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AIM
The aim of the present study was to predict olanzapine (OLZ) exposure in individual patients using physiologically based
pharmacokinetic modelling and simulation (PBPK M&S).

METHODS
A ‘bottom-up’ PBPK model for OLZ was constructed in Simcyp® (V14.1) and validated against pharmacokinetic studies and data
from therapeutic drug monitoring (TDM). The physiological, demographic and genetic attributes of the ‘healthy volunteer
population’ file in Simcyp® were then individualized to create ‘virtual twins’ of 14 patients. The predicted systemic exposure of
OLZ in virtual twins was compared with measured concentration in corresponding patients. Predicted exposures were used to
calculate a hypothetical decrease in exposure variability after OLZ dose adjustment.

RESULTS
The pharmacokinetic parameters of OLZ from single-dose studies were accurately predicted in healthy Caucasians [mean-fold
errors (MFEs) ranged from 0.68 to 1.14], healthy Chinese (MFEs 0.82 to 1.18) and geriatric Caucasians (MFEs 0.55 to 1.30).
Cumulative frequency plots of trough OLZ concentration were comparable between the virtual population and patients in a TDM
database. After creating virtual twins in Simcyp®, the R2 values for predicted vs. observed trough OLZ concentrations were 0.833
for the full cohort of 14 patients and 0.884 for the 7 patients who had additional cytochrome P450 2C8 genotyping. The vari-
ability in OLZ exposure following hypothetical dose adjustment guided by PBPK M&S was twofold lower compared with a fixed-
dose regimen – coefficient of variation values were 0.18 and 0.37, respectively.

CONCLUSIONS
Olanzapine exposure in individual patients was predicted using PBPK M&S. Repurposing of available PBPK M&S platforms is an
option for model-informed precision dosing and requires further study to examine clinical potential.
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• Physiologically based pharmacokinetic modelling and simulation (PBPK M&S) is widely used in drug development to
estimate pharmacokinetics in support of drug applications to regulatory agencies.

• Olanzapine (OLZ) is an antipsychotic drug that exhibits large interindividual variability in pharmacokinetics (up to 10-
fold), the sources of which include ethnicity, smoking status, gender, age and comedication.

WHAT THIS STUDY ADDS
• A validated PBPK model was constructed describing the PK of OLZ and its variability.
• OLZ steady state trough concentrations were predicted in individual patients using PBPK M&S, including accurate iden-
tification of an ‘outlier’ patient.

• A hypothetical decrease in drug exposure variability was demonstrated following dose adjustment based on ‘virtual twin’
predictions.

• Proof-of-concept was demonstrated for model-informed precision dosing after repurposing a widely available PBPK M&S
platform.

Introduction
The need for individualized drug dosing as part of ‘personal-
ized medicine’ has been recognized for many years [1]. In this
context, the traditional pharmacokinetic (PK)-based ap-
proach to dose adjustment has utilized therapeutic drug
monitoring (TDM), the direct measurement of plasma drug
concentration [2]. Disadvantages of this approach include
its retrospective nature, in that the dose is adjusted after ini-
tial drug administration, the requirement for at least one
time-sensitive blood sample and the need for specific assays
to measure the concentrations of each drug. Another
approach is population PK ± pharmacodynamic (PD) model-
ling (‘population PKPD’), where the dose is predicted based
on individual values of covariates that have been shown
mathematically to influence PK and/or PD in the population.
Examples include the prediction of metformin doses in
patients with renal impairment [3] and the optimization of
antibiotic dosing in the critically ill [4]. However, some
disadvantages of population PKPD for precision dosing
include the tedious, labour-intensive and time-consuming
nature of model building, lack of confidence in models built
on small sample sizes, and difficulties in handling missing
data, such as when a value for an important covariate in a
particular patient is unknown [5]. Recently, several plat-
forms have become available that combine population
PKPD models and TDM – a Bayesian approach is then used
to predict subsequent dose from inputs to the model that in-
clude a recent drug concentration (e.g. DoseMe™, PK-PD
Compass™, TCI Works®, etc).

An alternative, albeit complementary, approach is based
on the concept of matching the attributes of the real patient
to those of his or her ‘virtual twin’, using a generic physiolog-
ically based PK (PBPK) model that accommodates for patient
demographics, genetics, disease and comedication [6, 7]. This
so-called ‘bottom-up’ procedure requires the prior develop-
ment and validation of specific compound files, constructed
using physicochemical properties and the in vitro–in vivo
extrapolation (IVIVE) of information on drug metabolism
and transport in association with existing in vivo PK data [8].
Application of the model to the prediction of drug exposure
in specific patients then requires a means of marking the
activity of specific enzymes and transporters in an individual

that can be done rapidly, cheaply and as non-invasively as
possible. This can be achieved by prior phenotyping, with
exogenous or endogenous marker compounds, and by
genotyping that is calibrated to enzyme/transporter activity.
The use of a PBPK model then allows diverse patient informa-
tion to be integrated in predicting drug concentrations in
both plasma and target organs, circumventing the deficien-
cies of using a single genotype or biomarker to evaluate net
drug exposure. Prediction of the extent of specific PK drug–
drug interactions (PK-DDIs) in individual patients is based
on the prior development of validated compound files for
specific enzyme/transporter inhibitors and inducers [6]. The
influence of ‘special populations’, such as paediatrics, hepatic
disease, renal impairment and pregnancy, is accounted for in
the physiological model [9].

Olanzapine (OLZ) is a commonly prescribed antipsy-
chotic drug with large interindividual variability in pharma-
cokinetics (up to 10-fold). The intrinsic and extrinsic factors
shown to contribute to this variability include ethnicity,
smoking status, gender, age and comedication [10–13].
Patients identified as black or African-American eliminate
OLZ more rapidly than patients of other ethnic backgrounds,
and the systemic clearance of OLZ in regular tobacco smokers
is about twofold higher than in nonsmokers [14]. In terms of
age and gender, the clearance of OLZ appears to be lower in
the elderly and in women [14, 15]. Fluvoxamine, a strong
cytochrome P450 (CYP) 1A2 inhibitor, can double the
systemic exposure of OLZ [16], whereas inducers of CYP1A2,
such as carbamazepine, decrease exposure by approximately
half [17]. Several population PK models for OLZ have been
published recently, but they are specific for certain
populations (e.g. adolescents, Chinese, patients who have
overdosed, patients taking sertraline as comedication), and
have not been applied to predict OLZ exposure in patients
[14, 18–22].

