both the accessibility of chromatin regions and 

the distribution of chromatin packing density.

To understand the link between chromatin packing-density scaling and transcription, we 

consider the average mRNA transcription rate, E, for any given group of genes (n > 1) as the 

product of the expectation of the fraction of chromatin that corresponds to the accessible 

surface (ASA) and the average rate of transcription of genes associated with the accessible 

chromatin surface, ,

(1)

where ε(m, ϕ) is the expression rate of any given gene within the group as a function of its 

molecular features, m, for a given local molecular crowding density, ϕ. m accounts for 

molecular regulators such as the local concentration of transcription factors, their binding 

affinities, and the transcription rate of RNA polymerases, which in turn depend on histone 

regulation, genome compartmentalization (such as gene positioning with respect to A/B 

domains and transcription factors)22,42, and other molecular regulatory processes.

We first consider the influence that packing-density scaling has on the accessible surface 

area of chromatin. In a fractal medium, the relation between ASA and D is analytically 

quantified following the law of dimensional coadditivity as:

(2)

where Mmin is the mass of the basic unit of the chromatin chain (a single nucleotide) and Mf 

is the total mass of the chromatin domain within which the power-law scaling holds with the 

number of base pairs . Therefore, in a power-law medium such as chromatin, increases 

in D directly elevate ASA, and without other considerations, would elevate transcription 

overall. In principle, D can vary throughout the nucleus and, as a result, ASA could vary 

from gene to gene. However, global increases or decreases in packing-density scaling would 

be expected to change the accessibility of genes on average. It is important to note that these 

conclusions also apply to a medium with a non-fractal ACF, as an increase in the correlation 

distance (higher D) would increase the ASA (see Supplementary equations (10)–(14) for 

details).

In addition to altering ASA, changes in D also have an effect on ε through the heterogeneity 

of chromatin packing density. Changes in the local mass density (that is, changes in 

crowding) will non-monotonically alter expression depending on the molecular features of a 

given gene. This complexity and molecular dependence is rooted in the competition between 

the effect of local crowding on molecular diffusion and the stability of binding reactions13. 

As crowding increases from dilute conditions, the initial effect on chemical reactions is a 
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gain in stabilization of the intermediary complexes, as the entire system gains entropy by 

decreasing the excluded volume of the reactant species. As the volume fraction continues to 

increase, the gain in entropy is eventually overcome by the decreased mobility that results 

from crowding. This produces a non-monotonic relationship between the local density and 

the rate of transcription that disproportionately influences underexpressed genes (Fig. 3a). 

To quantify this relationship as a function of various molecular features for a homogenous 

media, we used Brownian dynamics and Monte Carlo simulations13. However, chromatin is 

an inherently heterogeneous environment, and therefore predicting the effects of changes in 

density requires information on the distribution of mass density. To estimate these changes, 

we analytically calculated the local variations in crowding as a function of D on the basis of 

the properties of a polymeric assembly. Of note, the effects of the spatial distribution of mass 

density on gene expression are applicable both to genes localized within and outside of 

higher-order compartments, as crowding has a generalized effect on chemical reactions (Fig. 

2b,c). Therefore, although compartmentalization has itself been shown to control individual 

genes by modulating the distribution of cis regulatory factors, in the context of the 

transcriptional modulation by chromatin packing density, the compartmentalization effects 

will be similar to those of genomic or histone modifications: they alter the underlying 

molecular predisposition of individual genes for gene expression, which is further modulated 

by the local chromatin packing density.

With respect to chemical reactions, it is reasonable to assume that the physical environment 

within a small ‘interaction volume’ of radius Lin neighbouring any given gene is 

homogenous with a local crowding density ϕ (Fig. 2c,d). Furthermore, outside of this 

interaction volume, crowding conditions have no effect on transcription reactions of the 

given gene, as crowding density has a negligible influence on the free energy of reactions13. 

Therefore, the effect of D on transcriptional reactions is mediated by the variations in mass 

density (ϕ) throughout the nucleus. Analytically, the variance of local density within the 

nucleus, , can be derived as a function of packing-density scaling, D, and is calculated 

as:

(3)

where rmin is the size of the unit element (here a single base pair of DNA) and  is the 

average of ϕ across the entire nucleus. As D increases, so too do the local variations in 

density. As the location of genes within a group (for example, genes with similar molecular 

features) can vary throughout the nucleus, the ensemble expression is given by the 

expectation of gene expression as a function of the local crowding conditions. Therefore 

can be approximated by:

(4)
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where  is the rate of gene expression that would be observed in the absence of 

chromatin packing-density heterogeneity. Using equation (4), the effect of D on  is 

analytically computed as a function of the local crowding conditions with  obtained 

from the simulations (Fig. 3a). Since  is non-monotonic and, for the range of 

typically found in cell nuclei (~30–45%),  is close to its maximum, . 

Therefore, an increase in D reduces ε, as genes become exposed to a wider range of local 

crowding conditions for which ε is : not at its maximum. As Fig. 3b illustrates, this effect 

depends on ε(m): the absolute value of  decreases as a function of the 

rate of  (Supplementary equation (19)). This is because highly expressed genes are 

already optimized by molecular modifications (such as histone interactions or gene 

positioning within chromatin domains) and crowding has a lesser effect on the stabilization 

of their intermediary complexes. Therefore, the net result of an increase in D is greater 

suppression of initially underexpressed genes in comparison to overexpressed genes. 

Integrated with the overall upregulation of gene expression probabilities due to an increase 

in ASA as a function of D, the resulting behaviour of increases in D on transcription would 

be asymmetric and monotonic.

What is practically significant is to predict how gene expression for a given functional group 

of genes that share a common characteristic (such as similar initial expression, length, or 

other attributes) changes in response to a change in chromatin packing-density scaling as 

quantified by D. To characterize this relationship, we define the relative change of gene 

expression as a function of the change in D (‘gene expression sensitivity’), Se = ∂ln(E)/

∂ln(D). Combining equations (1)–(4), this can be directly quantified as:

(5)

Here, L is the sequence length of the gene, and function g is used as a change of variables to 

transform  into a function of , and can be computed either numerically from 

simulations or analytically as:

where κ = 22.6 nM s−1 is the critical expression such that for  crowding has a significant 

effect. Because κ exceeds the physiological range of the rate of transcription, crowding is 
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expected to have a significant effect on gene transcription (Supplementary equations (15)–

(20)).

