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Abstract

Evolution of complex behaviors in higher vertebrates and primates require the development of 

sophisticated neuronal circuitry and the expansion of brain surface area to accommodate the vast 

number of neuronal and glial populations. To achieve these goals, the neocortex in primates and 

the cerebellum in amniotes have developed specialized types of basal progenitors to aid the folding 

of their cortices. In the cerebellum, Bergmann glia constitute such a basal progenitor population, 

having a distinctive morphology and playing critical role in cerebellar corticogenesis. Here we 

review recent studies on the induction of Bergmann glia and their crucial role in mediating folding 

of the cerebellar cortex. These studies uncover a key function of FGF-ERK-ETV signaling cascade 

in the transformation of Bergmann glia from radial glia in the ventricular zone. Remarkably, in the 

neocortex, the same signaling axis operates to facilitate the transformation of ventricular radial 

glia into basal radial glia, a Bergmann glia-like basal progenitor population, which have been 

implicated in the establishment of neocortical gyri. These new findings draw a striking similarity 

in the function and ontogeny of the two basal progenitor populations born in distinct brain 

compartments.

Introduction

Bergmann glia (BG), also called Golgi epithelial cells, are specialized, unipolar glial cells 

featuring cell bodies situated in the Purkinje cell layer and radial fibers passing through the 

molecular layer [1–3]. BG precursors are derived from radial glia that reside in the cerebellar 

ventricular zone. During their derivation process, BG precursors maintain basal processes 

and retract their apical processes, then relocate their cell bodies toward the cortex [4, 5] (Fig 

1A). Each BG extends two to six fibers, arranging in palisade pattern, to the subpial 

basement membrane [6](Fig 1B). The BG radial fibers aid the migration of neurons and the 
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elongation of dendrites and axons [3, 7]. In the mature cerebellum, BG actively participate in 

the information processing of the cerebellum. They also maintain structural integrity and 

synaptic connections in the cerebellum [1, 5, 8]. After induction at E13.5 in mouse embryos 

[4], BG precursors continue to proliferate at least until the second postnatal weeks [9–11]. In 

the adult cerebellum, BG express numerous stem cell markers such as Sox1 and Sox2, and 

they may constitute the adult neural stem cells [12–14]. For excellent reviews of BG 

development and their role in the mature cerebellum, readers can refer to these references [3, 

5]. Here, we focus on discussing the novel understanding of BG genesis and their function in 

the foliation of the cerebellar cortex. Our discussion also cast these new findings in the 

context of the evolution of the neocortical basal progenitors and the neocortical gyrification 

process.

The mammalian cerebellum

The cerebellum is well known for its sensorimotor processing function. Emerging evidence 

indicates that the cerebellum is also involved in higher cognition. Accordingly, cerebellar 

pathology and dysfunction are linked to many debilitating neurodevelopmental diseases, 

including autism spectrum disorder [15–19]. In this regard, there is a resurging interest in 

studying the development and the novel cognitive role of the cerebellum.

The adult cerebellar cortex is a trilaminar structure. Purkinje neurons and BG somata 

comprise the middle layer, sandwiched between an internal granule layer and an outer 

molecular layer. The internal granule layer consists of mature granule neurons, while the 

molecular layer contains interneurons, granule cell axons, Purkinje dendrites, and BG radial 

fibers [20, 21]. Cerebellar cell types arise from two principal germinal regions of the 

embryonic cerebellum. The anterior rhombic lip, located at the dorsal region of the 

hindbrain, gives rise to glutamatergic neurons, including cerebellar nuclear neurons and 

granule neurons. The ventricular zone produces GABAergic Purkinje neurons, GABAergic 

interneurons and various glial cell types [22]. Because of its relatively simple logic in 

cytogenesis, the cerebellum has been serving as an excellent experimental paradigm to study 

neurogenesis and gliogenesis.

Similar to the gyri in the neocortex, the amniote cerebella undergo stereotypic folding of 

their cortex resulting in the establishment of an elaborate set of folia. The formation of these 

extensive folds in the cerebellar cortex correlates with the evolution of increasingly complex 

behaviors in animals [23–25]. From sharks to primates, the cerebellum and neocortex grow 

regularly and disproportionately to the rest of the brain, with the extent of gyrification 

reflecting the size of these structures [26]. These observations suggest that convolution of 

the cerebral and cerebellar cortices represent an evolutionary adaptation to accommodate 

more complex functions and behaviors.