As proof-of-concept for PBPK model-informed precision
dosing (MIPD) in individual patients, OLZ was selected as a
prototype drug. The reasons for this were:

1 OLZ is eliminated almost entirely by metabolism (the frac-
tion excreted unchanged in urine is<0.09), predominantly
by CYP1A2, CYP2C8 and UDP-glucuronosyltransferase
(UGT) 1A4 [23]. CYP1A2 activity can be marked by a non-
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invasive phenotyping test based on the administration of
caffeine and the collection of a single saliva sample
[24], and CYP2C8 activity can be estimated by genotyp-
ing [25, 26].

2 The lack of significant OLZmetabolism by CYP3A4 (<10%)
simplifies matters, as ways of marking the activity of this
enzyme easily in individual patients are currently limited.
There are no informative and sufficiently frequent genetic
variants associated with functional differences of the
enzyme [27], and endogenous markers such as 6β-
hydroxycortisol and 4β-hydroxycholesterol are insuffi-
ciently correlated with CYP3A4 activity [28]. Midazolam
micro-dosing is available but is invasive and may be not
be feasible in many clinical institutions [29].

3 Olanzapine is a Biopharmaceutical Classification System
class 2 compound [30], and although theoretically affected
by solubility, the pharmacokinetics of OLZ are not expected
to be rate limited by transporters [note that changes in
gastric/intestinal pH and transit time do not alter the oral
bioavailability of OLZ [Zyprexa®, Prescribing Informa-
tion], so any changes in OLZ solubility in vivo are unlikely
to be clinical important].

4 A therapeutic concentration range of 20–80 μg l�1 has been
established [31].

5 The response to OLZ is highly variable, with many patients
discontinuing treatment owing to lack of efficacy and/or
adverse effects [10]. Thus, a rapid and non-invasive ap-
proach to improve OLZ dose selection could have consider-
able clinical and health-economic benefits.

In the present study, a comprehensive PBPK model for
OLZ was constructed in Simcyp®, the most common PBPK
M&S platform used in drug development. The model was
validated by predicting the pharmacokinetics of OLZ after
single oral doses and by predicting the distribution of OLZ
steady state trough concentrations in a TDM database of
patient samples. The PBPK model was then applied success-
fully to predict the systemic exposure of OLZ in individual
patients, together with a hypothetical decrease in the
variability of OLZ exposure following dose adjustment.

Methods

Development of the PBPK model for OLZ
There are several reviews that describe in detail how physio-
logical processes and their variability are modelled in PBPK
to predict the population-level between-subject variability
in pharmacokinetics following IVIVE [6, 9, 32–34]. In short,
the ‘system’ components (e.g. haematocrit, tissue composi-
tion, body size, and enzyme and transporter abundances)
are assigned coefficients of variation (CVs) based on known
values (i.e. they are nonfixed), and a Monte Carlo approach
is used to generate virtual individual subjects for simulations.
In the present study, a minimal PBPK model comprising gut,
liver and a lumped compartment for all other organs was
utilized in Simcyp® (V14.1) (Figure 1). The differential
equations in Simcyp® to describe drug concentrations in
these compartments over time have been described previ-
ously [32]. Table 1 shows the physicochemical, blood-

binding, absorption, distribution and elimination parame-
ters used to construct the compound file for OLZ. Parameters
were taken from the published literature or predicted using
the validated prediction tools in Simcyp®.

Validation of the PBPK model for OLZ
The pharmacokinetics of OLZ in single-dose healthy volun-
teer studies was predicted (2.5, 5 and 10 mg oral doses).
Virtual subjects were matched to the volunteers for age,
gender and ethnicity. For each clinical study 10 virtual trials
were run. The mean of each predicted PK parameter, taken
as the overall mean of the mean values from each virtual trial,
were then compared with the reported mean in the corre-
sponding clinical study.

A TDM database of patients treated with OLZ at the
FlindersMedical Centre (a tertiary hospital in Adelaide, South
Australia) was searched to catalogue trough OLZ concentra-
tions at steady state. Patients were grouped into three cohorts
according to OLZ dose of 5, 10 and 15 mg daily. Simcyp®
was then used to predict the steady state plasma concentra-
tions and to examine intersubject variability. Virtual sub-
jects were matched to the patients for age, gender,
ethnicity and OLZ dose as follows: cohort 1 (n = 24; Cauca-
sian; 21–65 years; 38% female; 5 mg), cohort 2 (n = 160;
Caucasian; 18–65 years; 36% female; 10 mg) and cohort 3
(n = 80; Caucasian; 18–65 years; 36% female; 15 mg). Simu-
lations were run with oral dosing daily for 15 days: three
trials with eight subjects (n = 24) at 5 mg; 20 trials with
eight subjects (n = 160) at 10 mg; and 10 trials with eight
subjects (n = 80) at 15 mg. Virtual subjects were allocated
to separate trials, to replicate what might occur clinically

Figure 1
Minimal physiologically based pharmacokinetic model used to pre-
dict the pharmacokinetics of olanzapine. CLH, hepatic clearance;
CLR, renal clearance; fa, fraction absorbed; 1 – fa, fraction excreted
unchanged in the faeces; FG, fraction escaping gastrointestinal me-
tabolism; 1 – FG, fraction metabolized in the gut; FH, fraction escap-
ing hepatic metabolism
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(i.e. small studies conducted by different groups), although
simulations that allocate all subjects to one trial give equiv-
alent summary PK outputs in Simcyp®. The mean predicted
steady-state trough OLZ concentration at 24 h after the day
14 dose was compared with the measured concentration
from patients in samples taken between 12 and 26 h after
OLZ dosing (mean = 20 h).