To validate this model, we tested these predictions against experimental data. Cells were 

exposed to multiple perturbations, including stimulation with serum, epidermal growth 

factor (EGF) and phorbol 12-myristate 13-acetate (PMA) (Fig. 3c). The changes in the 

scaling of chromatin packing density due to a perturbation were assessed using PWS 

microscopy on live cells while the consequential changes in gene transcription were 

evaluated using microarray mRNA sequencing. Here, PWS microscopy was used to quantify 

the nanoscale (20–350 nm) heterogeneity of chromatin packing density averaged throughout 

the nucleus. This range of structural length scales corresponds to genomic distances from the 

Kbp to the Mbp range. The produced signal, Σ, is a result of the heterogeneity of the spatial 

variations in chromatin density within each diffraction-limited voxel, and is proportional to 

D: Σ ∝ (D − D0), where D0 ≈ 1.5043. As shown by equation (5), the influence of the change 

in the packing-density scaling of chromatin on gene expression depends on: (1) the average 

initial (that is, preceding the perturbation) expression rate  determined by m, (2) the initial 

D, (3) the upper length-scale of packing-density scaling of chromatin , (4) gene 

length L, and (5) the size of the interaction volume (see Supplementary Section 1 for the 

derivation). These parameters were obtained experimentally and from the simulations: initial 

gene expression and D for each condition were obtained by microarray and PWS 

microscopy measurements respectively11,44,  was assumed to correspond to the 

average size of a single chromosome, L was calculated as the average gene length for genes 

in the microarray data set, and the radius of the interaction volume was determined from the 

depletion distance between DNA and transcription factors from simulations (Supplementary 

equation (7))13,45.

Critically, the theoretical prediction of the model strongly matches the experimentally 

observed changes in expression (Fig. 3d). Thus, the combined effect of increases in D on 

transcription is to warp the genomic landscape towards a state where overexpressed genes 

are further upregulated and underexpressed genes are suppressed, which can be referred as 

transcriptional divergence. Furthermore, over 90% of the change in gene expression is 

captured by the model as the number of genes per group increases (> 50 genes), indicating 

that the scaling of chromatin packing density plays the predominant role in the collective 

response of tens to hundreds of genes (Fig. 3e). In relation to the diffuse network hierarchy 

that is present for most genes, this provides a key feature of macrogenomic engineering via 

the modulation of the physical structure of chromatin because it allows predictable 

regulation of gene expression for multiple genes simultaneously. As uncovered by the 

model, although individual genes still retain the capacity to respond to specific stimuli, the 

collective global behaviour of genes is dominated by alterations to the physical 

nanoenvironment.

To leverage the predictive capabilities of our model on the expression patterns of hundreds 

of genes, we next explored if controlling chromatin packing-density scaling could be used to 

modulate the available genomic information space. In brief, this genomic information space 
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is the cumulative functional capacities present within an individual cell (intra-network 

heterogeneity or transcriptional divergence) or a population of cells (intercellular 

transcriptional heterogeneity). Analytically, our model shows that the variations in 

chromatin packing density determine intercellular transcriptional heterogeneity, H, which is 

defined as the standard deviation of the transcription rate of the same gene across a cell 

population (see Supplementary Section 1.3 for more detail):

(6)

Because ASA and  increase monotonically with D (equations (2) and (3)), H also 

increases with D. The relative intercellular heterogeneity between two cell populations with 

different chromatin packing-density scaling properties, D1 and D2, is therefore 

 (Supplementary equation (26)). This indicates 

that chromatin packing-density scaling is directly coupled to intercellular transcriptional 

heterogeneity and to the divergence in gene expression for critical processes, including 

metabolic regulation, proliferation, apoptosis, and differentiation, which is in agreement 

with the microarray data (Fig. 3f,g). Finally, the coefficient of variation of intercellular 

transcriptional heterogeneity  also increases with D, where  is 

the average rate of expression for the same gene across multiple cells (Supplementary 

equations (27), (28) and Supplementary Fig. 5). In summary, elevation of D augments both 

intracellular transcriptional divergence and intercellular transcriptional heterogeneity.

In this context, carcinogenesis may present a test bed for macrogenomic regulation. Indeed, 

increased chromatin packing-density fluctuations are a near-universal hallmark of early 

oncogenesis. The model described above would suggest that chromatin packing-density 

heterogeneity could facilitate tumorigenesis by expanding the genomic information space 

available to neoplastic cells to stabilize otherwise deleterious states46–56. By extension, this 

principle would also be expected to apply to the cellular response to cytotoxic 

chemotherapeutic stress, because increasing intra-network and intercellular transcriptional 

heterogeneity for functional processes (such as stress response, proliferation, and cell-cycle 

maintenance) would allow cells to stochastically develop chemotherapeutic resistance in real 

time8.

In brief, cytotoxic stressors can be overcome by numerous means and can depend on the 

capacity of cells to sample their genome to acclimate to the stressful environmental 

conditions. Since apoptotic and non-apoptotic decisions occur over a concomitant but 

separated timescale that spans several hours57, decreasing the accessible genomic 

information space is expected to shift behaviour toward the initial stress-response activity, 

that is, apoptosis. Conversely, rapidly increasing the information space provides a means for 

cells to arrive at one of a number of successful evasive mechanisms. Experimentally, 

intercellular transcriptional heterogeneity has so far been observed as a critical determinant 
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of chemoevasion without a clear mechanistic basis58. However, as demonstrated by our 

model, increased scaling of chromatin packing density and the resulting density fluctuations 

can produce the observed transcriptional heterogeneity. In principle, this allows for a direct 

application of macrogenomic engineering to develop adjuvant agents as CPTs that would 

decrease the scaling of chromatin packing density, and would enhance the efficacy of 

cytotoxic chemotherapy by limiting information sampling encoded in the genome and 

reducing the fitness of cells during their response to cytotoxic chemotherapy.