Ptpn11 is essential for Bergmann glia induction

Perturbations of signaling pathways, including Notch [27–31], Erbb [32–34], thyroid 

hormone [35], integrin [36–38], Pten [39], sonic hedgehog [40, 41], Wnt/β-catenin [42, 43], 

and FGF [44–46], result in abnormal number and/or morphology of BG. The mechanism 
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that control the induction of BG precursors, or the transformation process from radial glia to 

BG precursors, was still unclear until more recent studies revealing an essential function of 

Ptpn11.

Ptpn11 (protein tyrosine phosphatase non-receptor type 11, also known as Shp2) belongs to 

a family of protein tyrosine phosphatases that modulate diverse signaling. Mutations in the 

human PTPN11 gene result in various developmental syndromes and cancers [47, 48]. In the 

neocortex, Ptpn11 deletion altered the extracellular signal-regulated protein kinase (ERK) 

and Stat3 signaling pathways, leading to an imbalanced genesis of neurons and glia [49, 50]. 

Deletion of Ptpn11 at embryonic stage (E)10.5 using a Nestin-Cre (Nestin;Ptpn11CKO) 

resulted in a disorganization of BG fibers and an abnormal lamination of the cerebellar 

cortex [51]. Based on in vitro data, the authors concluded that the cerebellar phenotype was 

attributed to a cell-autonomous requirement of Ptpn11 in granule cell precursors (GCP). 

However, a subsequent study showed that specific removal of Ptpn11 from GCP does not 

alter layering of the cerebellar cortex [52]. By contrast, deletion of Ptpn11 from the 

cerebellar progenitors using En1-Cre (En1;Ptpn11CKO) from an earlier embryonic stage 

(E8.5) resulted in similar, but more severe, defects in the cerebellar cortex than those found 

in Nestincre;Ptpn11CKO mice [51, 52]. Cell labeling, marker gene analysis, and genome-

wide transcriptome profiling demonstrated that Ptpn11 deletion blocked the induction of BG 

precursors, whereas the generation of Purkinje neurons, interneurons, and granule neurons 

were less affected [52, 53]. Interestingly, the astrocytes in the granular layer, but not those in 

the white matter, were missing in En1;Ptpn11CKO cerebella [52]. This suggests that the 

granule layer astrocytes and BG may be derived from a different lineage from the white 

matter astrocytes. The En1;Ptpn11CKO mice represent the first characterized mouse mutation 

that completely blocks the induction of BG precursors.

The Ptpn11-controlled FGF-ERK-ETV axis is important for BG formation

It was found that Ptpn11 deletion affected ERK, but not AKT, signaling pathway [52]. The 

authors showed that robust phosphorylated ERK immunoreactivity was detected in the 

ventricular zone as well as the radial fibers of BG precursors in the wildtype mouse 

cerebellum [52]. Expression of a constitutively active MEK1 (MEK1DD), which 

phosphorylates ERK independently of extracellular signals, rescued BG formation in the 

En1;Ptpn11CKO mice [52, 53]. These observations demonstrate the importance of Ptpn11 in 

the induction of BG precursors through ERK signaling.

During cerebellar development, multiple FGF ligands are expressed at defined 

developmental stages and in distinct cerebellar regions [54]. Transcripts of Fgfr1 and Fgfr2, 
which code for FGF receptors, are first present in the ventricular zone, and later in the 

Purkinje cell layer where the cell bodies of BG reside [45, 54]. Single, double, and triple 

deletions of Fgfr1, Fgfr2, and Fgfr3 resulted in progressively more severe defect in the 

generation of BG precursors [44–46]. In fact, deletion of Fgfr1, Fgfr2, and Fgfr3 from the 

cerebellum results in a nearly complete loss of BG similar to En1;Ptpn11CKO [44, 53]. 

These findings suggest that Ptpn11 mediates the FGF-ERK signaling in the induction of BG 

precursors.
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Transcription factors Etv4 and Etv5, which are known targets and mediators of FGF [55, 

56], are highly expressed from early embryonic stages through perinatal stages in the 

cerebellum [52, 54]. Initially, Etv5 is expressed in the whole cerebellar anlage and later 

gradually restricted to BG precursors; presenting strong evidence of a key functional role of 

FGF signaling during the induction phase and the subsequent development of BG 

precursors. Deletion of Ptpn11 resulted in the loss of Etv4 and Etv5 expression, whereas 

ectopic expression of Mek1DD restored their transcription [53]. Finally, forced expression of 

Etv4 or Etv5 rescued the formation of BG in the En1;Ptpn11CKO cerebella [53]. Altogether, 

these observations demonstrate that the FGF-ERK-ETV axis is important for the induction 

of BG precursors.