Simulations of covariates that influence the
clearance of OLZ
The OLZ PBPK model was used to examine the influence of
covariates thought to alter OLZ exposure. The covariates were
age, gender, ethnicity, CYP1A2 phenotype, CYP2C8 genotype
and liver/kidney function, and they were assessed relative to
a 20–50-year-old healthy Caucasian cohort with a 1:1 male
to female distribution of extensive metabolizer (EM) CYP1A2
phenotype and wild-typeCYP2C8 genotype. Ten virtual trials
with 10 subjects were conducted for each subgroup analysis.
Previously defined and validated population profiles in
Simcyp® were used to assess outcomes in Chinese, Japanese,

Table 1
Inputs for the olanzapine (OLZ) compound file in Simcyp®

Parameter Value Reference

Physicochemicala

Molecular weight 312.43

log Po:w 3.0

pKa (monoprotic base) 7.24

Blood binding

B : P 0.83 Simcyp
predictedb

fup 0.07 [65]

Absorption (first-order model)

fa 0.6 [65]

ka (r�1) 0.52c

fugut 1.0

Qgut (l h
�1) 15.02 Simcyp

predictedb

Peff,man (10�4 cm s�1) 8.02 Simcyp
predictedb

Distribution (minimal PBPK model)

Vss (l kg
�1) 4.14 Simcyp

predictedb

Elimination

N-demethylation, rCYP1A2

Vmax (pmol min�1

pmol P450�1)
1.34 [23]

Km (μM) 61 [23]

2-hydroxylation, rCYP1A2

Vmax (pmol min�1

pmol P450�1)
1.92 [23]

Km (μM) 592 [23]

7-hydroxylation,
rCYP1A2

CLint (pmol min�1

pmol P450�1)
0.00324 [23]

N-demethylation,
rCYP2C8

Vmax (pmol min�1

pmol P450�1)
1.37 [23]

Ks (μM) 30 [23]

10-N-glucuronidation,
rUGT1A4

Vmax (pmol min�1 mg�1) 216 [23]

Ks (μM) 183 [23]

rUGT scalard 2.24 [23]

Additional liver
clearance, FMO3

HLM CLint (μL min�1 mg�1) 0.439 [23]

(continues)

Table 1
(Continued)

Parameter Value Reference

Biliary clearance

CLint (μl min�1 mg�1) 0.0 [23]

CLR for 20–30-year-old
healthy male (l h�1)e

1.8

B : P, blood-to-plasma partition ratio; CLint, intrinsic clearance; CLR,
renal clearance; fa, fraction absorbed from dosage form; FMO3,
flavin-containing monooxygenase 3; fugut, fraction unbound in the
gut; fup, fraction unbound in the plasma; HLM, human liver mi-
crosomes; ka, first-order absorption rate constant; Km, michaelis-
menten constant; PBPK, physiologically based pharmacokinetic; Peff,
man, effective permeability in man; pKa acid dissociation constant; Po:
w, neutral species octanol : buffer partition coefficient; Qgut, gut blood
flow; rCYP1A2, recombinant cytochrome P450 1A2; rUGT, recombi-
nant UDP-glucuronosyltransferase; Vmax, maximum rate of metabo-
lism; Vss, volume of distribution at steady state
aPhysicochemical data were obtained from the ChEMBL database
(https://www.ebi.ac.uk)
bThese parameters were predicted using previously validated functions in
Simcyp®. TheB : Pwaspredicted from the logPo:wandpKa (monoprotic
base) ofOLZ. The value ofQgut was predicted from the equationCLperm ×
Qent/Qent + CLperm, where Qent is the average enterocytic blood flow
(18 l h–1) and CLperm is the product of intestinal surface area (defined in
Simcyp®) and apparent permeability [66]. The value for Peff,man was
predicted using physicochemical data and the equation Log (Peff,
man) = 4–2.546 – 0.011PSA – 0.278HBD, where PSA is polar surface
area and HBD is hydrogen bond donors. The predicted Vss for OLZwas
determined using the corrected Poulin and Theil method [67]
cBack calculated based on the clinically observed time to maximum
concentration in Shirley et al. [13], according to the method de-
scribed by Yamazaki et al. [68]
dBased on differences in Vmax between user recombinant expres-
sion system [HEK293T cells; 216 (pmol min�1 mg�1) and HLM
(486 pmol min�1 mg�1)]
efe, fraction excreted unchanged in urine (0.09); CLiv, intravenous
clearance (20 l h�1)
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geriatric (66–90 years) and impaired liver/kidney function
cohorts.

Prediction of OLZ exposure in individual
patients
A clinical study was conducted to determine whether the
validated OLZ PBPK model in Simcyp® could be applied to
predict OLZ exposure in patients. A cohort of inpatients
recently commenced on OLZ were recruited at the Flinders
Medical Centre (ethics approval number HREC/13/SAC/
181). Inclusion criteria were: >18 years of age, taking OLZ
for >7 days without dose adjustment, no evidence of signifi-
cant liver or renal dysfunction [liver function tests<2 × upper
limit of normal and an estimated glomerular filtration rate
(GFR) >60 ml min–1] and the ability to consent, as judged
by the treating psychiatrist. To facilitate recruitment and
generate a diverse study population, no exclusions were
placed on indication for OLZ, ethnicity, smoking status,
weight or comedications.

Following consent, the weight and height of each patient
were measured, current smoking status was recorded and
their consumption of caffeine (CAF), alcohol, cruciferous
vegetables and chargrilled meat was assigned a ranking of
either low, moderate or high. Each patient then ingested a
100 mg CAF tablet (NoDoz Tablets, Key Pharmaceutical,
Sydney, NSW, Australia), having refrained from consuming
CAF-containing products for the previous 24 h. Saliva
samples for the analysis of CAF and paraxanthine (PXT) were
collected 5 min before CAF dosing and 4 h after. The samples
were centrifuged to remove sediment, and stored at �20°C
until analysis (see below). Venous blood (5 ml) was collected
into K3 ethylenediamine tetraacetic acid tubes at the end of
the OLZ dosage interval, centrifuged (4000 g for 5 min), and
the plasma was frozen at �20°C until analysis of the OLZ
plasma concentration (see below). In those patients who
consented, 1 ml of the blood sample was stored separately
for CYP2C8 genotyping (see below).

A ‘virtual twin’ profile for each study participant was
constructed by individualizing the Simcyp® healthy volun-
teer population file for ethnicity, gender, age, height, weight,
CYP2C8 genotype and CYP1A2 phenotype. The methods
used to assign CYP2C8 genotype and CYP1A2 phenotype
are described in subsequent sections. Ten simulations with
each virtual twin were run at the OLZ dose taken by the
corresponding real patient (either 10 or 15 mg OLZ). The
individualizing input parameters were therefore ‘fixed’ for
all 10 simulations, while values for the remaining ‘nonfixed’
system components were generated using the Monte Carlo
approach in Simcyp® based on the known population vari-
ability for each parameter. The mean predicted steady state
trough OLZ concentration at 24 h after the day 14 dose from
10 simulations with a virtual twin was then compared with
the measured concentration from patients taken at the end
of the OLZ dosing interval (approximately 22–24 h).