To explore this hypothesis and the applicability of macrogenomic engineering for selecting 

CPT adjuvant agents, we tested if cytotoxic chemotherapeutic intervention did indeed 

produce increased chromatin fluctuations coupled to an expanded genomic information 

space (that is, increased intra-network and intercellular heterogeneity). In particular, we 

tested the effect of cytotoxic treatment on chromatin organization and transcriptional 

heterogeneity in five cell-line models of three gynaecological tumours by using a wide range 

of compounds: microtubule depolymerization inhibitors (paclitaxel or docetaxel), DNA 

intercalating agents (oxaliplatin), and nucleoside analogues (5-fluoruracil or gemcitabine). 

The three tumours were chosen based on their clinical aggressiveness: uterine 

leiomyosarcoma (MES-SA and mitoxantrone resistant MES-SA.MX2), ovarian carcinoma 

(A2780 and TP53 mutant clone A2780.M248), and triple-negative breast cancer (MDA-

MB-231). As expected, cytotoxic intervention increases the heterogeneity of chromatin 

density Σ—and thus D—within 48 hours, independent of the cell-line model or of the 

mechanism of the chemotherapeutic agent (Fig. 4a–d and Supplementary Figs. 1 and 2).

By taking advantage of the fact that chromatin D is indeed predictably and directly coupled 

to the chemotherapeutic response, we explored whether CPT compounds that can rapidly (< 

30 min) reduce chromatin packing-density fluctuations would act as adjuvant agents for 

chemotherapeutic efficacy. This short time point was chosen to avoid potential confounding 

from protein translation on chromatin structure. To test the macrogenomic engineering CPT 

approach, we selected two compounds that act on biological processes that were transformed 

by paclitaxel treatment: celecoxib (stress response) and digoxin (ion homeostasis). Using 

live cell PWS microscopy, we measured the transformation in chromatin-scaling within 30 

minutes for A2780, A2780. M248 (M248), MES-SA and MES-SA.MX2 (MX2) cells treated 

with either digoxin or celecoxib. We focused on uterine leiomyosarcoma and ovarian 

carcinoma, as we had both a resistant and a sensitive subclone for each model. Notably, the 

response of each cell type to these compounds varied, but a substantive response was 

identifiable (Fig. 5a–d). In view of the differential response between CPT and 

chemotherapeutic agents at the level of variations in chromatin packing-density scaling, we 

next tested if these observations would extend into transcriptional heterogeneity.

Critically, analysis of single-cell RNA-seq data of MDA-MB-231 cells treated with 

paclitaxel in comparison to control cells10 shows the expected shift towards increased 

intercellular transcriptional heterogeneity, as well as towards intra-network transcriptional 

heterogeneity, owing to chemotherapeutic intervention. The shift affects numerous 

biological processes, as it includes genes involved in proliferation, apoptosis, oxidation/

reduction, ion transport, and nucleosome assembly (Fig. 6a–c). Furthermore, analysis of 

RNA-seq data of digoxin-treated cells shows that decreases in the chromatin packing-density 
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fluctuations through CPT agents likewise correlated with decreases in intercellular and intra-

network transcriptional heterogeneity (Fig. 6a–c). This differential response between 

chemotherapeutic agents (taxols) increasing D and CPT agents (digoxin) decreasing D (Fig. 

6a) paired with the expected changes to gene expression (Fig. 6b,c) supports our finding that 

controlling chromatin packing-density scaling can be used to modulate the genomic 

information space. By extension, we hypothesize that if the genomic information space is 

critical for chemotherapeutic evasion, we would observe that differential changes in 

chromatin packing-density scaling would extend to the adjuvant efficacy in vitro.

We found that this is indeed the case. Under normal growth conditions, untreated ovarian 

A2780 cells rapidly grew into colonies and covered over 90% of the imaging field (Fig. 7a). 

As expected, 48 hour mono-treatment with IC50 concentration of paclitaxel resulted in 

cellular coverage of ~50% of the imaging field over the same growth period as the controls 

(Fig. 7b). Combination treatment of paclitaxel with a CPT agent (celecoxib) greatly 

enhanced the efficacy of chemotherapeutic intervention, with clearance approaching 100% 

(Fig. 7c), even though CPT agents on their own did not induce apoptosis (Supplementary 

Fig. 3). Furthermore, this effect extends across all the investigated cell lines, showing an 

increased efficacy even in models with intrinsic resistance such as the M248 and MX2 

models (Fig. 7d). These effects were model- and adjuvant-independent, with the effective 

clearance centering on the total modification to chromatin packing-density scaling. 

Importantly, the magnitude of the decrease in chromatin packing-density heterogeneity by 

the CPT agents as measured by PWS microscopy strongly correlates with their increased 

efficacy to induce cancer-cell death when administered in combination with the 

chemotherapeutic compounds (Fig. 7e), resulting in highly linear behaviour that directly 

matches the level of decrease in chromatin packing-density scaling with the level of cellular 

inhibition (R2 > 0.99, Fig. 7e).

Discussion

Supra-nucleosomal chromatin can have profound effects on gene expression by acting on 

accessibility, mobility and the binding affinities between reactant molecules. Previous 

investigations of the interaction between molecular behaviour and physical organization 

have focused on the regulators of local compaction/decompaction in the context of the 

expression of individual genes4,5. Whereas previous work has demonstrated the role of 

genetic modifications, histone post-translational modifications and genomic compartments 

in the regulation of the expression of individual genes, the role of the physical environment 

within the nucleus on the broad regulation of gene expression has not been previously 

explored. Here, we have described a physiochemical framework that maps the collective 

behaviour of multiple genes simultaneously on the basis of chromatin’s physical 

nanoenvironment (Fig. 2a–d). These capabilities are derived from experimental evidence 

indicating that chromatin is the dominant crowder within the nucleus. In this context, 

modulating the packing-density scaling of chromatin (D) is one mechanism to shape the 

nuclear physical nanoenvironment and alter global patterns in gene expression. In particular, 

we have demonstrated that macrogenomic engineering can control the transcriptional 

activity of many genes simultaneously and can be applied to the selection of adjuvant 

compounds to increase the efficacy of chemotherapeutic agents in vitro. Physiochemical 
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modulation of the chromatin nanoenvironment influences patterns in gene expression owing 

to the sensitivity of genes to changes in the local physical conditions.