Bergmann glia are essential for the folding of the cerebellar surfaces

An elegant study described the formation of the so-called anchoring centers in the cerebellar 

cortex that will become the base of each fissure [57]. Although the authors determined that 

granule cell precursors were the primary drivers of the location and timing of fissure 

formation, coordinated changes in the Purkinje cell layer and BG fibers were observed at the 

onset of the forming anchoring centers [57]. Numerous studies suggest that the interaction 

between BG and the basement membrane is important for cerebellar foliation [31, 36, 38, 

39, 58–63]. Examining postnatal En1cre;Ptpn11CKO mice uncovers that their cerebella failed 

to form any visible folia and displayed a smooth surface morphology [52]. Interestingly, the 

inward converging movement of granule cell precursors persists in the absence of BG in the 

En1;Ptpn11CKO cerebellum, leading to the accumulation of granule cell precursors 

immediately beneath the external granular layer [52]. This demonstrates that granule cell 

precursors invagination alone is insufficient to cause folding of the Purkinje cell layer and 

the pial basement membrane. Importantly, rescuing BG formation by reactivating the 

MEK/ERK pathway restores both the formation and organization of cerebellar folia [52]. 

These findings demonstrate that BG are essential for cerebellar foliation, likely by 

coordinating the invagination of granule cell precursors with that of Purkinje cell layer and 

the pial membrane (Fig 2).

Neocortical basal radial glia and cerebellar Bergmann glial precursors bear 

similar gene signatures

In the neocortex, radial glia can generate neurons either directly by asymmetric divisions or 

via an intermediate progenitor cell lineage normally occupying the subventricular zone [64]. 

More recent studies have discovered additional basal progenitors residing in the 

subventricular zone aside from the already known intermediate progenitor cells [65–67]. 

Bearing similarities to the genesis of BG precursors, this novel basal progenitor population, 

called basal radial glia (bRG) or outer radial glia, selectively loses their apical processes and 

move their soma to the outer subventricular zone at mid-neurogenesis [65–68]. Remarkably, 

bRG are abundantly present in the gyrencephalic cortices [65–67], but are relatively rare in 

lissencephalic cortices, such as the mouse [43, 69]. It has thus been speculated that bRG 

expansion is responsible for the emergence of convolutions in the neocortex [67, 70–77].
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Given their high similarity in cytogenesis and their potential roles in cortical folding, the 

transcriptomic profiles of human bRG and mouse BG precursors were studied [53]. By 

exploring the published single-cell RNA-sequencing datasets [78, 79], Heng et al. found that 

over 50% of the bRG markers were coexpressed in BG precursors. The authors also 

identified a panel of BG candidate genes by extensive RNA-sequencing analysis and gene 

co-expression network analysis [53]. Multiple statistical model analyses demonstrated that 

this BG candidate gene list bore significant similarity with that compiled from the bRG [53]. 

These data further demonstrate that BG and bRG not only share functional similarity in 

cortical folding and stem cell property, but also a highly similar transcriptomic signature.

The FGF-ERK-ETV signaling axis is involved in basal radial glia formation

From the consensus gene list compiled for bRG and ventricular zone radial glia in the 

human cortex, a number of early response genes for ERK signaling are identified [53]. A 

systematic comparison of multiple available datasets of human and mouse neocortices 

reveals that classical FGF targets (Spry and Etv genes) as well as ERK response genes are 

expressed at significantly higher levels in the human than the mouse neocortex, especially in 

cortical radial glia [53, 80]. Immunostaining confirmed that pERK signaling was low in the 

ventricular zone of the mouse cortex but readily detectable in the human embryonic 

neocortical tissue sections [53]. Ectopic expression of FgfR1K656E (a constitutively active 

FGFR1), MEK1DD, or Etv4 induce bRG-like cells in the mouse cortex expressing markers 

such as Hopx, Sox2, Pax6, Tnc, Slc1a3 and Ptprz1 [53, 79, 80]. The induced cells are 

capable of self-renewal and neuronal differentiation under both in vivo and in vitro 
conditions [53]. These data support a model that posits a common mechanism regulating the 

formation of BG precursors and bRG. Such a mechanism could have co-evolved under 

common selection forces in different brain compartments during the speciation of amniote 

and primate species.