Assays
Authentic standards forOLZ and d3-OLZwere purchased from
Toronto ResearchChemicals (Toronto, ON, Canada). Authen-
tic standards for benzotriazole (BTZ), CAF and PXT were pur-
chased from Sigma-Aldrich (Sydney, NSW, Australia). High-

purity water was obtained using a MilliQ Synergy UV
Ultrapure water system (Merck Millipore, Sydney, NSW,
Australia). Acetonitrile [liquid chromatography–mass spec-
trometry (LC–MS) grade] and methanol (LC–MS grade) was
obtained from Merck Millipore (Melbourne, VIC, Australia).
All other solvents and reagents were of analytical reagent
grade.

The PXT : CAF ratio in saliva was determined by adapting
a previously published method [24]. Saliva (100 μl) was
vortexed for 30 s with 50 μl of BTZ (5 μg ml–1) in water (assay
internal standard) followed by further vortexing (2 × 30 s)
with 4 ml of ethyl acetate and centrifugation (5000 g,
10 min). The organic layer was collected and evaporated to
dryness under a stream of nitrogen gas. Dried eluates were
reconstituted in 100 μl of acetic acid (1%) in water and trans-
ferred to high-performance liquid chromatography (HPLC)
vials containing a plastic insert for analysis. Chromato-
graphic separations were performed on a Waters NovaPak
C18 column (150 × 3.9 mm, 4 μm; Waters, Milford, MA,
USA) using an Agilent 1100 series HPLC. The column temper-
ature was maintained at 25°C. CAF, PXT and BTZ were
separated from matrix components by isocratic elution at a
flow rate of 1 ml min–1 using a mobile phase comprising
acetic acid (1%) in water. The retention times of PXT, BTZ
and CAF under these conditions were 6.2, 12.1 and
15.6 min, respectively. Column eluent was monitored by
ultraviolet absorbance at 270 nm. Quantification of CAF
and PXT in patient samples was carried out by comparison
of peak areas with those of authentic standards. Calibration
curves (0.05–5 μg ml–1) and quality control samples
(0.75 μg ml–1) were prepared by spiking CAF-free saliva
with CAF and PXT.

To measure OLZ concentration, plasma (100 μl) was
vortexed for 30 s with 100 μl of a solution of d3-OLZ (50 ng
ml–1) in acetonitrile (assay internal standard). Carbonate
buffer (50 μl; 1 M, pH 9.5) was added followed by 1 ml of
methyl tert-butyl ether, and the mixture was vortexed (2 ×
1 min) and centrifuged (13 000 g, 5 min). The organic layer
was collected and evaporated to dryness using a MiVac
centrifugal vacuum concentrator (GeneVac, Sydney, NSW,
Australia). Dried eluates were reconstituted in 100 μl of am-
monium formate (10 mM, pH 3.0) with 50% v/v acetonitrile
and transferred to Ultra Performance LC™ (UPLC) vials con-
taining a spring-loaded low volume glass insert. Chromato-
graphic separations were performed on a Waters ACQUITY™

BEH C18 analytical column (100 mm × 2.1 mm, 1.7 μm; Wa-
ters Corporation, Milford, MA, USA) using a Waters
ACQUITY UPLC system. The column temperature was main-
tained at 40°C, and the sample compartment at 15°C. OLZ
and d3-OLZ were separated from matrix components by
isocratic elution at a flow rate of 0.25 ml min–1 using a mobile
phase comprising ammonium formate (10 mM, pH 3.0) with
30% v/v acetonitrile. The total run time for each sample was
2.5 min. The retention time for OLZ and d3-OLZ under these
conditions was 1.8 min. Column elutant was monitored by
mass spectrometry, performed on a Waters Q-ToF Premier™

quadrupole, orthogonal acceleration time-of-flight tandem
(ToF) mass spectrometer (Q-ToF-MS) operated in positive
ion mode with electrospray ionization (ESI+). ToF data were
collected in wide pass (MS) mode, with the resolving quadru-
pole acquiring data between m/z 100 and 500. Selected ion
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data were extracted at a precursor m/z of 313.14 (OLZ) and
316.14 (d3-OLZ). Resulting pseudo multiple reaction moni-
toring (MRM) spectra were analysed using Waters
QuanLynx™ software (Waters Corporation, Sydney, NSW,
Australia). Quantification of OLZ in patient samples was ac-
complished by comparison of peak areas with those of au-
thentic standards. Calibration curves (10–200 ng ml–1) and
quality control samples (75 ngml–1) were prepared by spiking
blank plasma with OLZ. The limit of quantification (LOQ)
and limit of determination (LOD) values for OLZ in plasma
were 0.5 ng ml�1 and 0.1 ng ml�1, respectively, and the CV
for the LOQ was 12.8%.

Determination of CYP2C8 genotype
Genomic DNA was extracted from patient whole-blood sam-
ples. The concentration and purity of the samples were deter-
mined using a Nanodrop (Thermo Fisher Scientific,
Waltham, MA, USA), and DNA was stored at �20°C until re-
quired. The CYP2C8*3 (rs11572080) and CYP2C8*4
(rs1058930) single nucleotide polymorphisms (SNPs) were
determined by TaqMan® SNP genotyping assays using an
ABI 7500 Fast Real-Time polymerase chain reaction system
(Applied Biosystems, Carlsbad, CA, USA). Assays were per-
formed according to the manufacturer’s instructions.

Assignment of CYP1A2 activity from
PXT : CAF ratio
CYP phenotypes are defined in Simcyp® as a function of
enzyme abundance (pmolmg–1 protein) and the turnover rate
constant (1 h–1). Individualized CYP1A2 activity in each vir-
tual twin was assigned from the measured PXT : CAF ratio as
a function of ‘relative enzyme abundance’ using the equation:

Relative enzyme abundance

¼ 52 pmol mg–1 protein�PXT : CAF ratio
0:549

where 52 pmol mg–1 protein is the population mean he-
patic enzyme abundance for CYP1A2 (Simcyp® in-built pa-
rameter), and 0.549 is the population mean 4-h PXT : CAF
ratio in healthy Caucasians of both genders, reported
across three studies, weighted to account for study sample
sizes [13, 35, 36].