Although previous work investigating supra-nucleosomal organization has shown that gene 

expression depends on gene localization into a compartment or outside of it, we have shown 

that both genes within compartments and those outside of them respond to the physical 

forces produced by the physical nanoenvironment (Fig. 2b,c). We integrated Brownian 

dynamics and Monte Carlo simulations of the chemical reactions governing transcription 

with analytical predictions of the change in global accessible surface area and of the 

variations in local density of chromatin packing. The combined model allows the analytical 

prediction of transcriptional consequences of changes in the power-law scaling of chromatin 

packing density. Although we consider chromatin as a power-law media because of recent 

experimental evidence, our predictions can be extended for any known auto-correlation 

function describing the structural relationship between smaller and larger structures within 

the nucleus. Even in non-fractal conditions, both the ASA and variations in density 

monotonically increase as a function of D (Supplementary Fig. 4). Critically, the results 

from the model are in strong agreement with experimental results obtained through a 

combination of microarray measurements of gene expression and of live-cell PWS 

microscopy of the cell’s physical structure. The model appears to be best equipped to 

explain collective patterns in gene expression, and ultimately becomes the dominant 

predictor of expression patterns for larger groups of genes (> 50; Fig. 3e). At the level of 

transcription, the observed collective behaviour is anisotropic and monotonic, with highly 

expressed genes benefiting from increased variations in chromatin packing density and 

underexpressed genes responding conversely.

A major functional consequence of this asymmetric response is the transformation of the 

genomic information space, as the level of intercellular transcriptional heterogeneity (Fig. 

3f), genomic divergence (Fig. 3d,g) and intra-network transcriptional heterogeneity (Fig. 3g) 

relate directly to chromatin packing-density scaling (Fig. 3c,f). As this intercellular 

transcriptional heterogeneity is a major factor in chemotherapeutic resistance, we predicted 

that: (1) cytotoxic chemotherapeutic intervention would produce increased variations in 

chromatin packing density, and (2) agents could be predictably selected as adjuvants based 

on their capacity to reverse this effect. As predicted, treatment with cytotoxic 

chemotherapeutic compounds selected for cells with increased chromatin packing-density 

heterogeneity independent of the cell line model (ovarian, breast and sarcoma) and of the 

mechanism of the chemotherapeutic agent (DNA intercalators, microtubule assembly 

inhibitors and DNA analogues). Furthermore, the transformation of chromatin towards 

increased packing-density fluctuations corresponded with increased intra-network and 

intercellular transcriptional heterogeneity as demonstrated by single-cell RNA sequencing. 

As these findings are in strong agreement with our model predictions, we therefore 

hypothesized that compounds that could reverse this process (decrease chromatin packing-

density heterogeneity) at short time-scales (< 30 min) would increase the efficacy of existing 

chemotherapies.

We tested this hypothesis by examining the effects of two compounds that act on processes 

that demonstrated increased intercellular and intra-network transcriptional heterogeneity 
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during paclitaxel treatment: stress response (celecoxib) and ion homeostasis (digoxin). Both 

of these compounds have some anti-neoplastic inhibitory effects; however, our results 

suggest that they also modulate chromatin packing density (Fig. 5). Indeed, we observed that 

the efficacy of these agents as adjuvants depends in large part on their capability to modulate 

chromatin packing-density heterogeneity (Fig. 7d,e). For example, the ovarian carcinoma 

cells, A2780 and M248, had a robust decrease in the intranuclear variations in chromatin 

packing density for both digoxin and celecoxib, and showed a marked enhancement in 

clearance for both adjuvants. Critically, the adjuvant efficacy is directly linked (R2 > 0.99) to 

the effect on chromatin, with the level of decrease in the variations of chromatin packing 

density linearly matching cellular death. Although these results are strongly in agreement 

with the model, it is impossible to rule out the presence of secondary mechanisms that could 

produce the observed adjuvant efficacy. However, the robust agreement between the 

observed changes in gene expression and the predictions of our model (Fig. 3), the effect of 

chemotherapeutics on transcriptional and chromatin packing-density heterogeneity (Fig. 4), 

the effects of CPT agents on decreasing both transcriptional and chromatin packing-density 

heterogeneities (Figs. 5 and 6), and a robust agreement between the ability of CPT agents to 

reduce chromatin packing-density heterogeneity and the synergistic lethality imparted by 

these agents when administered in combination with cytotoxic chemotherapy (Fig. 7) 

support the overall potential of macrogenomic engineering for modulating chromatin 

packing density.

Outlook

We have shown that macrogenomic engineering can predictably modulate global patterns in 

gene expression by controlling the physiochemical environment within the cell’s nucleus. 

Whole-transcriptome manipulation based on the control of the physiochemical 

nanoenvironment of chromatin should be widely applicable to address many illnesses, 

including cancer, inflammatory disorders and autoimmune diseases. Macrogenomic 

engineering could complement gene-editing techniques: whereas the latter work at the level 

of the linear genetic code and thus target individual genes, the regulation of chromatin 

packing density affects global patterns of gene expression. Pairing gene editing and 

macrogenomic engineering may allow for the hitherto unachieved capacity to control the 

overall behaviour of biological systems. The joint application of genomic editing and 

macrogenomic engineering could significantly enhance existing capabilities to regulate 

biological behaviour in complex systems where global transcriptional reprogramming takes 

place, including pathologies related to atherosclerosis, neurodegeneration, wound repair, 

oncology and inflammation. Whereas genome-editing tools would supply the capacity to 

create new proteomic states, macrogenomic engineering is inherently reversible and can thus 

support the intrinsic capabilities of an organism by increasing or decreasing the access to 

such states.
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Methods

Cell culture

Leiomyosarcoma (MES-SA and MES-SA.MX2) and breast (MDA-MB-231) cell lines were 

purchased from ATCC. Ovarian (A2780 and A2780.M248) cell lines were a gift from C.-P. 

Huang Yang and obtained from the lab of E. de Vries at Albert Einstein College of 

Medicine. MES-SA cells were cultured in McCoy’s 5a Modified Medium (ThermoFisher 

Scientific, Waltham, MA, no. 16600108), MES-SA.MX2 cells were cultured in 1:1 

Waymouth’s MB 752/1 Medium (ThermoFisher Scientific, Waltham, MA, no. 11220035) 

and McCoy’s 5a Modified Medium, MDA-MB-231 cells were cultured in DMEM 

(ThermoFisher Scientific, Waltham, MA, no.11965118), and A2780 and A2780.M248 cells 

were cultured in RPMI-1640 Medium (ThermoFisher Scientific, Waltham, MA, no. 