Perspective

The above findings have demonstrated that BG play an important role in cerebellar 

corticogenesis. Several questions, however, remain to be addressed.

First, how does the FGF-ERK-ETV signaling axis control the transformation process from 

radial glia into BG and bRG? It has been shown that the ERK pathway determines the 

mitotic spindle orientation of epithelial cells [81]. A number of studies show that increasing 

the proportion of horizontal divisions, in which the cleavage furrow is parallel to the 

ventricular surface, contributes to the generation of bRG in both the human and the mouse 

cortices [68, 69, 82]. Our preliminary data suggested that the loss of Ptpn11 altered mitotic 

spinal orientation in the cerebellar radial glia at E14.5 (unpublished data by Leung and Li). 

Further studies are warranted to determine if ERK signaling controls the generation of BG 

precursors and bRG by regulating the spindle orientation.

Secondly, how do BG orchestrate the folding of the cerebellar cortex? Heng et al. shows that 

the expression of Mek1DD specifically expands bRG but fails to induce folding of the mouse 

neocortex [53]. This finding is in agreement with the notion that an abundance of bRG is 
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insufficient for gyrencephaly [83, 84]. Therefore, expansion of other basal progenitors, 

together with that for bRG, may be necessary for the successful folding of the neocortex. A 

notable parallel can be found in the cerebellum where both the granule cell precursors and 

BG play critical roles in cerebellar foliation. Understanding how BG orchestrate cerebellar 

corticogenesis will provide new insight into the evolution of a convoluted neocortex.

Finally, how is BG proliferation regulated? Like bRG in the human cortex, BG precursors 

express genes related to extracellular matrix production and receptors for growth factor 

signaling that are important for stem cell maintenance [53]. It is important to determine if 

and how BG create a self-sustaining niche that supports their proliferation, particularly in 

coordination with the enlargement of the granule cell pool during cerebellar foliation. This 

research will help us determine how BG and bRG drive brain fold formation and how brain 

fold formation relates to the development of complex sensorimotor and cognitive function 

found in mammalian species. Future research is warranted towards determining whether the 

appearance of BG is associated with the folding of the cerebellum in other mammalian 

species, and whether the abnormal formation of bRG due to malfunctions of the FGF-ERK-

ETV genetic cascade contributes to human congenital conditions that affect the folding and 

the function of the neocortex.
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Figure 1. 
(A) Progression of neurogenesis and the birth of BG precursors in the cerebellum during 

embryonic development. The arrows represent, either, a transformation, differentiation or 

cell division event. Neurogenesis in the cerebellum is a multi-step process. Neuroepithelial 

progenitors have direct contacts with the ventricular and pial surfaces and undergo 

symmetric cell division to expand the number of progenitors. As development progresses, 

neuroepithelial progenitors transform into radial glia cells, which still retain their pial and 

ventricular contacts and starts to generate basal progenitors that will directly give rise to 

neurons. Some of the radial glia also start to lose its ventricular processes and give rive to 

another type of basal progenitor, BG precursors, which retain their apical processes and 

serve specialized functions in the cerebellum. (B) Configuration of different neuronal and 

glial populations in the perinatal cerebellum. Granule neuron progenitors from the external 

granular layer (EGL, in grey shades) migrate along BG basal fibers towards the internal 

granular layer (IGL), their mature location in the cerebellum. BG – Bergmann glia; ML- 

molecular layer; PC – Purkinje cells; PCL – Purkinje cell layer.
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Figure 2. 
Arrangement of Purkinje neurons and granule neurons before and during fissure formation 

in wildtype and En1;Ptpn11CKO mouse cerebella. In wildtype, the presence of BG anchors 

on the basement membrane helps pull in the EGL and couple the inward movement of 

granule neurons with a corresponding rearrangement of the soma of Purkinje neurons. In 

En1;Ptpn11CKO, failed induction of BG precursors and hence lack of BG anchors lead to 

uncoupling of the invasion of granule neurons with the inward displacement of the basement 

membrane and Purkinje neurons.
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