Assignment of CYP2C8 enzyme abundance
and turnover rate from genotype
The most common alleles observed in Caucasians that affect
CYP2C8 activity are *3 and *4 [26]. Simcyp® model inputs
defining the enzyme activity (relative enzyme abundance
and turnover rate constant) of CYP2C8 genotypes are shown
in Table 2. Model inputs were determined from pooled in vitro
enzyme abundance [25, 37] and kinetic [in human liver mi-
crosomes (HLM), hepatocytes or recombinant CYP (rCYP)]
[26, 37–43] data for each genotype with multiple substrates.
Additional studies have reported reduced catalytic activity
for carriers of one or more CYP2C8*3 and CYP2C8*4 alleles
[44–47]; however, as these studies did not provide
quantitative data, they were not incorporated when defining
model inputs. In the absence of in vitro kinetic data describing
the pharmacokinetics in carriers of CYP2C8*1/*3 and
CYP2C8*1/*4 genotypes, turnover rate constants were
assigned based on the relative in vivo impact of these geno-
types (accounting for differences in enzyme abundance)
determined in studies that assessed both CYP2C8 genotype
in vitro and in vivo.

Table 2
Simcyp® inputs for cytochrome P450 (CYP) 2C8 genotypes

Parameter Value Reference

*1 / *1

Relative enzyme abundance (pmol mg protein�1) 1 [25, 37]

Turnover rate constant (h�1) 0.0301 [26, 37–43]

*3 / *3

Relative enzyme abundance (pmol mg protein�1) 21 [25, 37]

Turnover rate constant (h�1) 0.0143 [26, 37, 38, 40, 42, 43]

*4 / *4

Relative enzyme abundance (pmol mg protein�1) 8 [37]

Turnover rate constant (h�1) 0.0101 [26, 37, 39–41, 43]

*1 / *3

Relative enzyme abundance (pmol mg protein�1) 37 [25]

Turnover rate constant (h�1) 0.0222

*1 / *4

Relative enzyme abundance (pmol mg protein�1) 16 [25]

Turnover rate constant (h�1) 0.0201
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Analysis of model performance
The performance of simulations was assessed by the mean-
fold error (MFE):

MFE ¼ PK parameter mean; predictedð Þ
PK parameter mean; observedð Þ

Predicted PK parameters were directly extracted from
Simcyp® [area under the plasma concentration-time curve,
peak plasma concentration and time tomaximum concentra-
tion (Tmax)] or determined by regression of the mean pre-
dicted semi-logarithmic concentration vs. time data for
the elimination phase (t½). The model was accepted if all
predicted PK parameters were within twofold of the corre-
sponding observed values from the single-dose PK studies
(MFE 0.5 to 2.0). Pooled data for each PK parameter and
subgroup were also subjected to Bland–Altman plot analy-
sis, with statistical significance set at P < 0.05. Differences
between predicted and observed values for single-dose sim-
ulations were determined by paired sample Student’s t-test
(SPSS v 22; IBM Corporation, Armonk, NY, USA). Multiple
comparison testing (one-way analysis of variance with
Tukey post hoc analysis) was conducted to assess the statis-
tical significance of covariate effects for age, gender, eth-
nicity, CYP1A2 phenotype, CYP2C8 genotype and
liver/kidney function (SPSS v 22).

Analysis of hypothetical decrease in OLZ
exposure variability after dose adjustment
Individualized drug dosing requires decreasing the variability
in overall response based on individual attributes of the
patient which define the sensitivity of that patient to a given
systemic exposure. Therefore, the predicted systemic
exposure was used to calculate a hypothetical decrease in
variability had the OLZ dose been adjusted based on outputs
from virtual twins. The following steps were taken to com-
pare the CVs for the fixed-dosing regimen and hypothetical
adjusted-dosing regimens:

1 The CV for observed OLZ exposure (OLZ trough concentra-
tion) was calculated.

2 The target for desired OLZ trough concentration was set at
50 μg l�1, which is in themiddle of the therapeutic window.

3 The ratio of predicted OLZ exposure relative to the target
value in step 2 was established.

4 The ratio in step 3 was then used as a measure of hypothet-
ical dose adjustment in each patient.

5 In theory, and assuming linear kinetics, each patient
would have the exact target exposure (50 μg l�1) had
the dose been adjusted according to step 4 and the
model from the virtual twins was 100% accurate and pre-
dictive. However, using the ratio of observed exposures
to predicted exposures under the fixed-dose regimen,
measures of deviations from a perfect model were
obtained and then used to calculate hypothetical values
of OLZ trough concentration under the dose-adjustment
scenario.

6 The CV for observed OLZ trough concentration under the
fixed-dose regimen was compared with the CV of the hypo-
thetical OLZ trough concentrations after dose adjustment.

Results

Validation of the PBPK model for OLZ
The predicted and observed PK parameters of OLZ after single
oral doses are summarized in Table 3. The differences
between predicted and observed PK parameters were not
statistically significant (P > 0.05). Time to maximum concen-
tration was systematically underpredicted in all simulations
(MFEs = 0.55–0.82), whereas other simulated PK parameters
were more consistent with the observed values (MFEs ranged
from 0.84 to 1.55).

The predicted and observed cumulative frequency plots of
trough OLZ concentrations at steady state are compared in
Figure 2. While the recovery of the observed distributions
was generally good, there was a trend to overpredict the range
of concentrations for the 10 and 15 mg doses (Figure 2B and
2C). With the exception of the 5 mg dose (P = 0.986), differ-
ences between predicted and observed trough OLZ concen-
trations were statistically significant.

Simulations of covariates that influence the
clearance of OLZ
The box and whisker plots showing the impact of covariates
on predicted OLZ clearance are shown in Figure 3. As CYP1A2
phenotype was considered as a continuous variable,
subgroup analysis was not performed. Virtual subjects in sub-
groups aged over 41 years had a significantly decreased OLZ
clearance compared with younger subjects. Chinese and
Japanese subjects had a significantly decreased OLZ clearance
compared with Caucasians. The CYP2C8*4/*4 genotype was
associated with a statistically significant lower OLZ clearance
compared with the CYP2C8*1/*1 genotype (P < 0.05). All
degrees of liver disease (Child–Pugh A, B and C) and kidney
impairment (defined as GFR <60 ml min�1) were associated
with statistically significant decreases in clearance (P <

0.05). Although the mean clearance of OLZ was lower in
females compared with males by about 1 l h�1, this was not
statistically significant.