11875127). All culture media was supplemented with 10% FBS (ThermoFisher Scientific, 

Waltham, MA, no. 16000044).

All chemotherapeutic agents and potential chromatin protective therapy (CPT) agents were 

purchased from Sigma Aldrich, St. Louis, Mo.: paclitaxel (T7191, Sigma), oxaliplatin 

(O9512, Sigma), 5-fluorouracil (F6627, Sigma), gemcitabine (G6423, Sigma), docetaxel 

(01885, Sigma), celecoxib (PZ0008, Sigma) and digoxin (D6003, Sigma). All compounds 

were dissolved in anhydrous DMSO (ThermoFisher Scientific, Waltham, MA, no. D12345).

Before imaging, cells were cultured in 35 mm glass bottom petri dishes (Cellvis, Mountain 

View, CA) until 60–85% confluent. All cells were given at least 24 hours to re-adhere prior 

to pharmacological treatment. CPT-treated cells were given at least 24 hours to adhere after 

trypsinization and treated for 30 minutes prior to imaging with either celecoxib (75 μM) or 

digoxin (100 nM). Chemotherapy treated cells were treated for at least 48 hours prior to 

imaging with paclitaxel (48 h, 5 nM unless otherwise specified), oxaliplatin (48 h, 15 μm), 

5-fluorouracil (72 h, 500 nM), docetaxel (48 h, 5 nM), or gemcitabine (48 h, 50 nM). Each 

population of treated cells measured by partial wave spectroscopic (PWS) microscopy was 

compared to a control-treated population of the same cell type that had been plated on the 

same day with the same seeding density as the treated cells. All cells were maintained and 

imaged at physiological conditions (5% CO2 and 37 °C) for the duration of the experiment. 

All cell lines were tested for mycoplasma contamination with Hoechst 33342 within the past 

year. Experiments were performed on cells from passage 5–20.

Partial wave spectroscopic (PWS) microscopy and in vitro treatments

Imaging was performed on commercial inverted microscope (Leica DMIRB) using a 

Hamamatsu Image-EM CCD camera C9100-13 coupled to a liquid crystal tunable filter 

(LCTF; CRi Woburn, MA) to acquire mono-chromatic spectrally resolved images that range 

from 500–700 nm at 1 nm intervals produced by a broad band illumination provided by an 

Xcite-120 LED Lamp (Excelitas, Waltham, MA). These spectrally resolved images were 

normalized by the incident light reflection produced from the glass-media interface by 

taking an independent reference from a field of view without cells. A low-pass Butterworth 

filter was applied to reduce spectral noise prior to the calculation of Σ at each pixel. Σ was 

calculated as per equations and algorithms described in detail in ref. 11.
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Significance was determined using Student’s t-test with unpaired, unequal variance on the 

average nuclear Σ normalized by the average Σ of the accompanying control group between 

the conditions indicated in the experiment using Microsoft Excel (Microsoft, Redmond, 

Washington). Significance threshold for all comparisons was set to 0.05/N to account for 

multiple comparisons with the respective control groups, where n is the number of groups. 

For example, significance for chemotherapy treated A2780 cells was 0.05/3 as comparisons 

were made between control cells and 5FU, paclitaxel, and oxaliplatin-treated cells. All PWS 

measurements were performed at least in triplicate and resulted in the analysis of the 

following number of cells: A2780 cells: 823 control, 132 paclitaxel-, 145 5-FU-, 101 

oxaliplatin-, 132 celecoxib- and 130 digoxin-treated; A2780.M248 cells: 525 control, 45 

paclitaxel-, 100 5-FU-, 85 oxaliplatin-, 36 celecoxib- and 91 digoxin-treated; MES-SA cells: 

836 control, 102 docetaxel-, 69 gemcitabine-, 275 celecoxib- and 342 digoxin-treated; MES-

SA.MX2 cells: 558 control, 106 docetaxel-, 103 gemcitabine-, 216 celecoxib- and 252 

digoxin-treated; MDA-MB-231 cells: 264 control, 36 paclitaxel-, 81 5-FU- and 59 

oxaliplatin-treated. In total, nanoscale measurements were collected from 5,644 cells.

Each individual experiment consists of 5–10 independent fields of view for analysis with 

variations in the size and density of cells accounting for the variability in total cell counts for 

each group. All PWS microscopy measurements were performed at least in triplicate. All 

pseudo-coloured live cell PWS images were produced using Matlab v. 2015b using the Jet 

colour scheme with Σ scaled from 0.01 to 0.065.

Central values displayed in all applicable figures represent the mean with error bars that 

represent the standard error of measurements. The number of cells analysed was estimated 

to achieve a 95% confidence level given the expected difference between the treatment 

group and the controls. Experiments were blinded when assessing the outcome of the 

treatment to the cells during PWS microscopy. Each cell population followed an 

approximately normal distribution with an average standard deviation that was 15 ± 2% of 

the mean.

Flow cytometry

Apoptotic induction was measured by flow cytometry (BD LSRII at the Northwestern Flow 

Cytometry Core) using CellEvent Caspase-3/7 Green Detection Reagent and Hoechst 33342 

(all ThermoFisher Scientific, Waltham, MA). In brief, cells were trypsinized and 

immediately stained with 2 μM Caspase-3/7 and 4 μM Hoechst 33342 for 30 min. Cells 

were then centrifuged for 5 minutes at 500g, washed with PBS, and resuspended in 1 ml of 

fresh media. Mock-stained cells were collected under the same preparation conditions. Flow 

cytometry was performed on the following groups of A2780 cells: unstained controls cells, 

stained control cells, stained 48 hour celecoxib-treated cells and stained 48 hour digoxin-

treated cells. 20,000 cells were collected by forward and side scattering channels for each 

group, with illumination intensities set for all conditions for Hoechst 33342 and Cas3/7 

staining laser lines to minimize autofluorescence produced from unstained cells. Analysis of 

flow cytometry was performed using open source Python software package, 

FlowCytometeryTools 0.4.5. Gates were set for Cas3/7 staining and Hoechst 33342 to 

minimize false positives from unstained cells (< 0.1% of total). Percentage of apoptotic cells 
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was assessed as the ratio of Cas3/7 + cells divided by the population of Hoechst 33342 

positive cells. Error bars represent uncertainty based on ± 10% change in gating thresholds.