Prediction of OLZ exposure in individual
patients
Fourteen patients were recruited for the clinical study
(Table 4). Nine were female (65%) and seven consented for
CYP2C8 genotyping. All patients were Caucasian and had
normal liver and kidney function, defined as liver function
tests <2 × upper limit of normal and estimated GFR >60 ml
min�1. Half of the patients were current smokers. Based on
self-report, almost all patients had moderate to high CAF in-
take (13/14), 65% considered themselves as moderate- to
high-level drinkers of alcohol (9/14), and the consumption
of cruciferous vegetable and chargrilled meat was generally
low. There was significant heterogeneity in measured trough
OLZ concentrations at steady state, with observed values
ranging from 7.8 to 76.1 μg l�1 (mean = 46.1 μg l�1). With re-
spect to CYP1A2 phenotype, the mean PXT : CAF ratio was
0.511 (range 0.019–2.978). Of the seven patients who
consented to CYP2C8 genotyping, the genotypes were
CYP2C8*1//*1 (n = 4), CYP2C8*1/*3 (n = 2) and CYP2C8*1/
*4 (n = 1).
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Figure 4 shows the predicted vs. observed trough OLZ
concentrations for the full cohort (n = 14; panel A), with a
subgroup analysis of subjects also genotyped for CYP2C8
(n = 7; panel B). The corresponding Bland–Altman plots are
provided in Figure 4C and D. These panels suggest systematic
bias resulting in underprediction of trough OLZ concentrations
by about 10 μg l�1. The prediction accuracy was similar between
the full cohort and CYP2C8 genotyped subgroup (assessed as
mean difference between simulated vs. observed OLZ con-
centrations). Precision was greater for the CYP2C8 geno-
typed subgroup, with correlation of determination (R2)

values for predicted vs. observed trough OLZ concentrations
of 0.884 (genotyped subgroup) and 0.833 (full cohort),
respectively.

Hypothetical decrease in OLZ exposure
variability after dose adjustment
Hypothetical dose adjustments for each patient were
determined. In 11/14 patients, the dose of OLZ would need
to be increased to attain the target concentration of 50 μg l�1 –

that is, Figure 4A shows that the predicted OLZ trough

Table 3
Mean predicted (pred) and observed (obs) pharmacokinetic parameters of olanzapine (OLZ) after single oral doses

Population Study reference

OLZ dose AUCa CL t½b Cmax Tmax

(mg) (μg l h�1) (l h�1) (h) (μg l�1) (h)

Healthy volunteers Shirley et al. 2003 [13] 10 Observed 501 20.0 32.0 15.0 4.0

Predicted 621 18.5 30.2 14.5 4.2

Pred/obs ratio 1.24 0.93 0.94 0.97 1.06

Callaghan et al. 1999 [11]#BY 10 Observed 512 20.6 32.4 12.6 6.1

Predicted 645 18.7 29.5 15.4 4.2

Pred/obs ratio 1.26 0.91 0.91 1.22 0.69

Sathirakul et al. 2003 [12] 10 Observed 578 18.5 29.6 15.3 7.0

Predicted 648 18.3 29.4 15.5 4.1

Pred/obs ratio 1.12 0.99 0.99 1.01 0.59

Callaghan et al. 1999 [11]#CH 7.5 Observed 500 15.6 46.7 9.2 8.0

Predicted 492 18.2 30.1 11.4 4.3

Pred/obs ratio 0.98 1.17 0.64 1.24 0.54

Sathirakul et al. 2003 [12] 5 Observed 293 18.5 31.2 6.9 6.0

Predicted 324 18.3 29.4 7.7 4.1

Pred/obs ratio 1.11 0.99 0.94 1.11 0.68

Sathirakul et al. 2003 [12] 2.5 Observed 146 18.0 29.5 3.9 8.0

Predicted 162 18.3 29.4 3.9 4.2

Pred/obs ratio 1.11 1.02 1.00 1.01 0.53

Healthy volunteer simulation MFE 1.14 1.00 0.91 1.09 0.68

Chinese healthy volunteers Sathirakul et al. 2003 [12] 10 Observed 712 14.6 28.7 17.3 4.0

Predicted 836 13.9 31.6 18.7 4.2

Pred/obs ratio 1.17 0.95 1.10 1.08 1.05

Sathirakul et al. 2003 [12] 5 Observed 351 15.0 29.1 8.0 6.0

Predicted 418 13.9 31.6 9.4 4.2

Pred/obs ratio 1.19 0.93 1.09 1.17 0.70

Sathirakul et al. 2003 [12] 2.5 Observed 179 14.9 30.0 4.5 6.0

Predicted 209 13.9 31.6 4.7 4.2

Pred/obs ratio 1.17 0.93 1.05 1.05 0.70

Chinese healthy simulation MFE 1.18 0.94 1.08 1.10 0.82

Geriatric North
European Caucasians

Callaghan et al. 1999 [11]#BE 10 Observed 574 18.5 48.0 9.2 8.2

Predicted 748 15.9 40.3 14.3 4.5

Pred/obs ratio 1.30 0.9 0.8 1.5 0.5

Geriatric NEC simulation MFE 1.30 0.86 0.84 1.55 0.55

AUC, area under the plasma concentration-time curve; Cmax, maximum concentration; CL, clearance; t½, half-life; MFE, mean-fold error; NEC,
North European Caucasians; Tmax, time to maximum concentration; #BY, study B [young (20–41-year-old) cohort]; #BE; study B [elderly (65–79-
year-old) cohort]; #CH, study C [healthy (nonhepatic cirrhosis) cohort]
a0–120 h for simulations and 0–∞ for in vivo studies
bPredicted t1/2 determined by regression of the mean predicted semi-logarithmic concentration vs. time data for the elimination phase (12–120 h)
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concentrations are below the target concentration, indicating a
systematic underprediction in most virtual twins. The variabil-
ity in OLZ exposure was decreased after adjusting the OLZ dose
based on predicted OLZ exposures. The CV of observed OLZ
trough concentration (range 7.8–76.1 μg l�1) with a fixed-dose

regimen was 0.37. The CV of hypothetical OLZ trough concen-
tration (range 31.5–57.1 μg l�1) with a dose-adjusted regimen
was 0.18. This translates to a decrease in exposure variability of
about twofold using hypothetical dose adjustment based on vir-
tual twin predictions.

Figure 2
Predicted (lines) and observed (columns) frequency distributions of steady state trough olanzapine (OLZ) concentrations in patients monitored by
the Flinders Medical Centre therapeutic drug monitoring service

Figure 3
Box and whisker plots showing the impact of the following covariates on predicted olanzapine (OLZ) clearance: (A) Age; (B) Gender; (C) Ethnicity;
(D) CYP1A2 phenotype; (E) CYP2C8 genotype; (F) Disease states. The bars represent the upper and lower quartiles, themean (lines in the bars) and
the 95% confidence intervals (whiskers) of data from simulations. * P < 0.05 compared with control group (20–50-year-old Caucasian male, ex-
tensive metabolizer, cytochrome P450 (CYP) 1A2 phenotype, CYP2C8*1/*1, normal liver and kidney function). CKD, chronic kidney disease; CP,
Child–Pugh; S, stage
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Discussion
This is the first study to predict drug exposure in patients after
individualizing a population file in Simcyp® to create virtual
twins based on covariates known to influence pharmacoki-
netics. A ‘bottom-up’ approach generated a PBPK model of
OLZ that was validated by comparison with single oral-dose
PK studies (MFE 0.55–1.30) and by recapturing reasonably
well the distribution of trough OLZ concentrations in a
TDM database of patient samples (Table 3 and Figure 2). After
considering the ethnicity, gender, age, height, weight, liver
and kidney functions, the CYP1A2 phenotype, as deter-
mined by the PXT : CAF ratio in saliva, and the CYP2C8 geno-
type, in patients who consented, the OLZ PBPK model was
applied successfully to predict steady state OLZ concentra-
tion in individual patients (Figure 4). A hypothetical decrease
in OLZ exposure variability after dose adjustment based on
predictions was also demonstrated. These data are proof-of-
concept for MIPD after repurposing a widely available PBPK
M&S platform.

The last 15 years have seen a dramatic increase in PBPK
M&S to support drug applications to regulatory agencies
[48, 49]. Approximately two-thirds of studies are for
predicting potential PK-DDIs, which can mitigate the need
for clinical studies [9, 49, 50]. Other important applications
include predicting age- and ethnic-related changes in phar-
macokinetics and the assessment of pharmacokinetics in
pathophysiological conditions such as liver and renal disease,

and heart failure [9, 51]. Although the role of PBPK M&S in
drug development is universally accepted, with regulatory
guidance now available [52, 53], there is growing interest in
clinical medicine to harness this approach for better patient
care. Areas of initial focus include infectious diseases, trans-
plant medicine, oncology and paediatrics, as these disciplines
most often have the prerequisites necessary for high-impact
MIPD – that is, the patient, disease and drug characteristics
that make MIPD worthwhile. Examples of prerequisites in-
clude: a patient group with minimal clinical data; a disease
with a high unmet medical need; and a drug with a well-
defined narrow therapeutic window (see Darwich et al.,
2017 for further detail [54]). Although there are many
examples of how model-informed approaches have been
used successfully to optimize dose in individual patients,
most use population PKPD models in local collaborative
efforts between academia and healthcare [54].

The potential benefits of repurposing a widely available
PBPK M&S platform for MIPD include:

1 A user-friendly interface for which extensive training in
pharmacometrics is not essential to build models and run
simulations (i.e. suitable for clinicians).

2 Rapid application to novel clinical scenarios, as there is no
need to generate an individual model each time that is only
valid for a certain population. An example is the simulation
of pharmacokinetics in a novel population (e.g. ethnic
group), in which the compound file for that drug has been

Figure 4
Correlations of predicted and observed steady state trough olanzapine (OLZ) concentrations in subjects phenotyped for cytochrome P450 (CYP)
1A2 (all subjects) and those also genotyped for CYP2C8. (A) All subjects (n = 14); (B) Only the subjects genotyped for CYP2C8 (n = 7). The corre-
sponding Bland–Altman plots are shown in (C) and (D). Small dotted lines, line of unity; thick black lines, regression line for the data; larger dotted
lines, 95% CIs
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previously validated, typically using the healthy volunteer
population file, and where the physiological characteristics
of the novel population are well defined and the perfor-
mance of the population file is validated.

3 Flexibility to change as additional information becomes
available, such as new in vitro data for a disposition process
or updating the platform to include validated compound
file(s) of potential interacting drugs.

4 Finally, an ability to simulate the effects of intrinsic and/or
extrinsic factors (e.g. comedications, genetic polymor-
phisms in drug metabolizing enzymes and transporters,
and so forth) outside the range found in the clinical data
used to build population PKPD models [54, 55].

Simulations were performed to examine the impact of
covariates considered to influence OLZ clearance [11–13]
(Table 2 and Figure 3). The CYP2C8 genotype was also
included, given recent evidence showing the contribution
of CYP2C8 to OLZ metabolism in vitro [23], a discovery that
may explain the poor correlations between CYP1A2 pheno-
type or genotype and plasma OLZ andN-desmethyl-OLZ con-
centrations in a few studies [13, 56, 57]. A series of small
clinical studies by Callaghan et al. showed trends for lower
OLZ clearance in various subgroups that were not statistically
significant (elderly, non-Caucasians, females, those with
renal impairment and nonsmokers [11]). When simulation
conditions were matched to the clinical study designs, signif-
icant differences in OLZ clearance between subgroups were
undetectable (data not shown). However, simulating a larger
number of trials to include more subjects overall (10 × 10 =
100 subjects), powered to reject a bioequivalence null hy-
pothesis with 80% power (i.e. to detect subgroup differences),
did simulate a statistically significant lower OLZ clearance for
age (≥ 66 years of age), Chinese and Japanese ethnicity, and all
degrees of liver disease (Child–Pugh A, B and C) and kidney
impairment (GFR <60 ml min�1) (Figure 3). These data high-
light how small clinical studies (n ≤ 15) with substantial het-
erogeneity (standard deviation ranging from 20% to 100%
in Callaghan et al. [11]) have limited capacity to identify sub-
tle differences in pharmacokinetics [58]. Consistent with rel-
ative low enzyme abundance [37] and decreased metabolic
clearance of other CYP2C8 substrates in vivo [59], the
CYP2C8*4/*4 genotype was associated with a statistically sig-
nificant lower OLZ clearance compared with CYP2C8*1/*1.
This finding for OLZ requires further investigation in vivo. In-
terestingly, gender difference in OLZ clearance was not
recovered in simulations, a finding at odds with some clinical
data, the largest such difference being found in the Clinical
Antipsychotic Trials for Intervention Effectiveness (CATIE)
trial, which reported approximately one-third lower OLZ
clearance in women compared with men [60]. Gender differ-
ence in CYP1A2 activity is controversial, with decreased
activity observed during pregnancy or treatment with oral
contraceptives, but not during different times of a woman’s
menstrual cycle, and for some ethnic groups (Spanish, Turkish,
Chinese, South Asian and African-American) but not others
(those with European ancestry) (see Perera et al. [10] for further
detail). Once again, the clinical studies on which to base
comparisons are highly variable, so in the absence of superior
clinical data it is difficult to access accurately the performance
of the PBPK model [58].