Viability analysis

Relative elimination between two CPT compounds for a particular cell line model was 

calculated based on the relative population clearance adjusted for the efficacy of 

monotherapy. To quantify the relative elimination of the cells in response to 

chemotherapeutic agents alone or in combination with potential CPT agents, we measured 

the cell plate density using transmission microscopy of the dish for an area spanning 

between 600,000 to 2,500,000 μm2. These measurements were obtained using either a 40× 

or 20× air objective prior to the acquisition of PWS microscopy measurements of the 

population for three independent petri dishes for each condition group. The added 

elimination efficacy due to the co-treatment with CPT compound k and chemotherapy drug 

α relative to the elimination produced by the chemotherapy drug alone (Iα) was calculated 

as ln((1 − Iα)/(1 − Iαk)), where Iαk is the co-treatment efficacy. Relative CPT-added 

elimination (‘relative elimination’ in Fig. 7e) between two CPT compounds (k and n) was 

calculated as ln((1 − Iα)/(1 − Iαk))/ln((1 − Iα)/(1 − Iαn)).

Relative modification of chromatin packing-density heterogeneity between two CPT 

compounds k and n (‘chromatin modification’ in Fig. 7e was calculated as 

, where  and  are the average intranuclear chromatin heterogeneities for cells before 

and 30 min after the application of compound k, respectively, and Sc and Sk are the 

corresponding cell population entropy values. Entropy was calculated from each cell 

population cohort. Σ values for each cell were rounded to the nearest first decimal place 

prior to calculation. The Shannon entropy, S, was calculated as S = − Σipi × ln(pi), where pi 

is the probability of a cell of a given Σ value occurring within the population and Σi is the 

summation sign. The measured entropy was: MES-SA controls, 1.76; MES-SA celecoxib, 

1.86; MES-SA digoxin, 1.707; MX2 controls, 1.758; MX2 celecoxib, 1.677; MX2 digoxin, 

1.908; A2780 controls, 1.728; A2780 celecoxib, 1.604; A2780 digoxin, 1.428; M248 

controls, 1.92; M248 celecoxib, 1.577; and M248 digoxin, 1.75.

Microarray transcriptional analysis

Cells were serum starved for 5 hours prior to being treated with 10% FBS (SE), 100ng/ml 

epidermal growth factor (EGF), or 100 ng ml−1 phorbol 12-myristate 13-acetate (PMA). 

Live-cell PWS microscopy measurements were performed on HT-29 cells grown on 5 mm 

glass bottom petri dishes (Cell Vis) and serum starved for 5 hours before and after 

stimulation59. Changes in gene expression for each treatment group were measured using 

Illumina human HG12-T microarray chips of mRNA collected by TRIzol isolation (Life 

Technologies, Carlsbad California) from 10 mL petri dishes. Quality check and the probe 

level processing of the Illumina microarray data were further made with R Bioconductor 

package, lumi by the Northwestern Genomics Core60. Analysis of network heterogeneity 

was performed on 2445 differentially expressed genes using Mathematica v10.
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For gene network analysis, a total of 471 genes were selected based on their ontology groups 

(Cell Cycle, Proliferation, Apoptosis, Transcription, Signal Transduction or Cell 

Differentiation) using inbuilt GenomeData, matching the annotated genes with these 

processes. Transcriptional heterogeneity for each process was measured by analysing the 

relative gene expression for each gene in reference to the expression of the serum starved 

cells. Relative differences in chromatin packing-density heterogeneity were measured 30 

minutes after a stimulation (SE, EGF or PMA) was applied using PWS microscopy on the 

same cells before and after the stimulation. The difference between the two measured values 

of Σ (ΔΣ) was obtained from over 50 cells per condition and was observed to be on average: 

0.1% for SE cells, 0.77% for EGF cells and 8.49% for PMA cells.

RNA-seq transcriptional analysis

RNA sequencing data obtained from NCBI GEO from data produced previously10 for MDA-

MB-231 cells treated with paclitaxel, as well as for androgen-resistant LNCap cells treated 

with diogxin61, were aligned to human reference genome hg38 using HISAT2, STRINGTIE, 

and BALLGOWN using the methods described previously62. Sequencing results for each 

gene were calculated as fragments per kilobase pair per million reads (FPKM). Variants for 

the same gene were averaged for each cell. Genes with no expression for all cells were not 

considered in downstream analysis. GO ontologies available from Mathematica v.10 using 

inbuilt GenomeData were used to classify genes according to the biological process in which 

they are involved.

Intra-network transcriptional heterogeneity

FPKM values for each condition were averaged across the five individual replicates for 

paclitaxel-treated cells and three replicates for digoxin-treated cells which were rounded to 

the nearest tenth of a decimal. To approximate the change in the genomic information space 

at the level of intra-network transcriptional heterogeneity, the entropy, S = − Σkpkln(pk), 

where pk is the probability of an observed expression value, was calculated for genes 

belonging to the listed biological processes. Size of each circle represents the relative 

number of genes belonging to each process and thickness of connecting lines indicates 

number of shared genes for each data set (paclitaxel versus digoxin). Colour intensity 

represents the percentage change in entropy for the paclitaxel or digoxin-treated cells in 

comparison to the untreated controls for each respective group

Intercellular transcriptional heterogeneity

FPKM values for each cell were rounded to the nearest tenth of a decimal as described 

above. To approximate the change in the genomic information space at the level of 

intercellular transcriptional heterogeneity, the variance in expression for each gene was 

calculated across the 5 replicates of paclitaxel-treated cells and the three replicates of the 

digoxin-treated cells. For each process, the median variance was calculated in order to 

account for the presence of large outliers that could skew the mean. Size of each circle 

represents the relative number of genes belonging to each process and thickness of 

connecting lines indicates number of shared genes. Colour intensity represents the 

percentage change in median variance for the paclitaxel or digoxin-treated cells in 

comparison to the untreated controls for each respective group.
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In addition, the variance in expression was examined for individual oncogenic genes and 

chromatin remodelling genes, showing an increased in intercellular transcriptional 

heterogeneity due to paclitaxel treatment for MYC, KLF4, p21, NOTCH2, p53, BRCA1, 