Only 14 patients were eligible for the clinical study
(Table 4). The reason for this poor recruitment is because
OLZ use at Flinders Medical Centre is predominantly for the
management of acute psychosis and agitation ‘pro re nata’ (p.
r.n., as required), so it was difficult to recruit inpatients taking
a stable dose for >7 days. However, even with this small co-
hort, the interindividual variabilities in OLZ trough concen-
tration (range 7.8–76.1 μg l�1, mean = 46.1 μg l�1) and
CYP1A2 phenotype (PXT : CAF ratio range 0.019–2.978,mean
0.511) were consistent with those seen previously in Cauca-
sians [13, 35, 36]. The twofold higher mean PXT : CAF ratio
in smokers compared with nonsmokers (0.694 vs. 0.328) also
aligned well with findings in the literature [10], although this
resulted from a particularly high value in one participant, a
39-year-old female smoker in whom the PXT : CAF ratio was
2.978 (Table 4). Other extrinsic factors that contribute to var-
iability in CYP1A2 activity did not show obvious relation-
ships to the CYP1A2 phenotype and were not analysed
independently (e.g. consumption of CAF, alcohol, cruciferous
vegetables and chargrilled meat, and current comedications).
It should be noted that all extrinsic factors were considered to-
gether when individualizing the PBPKmodel of OLZ to create
virtual twins, as assignment of CYP1A2 activity in Simcyp®
was based onCYP1A2 phenotype.While recognizing the lim-
itations of the small number, additional consideration of the
CYP2C8 genotype in seven participants only slightly im-
proved the correlation between predicted and observed OLZ
concentrations (Figure 4). This may further support the puta-
tive role of CYP2C8 in OLZ clearance [23]. Importantly, the
approach identified the outlier patient with an OLZ trough
concentration well below the therapeutic range (7.8 μg l�1).
Such patients are less likely to respond to OLZ and may re-
quire longer hospitalization, with increased costs to
healthcare systems.

An important objective of MIPD is to reduce variability in
response by adjusting dose. There are many sources of
variability in response, such as adherence, pharmacokinetics,
pharmacodynamics and disease phenotype [61]. As the focus
of this research was on the PK component, a hypothetical
scenario was tested, whereby the OLZ dose could be adjusted
after virtual twin predictions to attain a target exposure (set
at an OLZ steady state trough concentration of 50 μg l�1). In
reality, such dose adjustmentwould be hampered by the avail-
ability of dose units – that is, it is not possible to prescribe
12mgofOLZ based on currently available formulations. How-
ever, the exercise was undertaken to demonstrate the poten-
tial of PBPK M&S in reducing variability that might be
exerted through PK variation in patients. Importantly,
variability in OLZ exposure was decreased when a hypotheti-
cal dose-adjustment regimen was applied to the virtual twin
predictions – the CV for exposure decreased from 0.37 for
the fixed-dose regimen to 0.18 for the hypothetical adjusted-
dose regimen. As the science underpinning PBPK-guided
MIPD develops, it will be necessary to test whether this hypo-
thetical improvement in exposure variability occurs in reality.

There were some limitations to the present study. Firstly,
there was no record in the TDM database of the extrinsic
factors that influence CYP1A2 activity, such as the smoking
status of patients, raising the possibility of confounding in
the model validation based on multiple doses (Figure 2). Sen-
sitivity analyses could be conducted to examine this further.
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Secondly, comedications that may alter enzymes other than
CYP1A2 involved in OLZ clearance were not considered in
the modelling (e.g. valproate, oxycodone, risperidone or
fluticasone). As PBPK M&S becomes increasingly sophisti-
cated with the validation of more compound files, the impact
of comedications on OLZ exposure could be assessed. Thirdly,
adherence to OLZ treatment was not observed directly, so it is
not possible to guarantee that the dose simulated was the
dose that was taken. Fourthly, UGT1A4 is the enzyme respon-
sible for generating OLZ-10-N-glucuronide and OLZ-40-N-glu-
curonide, and may contribute up to a quarter of OLZ
clearance [23]. Lower OLZ concentrations in heterozygous
carriers of UGT1A4*3 have been reported in Caucasian [62]
but not in Japanese [63] individuals, raising the possibility
of a substrate-specific rapid-metabolizer phenotype associ-
ated with this allele in some ethnicities [64]. Therefore, an-
other limitation of the present study was that the UGT1A4
genotype was not considered. (5) Finally, the authors recog-
nize that only OLZ exposure was predicted, a surrogate end-
point for response, and that there was no intention to
investigate the PKPD relationship. For MIPD to gain traction
in healthcare and become a clinical reality, considerable work
is required to investigate robust clinical endpoints around ef-
ficacy and safety, and to demonstrate health economic ad-
vantages at the point of care.

Conclusions
In conclusion, the present study generated a PBPK model for
OLZ in Simcyp® that was validated by predicting the phar-
macokinetics of OLZ after single oral doses and by predicting
the distribution of OLZ steady state trough concentrations in
a TDM database. The PBPK model was then applied success-
fully to predict with reasonable accuracy the systemic expo-
sure of OLZ in individual patients. Importantly, this
approach identified an outlier patient with an OLZ trough
concentration well below the therapeutic range and could
hypothetically be used to decrease the variability in drug ex-
posure via individualized dose adjustment. Repurposing of
available PBPK M&S platforms is an option for MIPD that re-
quires further study to examine clinical potential.
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