BAX, BAK1, MXD1, EZH2, Arid1a, Brg1, SUZ12, SUV39H1, BRD8, JARID2, JMJD1C, 

NuA4 complex (EP400, RUVBL2, MORF4L1, YEATS4), SMYD3, L3MBTL2, RNF20, 

NCOR1 and GSK3b.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Genomic networks are highly interconnected and decentralized
a, Classically, the role of critical genes, such as MYC, BRCA1 and YAP, has been viewed in 

the context of a hub-spoke model, in which these genes form the critical link between the 

elements in the system. b, However, evidence has shown that the full mapping of the 

interactions that occur for all genes within a given interaction network shows a diffuse 

plurality of connections and broad network redundancy. c, Mathematically, the divergence in 

these models can be represented by the number of connections each gene shares. In the 

classical hub-spoke system, most genes are anchored only by the central elements (such as 

BRCA1, MYC and YAP). In most genetic networks, however, this is a major 

oversimplification. Indeed, most genes share direct interactions with at least five other genes 

within the network, necessitating a strategy to target the overall regulators of gene 

transcription. In c, note that when grey and red bars overlap, the bar appears dark red.
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Fig. 2. Genomic interactions depend on a complex physical nanoenvironment
a, One universally shared feature of all genes is the physical nanoenvironment that is 

determined by the supranucleosomal (> 10 nm) packing density of chromatin within the 

nucleus. b, While previous work has shown that localizing genes into or out of 

compartments will influence their expression, both genes within compartments (genes A–C) 

and outside of compartments (genes X–Z) will respond to the physical forces produced by 

their differential packing density. c, As a consequence, while genes are regulated by distinct 

molecular characteristics (transcription factor binding affinity, compartment concentrations 

of factors or nucleosomal modifications) that predispose them to a preferred expression state 

(overexpressed, intermediate or underexpressed), the transcription of these genes into 

mRNA will also depend on local physical forces. Thus, regardless of the determinant of 

expression, overexpressed genes (A and X) will differentially respond to local physical 

organization produced by chromatin packing when compared to intermediately expressed (B 

and Y) or underexpressed (C and Z) genes. To integrate these effects, we consider the 

power-law scaling of chromatin packing density through fractal dimension, D. Increased D 
produces increased variations in chromatin packing density whereas decreased D does the 

opposite. d, Ultimately, the physical geometry of chromatin (scaling) determines accessible 

surface area as well as local crowding conditions that will influence the chemical reactions 

governing transcription by altering gene accessibility, molecular mobility of reactant species, 

and the free energy of the transcriptional reactions. Pol-II, RNA polymerase II; TF, 

transcription factor; TSS, transcription start site.
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Fig. 3. Control of higher-order chromatin packing density scaling allows manipulation of 
genomic information space
a, Local macromolecular crowding density (ϕ) non-monotonically regulates gene 

expression. The rate of expression  relative to that of the average crowding that 

would be observed in the absence of chromatin packing-density heterogeneity 

 is a non-monotonic function of ϕ and also depends on . In 

turn,  is determined by molecular factors m including transcription-factor 

concentrations, binding affinities and the rate of transcription, among others. Expression of 

suppressed genes is 0.01-fold of the average, and that of enhanced genes is 10-fold the 

average. b, The result of this non-monotonic relationship between macromolecular crowding 

and gene expression is an anisotropic response of the rate of expression to changes in 

crowding  as a function of the rate of expression  where  is 

the average rate of expression. c, Differential PWS microscopy of the variations in 

chromatin packing density and RNA microarray experiment to measure the relation between 

changes in chromatin packing-density scaling and transformation of global gene expression 

using stimulation with serum (SE), epidermal growth factor (EGF), or phorbal 12-

myristate-13-acetate (PMA). Scale bars, 15 μm. Pseudo-colour: heterogeneity of chromatin 

packing density (Σ). Arrows: cell nuclei. d, Comparison of the analytical macrogenomic 

model predicting the changes in gene expression in response to changes in chromatin 

packing-density scaling (fractal dimension) D (blue curve; gene expression sensitivity (Se), 

see equation (5)), with experimental microarray results (purple markers) obtained from c. 

Each experimental data point represents the average of 100 genes.  is the average 

expression of all genes. Error bars are the standard errors of the gene expression sensitivity 

(Se) calculated based on the microarray data in each subgroup. e, The accuracy of the 

macrogenomic model (equation (5)) increases as a function of the number of genes in each 

group. For gene groups with more than 50 genes, over 90% of the variance of gene 
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expression is explained by the predicted effect of the chromatin packing-density scaling. f,g, 

A major functional role of the regulation of chromatin packing-density scaling is the 

modulation of the genomic information. Increases in the variations in chromatin packing 

density are directly linked to increased intercellular transcriptional heterogeneity (f) and 

transcriptional divergence (g). f, Comparison of the analytical macrogenomic model 

predicting intercellular transcriptional heterogeneity (H) as a function of D (blue curve; 

equation (6)) with experimental microarray results (purple markers). Error bars represent the 

standard errors of the heterogeneity of 1,000 genes for each condition. Genes were selected 

such that their expression was within 1 standard deviation of gene expression of the mean 

expression for all conditions. g, Processes where transcriptional divergence occurs include 

but are not limited to: (1) metabolic regulators, (2) proliferation, (3) apoptosis and (4) 

developmental regulation.
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Fig. 4. Chemotherapeutic stress increases variations in chromatin packing density
a, Representative PWS microscopy images of cell nuclei before and 72 (5-FU) or 48 

(paclitaxel and oxaliplatin) hours after their exposure to cytotoxic chemotherapy for A2780 

and MDA-MB-231 (M231) cells. Scale bars, 15 μm. Pseudo-colour: heterogeneity of 

chromatin packing density (Σ). Arrows: cell nuclei. b–d, Treatment of ovarian A2780 cells 

(P =  2.5 ×  10−4, 1.9 ×  10−7 and 2.8 ×  10−28) (b), uterine leiomyosarcoma MES-SA cells (P 
=  2.1 ×  10−6 and 1.1 ×  10−19) (c), and triple-negative breast cancer MDA-MB-231 cells (P 
=  2.5 ×  10−2, 1.6 ×  10−4 and 3.9 ×  10−5) (d) with cytotoxic chemotherapeutic agents (5-

FU, paclitaxel and oxaliplatin) produces an increase in the intranuclear chromatin packing-

density heterogeneity (Σ), independent of the mechanism of cytotoxic action. Significance 

was determined using Student’s t-test with unpaired, unequal variance on the average 

nuclear Σ normalized by the average Σ of the accompanying control group between the 

conditions. Box represents the 25–75% range of values and whisker represents the 10–90% 

range around the mean for N =  823 control, 145 5-FU, 132 paclitaxel and 101 oxaliplatin 

A2780 cells; N =  836 control, 102 docetaxel and 69 gemcitabine MES-SA cells; and N = 

264 control, 81 5-FU, 36 paclitaxel and 59 oxaliplatin MDA-MB-231 cells (***P <  0.001, 

*P <  0.05).
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Fig. 5. Chromatin protective agents rapidly decrease the spatial variations in chromatin packing 
density
a–d, Representative PWS images (left) and quantification (right) of the effects of CPT 

agents on the variations of chromatin packing density for MES-SA (a), MES-SA. MX2 

(MX2) (b), A2780 (c) and A2780.M248 (M248) (d) cells. Notably, variations of chromatin 

packing density for each cell line model have a differential response to CPT agents 

celecoxib (P =  3.9 ×  10−34, 1.5 ×  10−53, 1.5 ×  10−30 and 1.3  ×  10−3 for MES-SA, MX2, 

A2780 and M248 cells, respectively) and digoxin (P  =  2.7 ×  10−8, 7.6 ×  10−69, 3.1 ×  10−36 

and 6.2 ×  10−9 for MES-SA, MX2, A2780 and M248 cells, respectively). Significance was 

determined using Student’s t-test with unpaired, unequal variance on the average nuclear Σ 
normalized by the average Σ of the accompanying control group between the conditions. 

Box represents the 25–75% range and whisker represents the 10–90% range of values 

around the mean for N =  836 control, 275 celecoxib and 342 digoxin MES-SA cells; N  = 

558 control, 216 celecoxib and 252 digoxin MX2 cells; N =  823 control, 132 celecoxib and 

130 digoxin A2780 cells; and N =  525 control, 36 celecoxib and 91 digoxin M248 cells 

(***P <  0.001, *P  <  0.05). Scale bars, 15 μm. Pseudo-colour: heterogeneity of chromatin 

packing density (Σ). Arrows: cell nuclei.
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Fig. 6. Regulation of chromatin packing-density scaling modulates transcriptional heterogeneity
a, Comparison of the alterations in the variations of chromatin packing density due to taxol 

treatment (paclitaxel or docetaxel) in contrast to CPT agent digoxin for five cell line models 

(A2780, M248, MDA-MB-231, MES-SA and MX2). Notably, chemotherapeutic 

intervention produces increased variations in chromatin packing density whereas a CPT 

agent (digoxin) decreases variations in chromatin packing density. Box represents the 25–

75% range and whisker represents the 10–90% range of values around the mean for N =  401 

taxol-treated cells (132 A2780, 25 M248, 102 MES-SA, 106 MX2 and 36 MDA-MB-231 

cells) and N =  815 digoxin-treated cells (130 A2780, 91 M248, 342 MES-SA and 252 MX2 

cells). b,c, As expected, intercellular (b) and intra-network (c) transcriptional heterogeneity 

increases in cells treated with the chemotherapy agent and decreases in cells treated with the 

CPT agent for critical biological processes, including: (1) cell cycle, (2) apoptosis, (3) 

proliferation, (4) transcription, (5) signalling, (6) differentiation, (7) glycolysis, (8) 

translation, (9) ion transport, (10) metabolism, (11) oxidation/reduction, (12) stress response 

and (13) nucleosome assembly. Circle size represents the number of each genes belonging to 

a functional network/process and thickness the number of shared genes. Colour intensity 

represents the percentage change in transcriptional heterogeneity in paclitaxel-treated versus 

controls and in digoxin-treated cells versus controls (see the sections ‘RNA-Seq 

transcriptional analysis’, ‘Intranetwork transcriptional heterogeneity’ and ‘Intercellular 

transcriptional heterogeneity’ in the Methods for calculations).
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Fig. 7. Rapid modulation of chromatin packing density scaling by CPT agents greatly enhances 
chemotherapeutic efficacy
a–c, Representative images of untreated A2780 cells (a) grown for the same duration as cells 

treated with 5 nM paclitaxel (b) and cells co-treated with paclitaxel and celecoxib (c). Scale 

bars, 100 μm. d, Reduction of the scaling of chromatin packing density by CPT agents is 

directly linked to chemotherapeutic efficacy independent of cell line model and the primary 

molecular mechanism of action of the chemotherapy and the CPT compounds. D, docetaxel; 

DD, docetaxel +  digoxin; DC, docetaxel +  celecoxib; P, paclitaxel; PC, paclitaxel + 

celecoxib; PD, paclitaxel +  digoxin. The mean was calculated from N =  45 D, 45 DD and 

45 DC (MES-SA cells); N =  30 D, 30 DD and 30 DC (MX2); N =  60 P, 30 PC and 30 PD 

(A2780); and N =  60 P, 30 PC and 30 PD (M248) individual measurements of cell density 

per low-power field (410  μm2) for each condition, normalized by the average cell density 

per low-power field of the accompanying control group. Box represents the 25–75% range 

and whisker represents the 10–90% range of values around the mean. e, Relative elimination 

of cancer cells due to the co-treatment with chemotherapy and adjuvant CPT compounds 

versus the chemotherapy mono-treatment (relative inhibition) is strongly correlated to the 

efficacy of the CPT compounds to reduce chromatin packing-density scaling (chromatin 

modification) (R2 >  0.99). Relative inhibition was calculated by measuring the effective 

difference between the two CPT agents when paired with chemotherapy normalized by the 

therapeutic efficacy of chemotherapy alone (see ‘Viability analysis’ in the Methods for 

details).
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